Sigma protocol and OR proofs - notes

arnaucube

March 2022

Abstract

This document contains the notes taken during the Cryptography Seminars given by Rebekah Mercer

Contents

1 Sigma protocol 1
1.1 The protocol 1
1.2 Non interactive protocol 2
1.3 What could go wrong (Simulator) 3
2 OR proof 3
2.1 The protocol 3
2.1.1 Simulator 3
2.2 Flow 3
3 Resources 4

1 Sigma protocol

1.1 The protocol

Let q be a prime, q a prime divisor in $p-1$, and g and element of order q in \mathbb{Z}_{p}^{a}. Then we have $G=\langle g\rangle$.
We assume that computationally for a given A it's hard to find $a \in \mathbb{F}$ such that $A=g^{a}$.
Alice wants to prove that knows the witness $w \in \mathbb{F}$, such that the statement $X=g^{w}$, without revealing w.

1. Alice generates a random $a \stackrel{r}{\leftarrow} \mathbb{F}$, and computes $A=g^{a}$. And sends A to Bob.
2. Bob generates a challenge $c \stackrel{r}{\leftarrow} \mathbb{F}$, and sends it to Alice.
3. Alice computes $z=a+c \cdot w$, and sends it to Bob.
4. Bob verifies it by checking that $g^{z}==X^{c} \cdot A$.

We can unfold Bob's verification and see that:

$$
\begin{gathered}
g^{z}==X^{c} \cdot A \\
g^{a+c w}==g^{w c} g^{a} \\
g^{a+c w}==g^{w c+a}
\end{gathered}
$$

Properties:
i. correctness/completness: if Alice know the witness for the statement, then they can create a valid proof.
ii. soundness: if someone does not have knowledge of the witness, can not form a valid proof (verifier will always reject).
iii. zero knowledge: nobody gains knowledge of anything new with the proof. prior knowledge + proof $=$ prior knowledge

1.2 Non interactive protocol

With the Fiat-Shamir Heuristic, we model a hash function as a random oracle, thus we can replace Bob's role by a hash function in order to obtain the challenge $c \in \mathbb{F}$.
So, we replace the step 2 from the described protocol by $c=H(X \| A)$ (where H is a known hash function).

1.3 What could go wrong (Simulator)

If the verifier (Bob) sends $c \in \mathbb{F}$, prior to the prover committed to A, the prover could create a proof about a public key which they don't know w.

1. Bob sends $c \stackrel{r}{\leftarrow} \mathbb{F}$ to Alice
2. Alice generates $z \stackrel{r}{\leftarrow} \mathbb{F}$
3. Alice then computes $A=g^{z} X^{-c}$, and sends z, A to Bob
4. Bob would check that $g^{z}==X^{c} A$ and it would pass the verification, as $g^{z}=X^{c} \cdot A \Rightarrow g^{z}==X^{c} \cdot g^{z} X^{-c} \Rightarrow g^{z}==g^{z}$.

As we've seen, it's really important the order of the steps, so Alice must commit to A before knowing c.
This 'fake' proof generation is often called the simulator and used for further constructions.

2 OR proof

OR proofs allows the prover to prove that they know the witness w of one of the two known public keys $X_{0}, X_{1} \in \mathbb{F}$, without revealing which one. It uses the construction seen in the sigma protocols together with the idea of the simulator.

A similar construction is used for n statements in the ring signatures scheme (used for example in Monero). In our case, we will work with $n=2$.

2.1 The protocol

2.1.1 Simulator

We can assume that the simulator is a box that for given the inputs (g, X), it will output $\left(A_{s}, c_{s}, z_{s}\right)$, such that verification succeeds $\left(g^{z_{s}}==X^{c_{s}} \cdot A_{s}\right)$.

Internally, the simulator computes

$$
z_{s} \stackrel{r}{\leftarrow} \mathbb{F}, c_{s} \stackrel{r}{\leftarrow} \mathbb{F}, A_{s}=g^{z_{s}} \cdot X^{c_{s}}
$$

2.2 Flow

For two known public keys $X_{0}, X_{1} \in G$, Alice knows $w_{b} \in \mathbb{F}$, for $b \in\{0,1\}$, such that $g^{w_{b}}=X_{0}$ or $g^{w_{b}}=X_{1}$. As we don't know if Alice controls 0 or 1 , from now on, we will use b and $1-b$.
So, Alice knows $w_{b} \in \mathbb{F}$ such that $X_{b}=g^{w_{b}}$, and does not know w_{1-b} for $X_{1-b}=g^{w_{1-b}}$.

1. First of all, as in the Sigma protocol, Alice generates a random commitment $a_{b} \stackrel{r}{\leftarrow} \mathbb{F}$, and computes $A_{b}=g^{a_{b}}$.
2. Then, Alice will run the simulator for $1-b$.

Sets a random $c_{1-b} \stackrel{r}{\leftarrow} \mathbb{F}$, and runs the simulator with inputs $\left(c_{1-b}, X_{1-b}\right)$, and outputs $\left(A_{1-b}, c_{1-b}, z_{1-b}\right)$.

Remember that internally the simulator will set random
$z_{1-b}, c_{1-b} \stackrel{r}{\leftarrow} \mathbb{F}$, and compute an A_{1-b} such that
$A_{1-b}=g^{z_{1-b}} \cdot X_{1-b}^{c_{1-b}}$.
3. Now, Alice sends A_{b}, A_{1-b} to Bob
4. And Bob sends back the challenge $s \stackrel{r}{\leftarrow} \mathbb{F}$.
5. Alice then splits the challenge s into c_{b}, c_{1-b}, by $s=c_{1-b} \oplus c_{b}$. So Alice can compute $c_{b}=s \oplus c_{1-b}$.
6. Then Alice computes $z_{b}=a_{b} \cdot w_{b}+c_{b}$. And sends to $\operatorname{Bob}\left(c_{b}, c_{1-b}, z_{b}, z_{1-b}\right)$.
7. Bob can perform the verification by checking that:
i. $s==c_{b} \oplus c_{1-b}$
ii. $g_{z_{1-b}}==A_{1-b} \cdot X_{1-b}^{-c_{1-b}}$
iii. $g_{z_{b}}==A_{b} \cdot X_{b}^{-c_{b}}$

3 Resources

1. https://cs.au.dk/ ivan/Sigma.pdf
2. Cryptography Made Simple, Nigel Smart. Section 21.3.
