
Sigma protocol and OR proofs - notes

arnaucube

March 2022

Abstract

This document contains the notes taken during the Cryptography Sem-
inars given by Rebekah Mercer.

Contents

1 Sigma protocol 1
1.1 The protocol . 1
1.2 Non interactive protocol . 2
1.3 What could go wrong (Simulator) 3

2 OR proof 3
2.1 The protocol . 3

2.1.1 Simulator . 3
2.2 Flow . 3

3 Resources 4

1 Sigma protocol

1.1 The protocol

Let q be a prime, q a prime divisor in p− 1, and g and element of order q in Za
p.

Then we have G = 〈g〉.
We assume that computationally for a given A it’s hard to find a ∈ F such that
A = ga.
Alice wants to prove that knows the witness w ∈ F, such that the statement
X = gw, without revealing w.

1. Alice generates a random a
r←− F, and computes A = ga. And sends A to

Bob.

2. Bob generates a challenge c
r←− F, and sends it to Alice.

3. Alice computes z = a + c · w, and sends it to Bob.

1

https://github.com/rbkhmrcr

4. Bob verifies it by checking that gz == Xc ·A.

We can unfold Bob’s verification and see that:

gz == Xc ·A

ga+cw == gwcga

ga+cw == gwc+a

Alice Bob

A

c

z

ok

Properties:

i. correctness/completness: if Alice know the witness for the statement, then
they can create a valid proof.

ii. soundness: if someone does not have knowledge of the witness, can not
form a valid proof (verifier will always reject).

iii. zero knowledge: nobody gains knowledge of anything new with the proof.
prior knowledge + proof = prior knowledge

1.2 Non interactive protocol

With the Fiat-Shamir Heuristic, we model a hash function as a random oracle,
thus we can replace Bob’s role by a hash function in order to obtain the challenge
c ∈ F.
So, we replace the step 2 from the described protocol by c = H(X||A) (where
H is a known hash function).

2

1.3 What could go wrong (Simulator)

If the verifier (Bob) sends c ∈ F, prior to the prover committed to A, the prover
could create a proof about a public key which they don’t know w.

1. Bob sends c
r←− F to Alice

2. Alice generates z
r←− F

3. Alice then computes A = gzX−c, and sends z,A to Bob

4. Bob would check that gz == XcA and it would pass the verification, as
gz == Xc ·A⇒ gz == Xc · gzX−c ⇒ gz == gz.

As we’ve seen, it’s really important the order of the steps, so Alice must
commit to A before knowing c.
This ’fake’ proof generation is often called the simulator and used for further
constructions.

2 OR proof

OR proofs allows the prover to prove that they know the witness w of one of
the two known public keys X0, X1 ∈ F, without revealing which one. It uses the
construction seen in the sigma protocols together with the idea of the simulator.

A similar construction is used for n statements in the ring signatures scheme
(used for example in Monero). In our case, we will work with n = 2.

2.1 The protocol

2.1.1 Simulator

We can assume that the simulator is a box that for given the inputs (g,X), it
will output (As, cs, zs), such that verification succeeds (gzs == Xcs ·As).

simulator
g,X As, cs, zs

Internally, the simulator computes

zs
r←− F, cs

r←− F, As = gzs ·Xcs

2.2 Flow

For two known public keys X0, X1 ∈ G, Alice knows wb ∈ F, for b ∈ {0, 1}, such
that gwb = X0 or gwb = X1. As we don’t know if Alice controls 0 or 1, from
now on, we will use b and 1− b.
So, Alice knows wb ∈ F such that Xb = gwb , and does not know w1−b for
X1−b = gw1−b .

3

1. First of all, as in the Sigma protocol, Alice generates a random commitment
ab

r←− F, and computes Ab = gab .

2. Then, Alice will run the simulator for 1− b.

Sets a random c1−b
r←− F, and runs the simulator with inputs

(c1−b, X1−b), and outputs (A1−b, c1−b, z1−b).

Remember that internally the simulator will set random
z1−b, c1−b

r←− F, and compute an A1−b such that
A1−b = gz1−b ·Xc1−b

1−b .

3. Now, Alice sends Ab, A1−b to Bob

4. And Bob sends back the challenge s
r←− F.

5. Alice then splits the challenge s into cb, c1−b, by s = c1−b ⊕ cb. So Alice
can compute cb = s⊕ c1−b.

6. Then Alice computes zb = ab ·wb+cb. And sends to Bob (cb, c1−b, zb, z1−b).

7. Bob can perform the verification by checking that:

i. s == cb ⊕ c1−b

ii. gz1−b
== A1−b ·X

−c1−b

1−b

iii. gzb == Ab ·X−cb
b

Alice Bob

Ab, A1−b

s

cb, c1−b, zb, z1−b

3 Resources

1. https://cs.au.dk/ ivan/Sigma.pdf

2. Cryptography Made Simple, Nigel Smart. Section 21.3.

4

https://cs.au.dk/~ivan/Sigma.pdf

	Sigma protocol
	The protocol
	Non interactive protocol
	What could go wrong (Simulator)

	OR proof
	The protocol
	Simulator

	Flow

	Resources

