# Sigma protocol and OR proofs - notes

#### arnaucube

#### March 2022

#### Abstract

This document contains the notes taken during the Cryptography Seminars given by Rebekah Mercer.

## Contents

| 1 | Sigr     | na protocol                     | 1 |
|---|----------|---------------------------------|---|
|   | 1.1      | The protocol                    | 1 |
|   | 1.2      | Non interactive protocol        | 2 |
|   | 1.3      | What could go wrong (Simulator) | ļ |
| 2 | OR proof |                                 |   |
|   | 2.1      | The protocol                    | ; |
|   |          | 2.1.1 Simulator $\ldots$        |   |
|   | 2.2      | Flow                            | • |
| 3 | Res      | ources                          | 2 |

## 1 Sigma protocol

#### 1.1 The protocol

Let q be a prime, q a prime divisor in p-1, and g and element of order q in  $\mathbb{Z}_p^a$ . Then we have  $G = \langle g \rangle$ .

We assume that computationally for a given A it's hard to find  $a \in \mathbb{F}$  such that  $A = g^a$ .

Alice wants to prove that knows the *witness*  $w \in \mathbb{F}$ , such that the *statement*  $X = g^w$ , without revealing w.

- 1. Alice generates a random  $a \stackrel{r}{\leftarrow} \mathbb{F}$ , and computes  $A = g^a$ . And sends A to Bob.
- 2. Bob generates a challenge  $c \xleftarrow{r} \mathbb{F}$ , and sends it to Alice.
- 3. Alice computes  $z = a + c \cdot w$ , and sends it to Bob.

4. Bob verifies it by checking that  $g^z == X^c \cdot A$ .

We can unfold Bob's verification and see that:

#### Properties:

- i. *correctness/completness*: if Alice know the witness for the statement, then they can create a valid proof.
- ii. *soundness*: if someone does not have knowledge of the witness, can not form a valid proof (verifier will always reject).
- iii. *zero knowledge*: nobody gains knowledge of anything new with the proof. prior knowledge + proof = prior knowledge

#### 1.2 Non interactive protocol

With the *Fiat-Shamir Heuristic*, we model a hash function as a random oracle, thus we can replace Bob's role by a hash function in order to obtain the challenge  $c \in \mathbb{F}$ .

So, we replace the step 2 from the described protocol by c = H(X||A) (where H is a known hash function).

#### 1.3 What could go wrong (Simulator)

If the verifier (Bob) sends  $c \in \mathbb{F}$ , prior to the prover committed to A, the prover could create a proof about a public key which they don't know w.

- 1. Bob sends  $c \xleftarrow{r}{\leftarrow} \mathbb{F}$  to Alice
- 2. Alice generates  $z \xleftarrow{r} \mathbb{F}$
- 3. Alice then computes  $A = g^z X^{-c}$ , and sends z, A to Bob
- 4. Bob would check that  $g^z == X^c A$  and it would pass the verification, as  $g^z == X^c \cdot A \Rightarrow g^z == X^c \cdot g^z X^{-c} \Rightarrow g^z == g^z$ .

As we've seen, it's really important the order of the steps, so Alice must commit to A before knowing c.

This 'fake' proof generation is often called the *simulator* and used for further constructions.

## 2 OR proof

*OR proofs* allows the prover to prove that they know the witness w of one of the two known *public keys*  $X_0, X_1 \in \mathbb{F}$ , without revealing which one. It uses the construction seen in the *sigma protocols* together with the idea of the *simulator*.

A similar construction is used for n statements in the *ring signatures* scheme (used for example in *Monero*). In our case, we will work with n = 2.

#### 2.1 The protocol

#### 2.1.1 Simulator

We can assume that the simulator is a box that for given the inputs (g, X), it will output  $(A_s, c_s, z_s)$ , such that verification succeeds  $(g^{z_s} = X^{c_s} \cdot A_s)$ .

$$\xrightarrow{g, X} \text{ simulator } \xrightarrow{A_s, c_s, z_s}$$

Internally, the simulator computes

$$z_s \xleftarrow{r} \mathbb{F}, \ c_s \xleftarrow{r} \mathbb{F}, \ A_s = g^{z_s} \cdot X^{c_s}$$

#### 2.2 Flow

For two known public keys  $X_0, X_1 \in G$ , Alice knows  $w_b \in \mathbb{F}$ , for  $b \in \{0, 1\}$ , such that  $g^{w_b} = X_0$  or  $g^{w_b} = X_1$ . As we don't know if Alice controls 0 or 1, from now on, we will use b and 1 - b.

So, Alice knows  $w_b \in \mathbb{F}$  such that  $X_b = g^{w_b}$ , and does not know  $w_{1-b}$  for  $X_{1-b} = g^{w_{1-b}}$ .

- 1. First of all, as in the Sigma protocol, Alice generates a random commitment  $a_b \stackrel{r}{\leftarrow} \mathbb{F}$ , and computes  $A_b = g^{a_b}$ .
- 2. Then, Alice will run the simulator for 1 b.

Sets a random  $c_{1-b} \xleftarrow{r} \mathbb{F}$ , and runs the simulator with inputs  $(c_{1-b}, X_{1-b})$ , and outputs  $(A_{1-b}, c_{1-b}, z_{1-b})$ .

Remember that internally the *simulator* will set random  $z_{1-b}, c_{1-b} \stackrel{r}{\leftarrow} \mathbb{F}$ , and compute an  $A_{1-b}$  such that  $A_{1-b} = g^{z_{1-b}} \cdot X_{1-b}^{c_{1-b}}$ .

- 3. Now, Alice sends  $A_b, A_{1-b}$  to Bob
- 4. And Bob sends back the *challenge*  $s \xleftarrow{r}{\leftarrow} \mathbb{F}$ .
- 5. Alice then splits the challenge s into  $c_b, c_{1-b}$ , by  $s = c_{1-b} \oplus c_b$ . So Alice can compute  $c_b = s \oplus c_{1-b}$ .
- 6. Then Alice computes  $z_b = a_b \cdot w_b + c_b$ . And sends to Bob  $(c_b, c_{1-b}, z_b, z_{1-b})$ .
- 7. Bob can perform the verification by checking that:
  - i.  $s == c_b \oplus c_{1-b}$

ii. 
$$g_{z_{1-b}} == A_{1-b} \cdot X_{1-b}^{-c_{1-b}}$$

iii. 
$$g_{z_b} == A_b \cdot X_b^{-c_b}$$



### **3** Resources

- 1. https://cs.au.dk/ ivan/Sigma.pdf
- 2. Cryptography Made Simple, Nigel Smart. Section 21.3.