Paper notes

arnaucube

Abstract

Notes taken while reading papers. Usually while reading papers I take handwritten notes, this document contains some of them re-written to LaTeX.

The notes are not complete, don't include all the steps neither all the proofs.

Contents

1 SnarkPack 1
2 Sonic 2
2.1 Structured Reference String 2
2.2 System of constraints 2
2.2.1 The basic Sonic protocol 4
2.2.2 Polynomial Commitment Scheme 4
2.3 Succint signatures of correct computation 5
3 BLS signatures 5
4 modified IPA (from Halo) 6
4.1 Notation 6
4.2 Transparent setup 6
4.3 Protocol 7

1 SnarkPack

Notes taken while reading SnarkPack paper [1].
Groth16 proof aggregation.
i. Simple verification:

Proof: $\pi_{i}=\left(A_{i}, B_{i}, C_{i}\right)$
Verifier checks: $e\left(A_{i}, B_{i}\right)=e\left(C_{i}, D\right)$
Where D is the $C R S$.
ii. Batch verification: $r \in^{\$} F_{q}$

$$
\begin{aligned}
& r^{i} \cdot e\left(A_{i}, B_{i}\right)=e\left(C_{i}, D\right) \\
& \Longrightarrow \prod e\left(A_{i}, B_{i}\right)^{r^{i}}==\prod e\left(C_{i}, D\right)^{r^{i}} \\
& \Longrightarrow \prod e\left(A_{i}, B_{i}^{r^{i}}\right)=\prod \prod e\left(C_{i}^{r^{i}}, D\right)
\end{aligned}
$$

iii. Snark Aggregation verification:

$$
\begin{aligned}
& z_{A B}=\prod e\left(A_{i}, B_{i}^{r^{i}}\right) \\
& z_{C}=\prod C_{i}^{r^{i}} \\
& \text { Verification: } z_{A B}==e\left(z_{C}, D\right)
\end{aligned}
$$

2 Sonic

Notes taken while reading Sonic paper [2]. Does not include all the steps, neither the proofs.

2.1 Structured Reference String

$\left\{\left\{g^{x^{i}}\right\}_{i=-d}^{d},\left\{g^{\alpha x^{i}}\right\}_{i=-d, i \neq 0}^{d},\left\{h^{x^{i}}, h^{\alpha x^{i}}\right\}_{i=-d}^{d}, e\left(g, h^{\alpha}\right)\right\}$

2.2 System of constraints

Multiplication constraint: $a \cdot b=c$ Q linear constraints:

$$
a \cdot u_{q}+b \cdot v_{q}+c \cdot w_{q}=k_{q}
$$

with $u_{q}, v_{q}, w_{q} \in \mathbb{F}^{n}$, and $k_{q} \in \mathbb{F}_{p}$.
Example: $x^{2}+y^{2}=z$

$$
a=(x, y), \quad b=(x, y), \quad c=\left(x^{2}, y^{2}\right)
$$

i. $(x, y) \cdot(1,0)+(x, y) \cdot(-1,0)+\left(x^{2}, y^{2}\right) \cdot(0,0)=0 \longrightarrow x-x=0$
ii. $(x, y) \cdot(0,1)+(x, y) \cdot(0,-1)+\left(x^{2}, y^{2}\right) \cdot(0,0)=0 \longrightarrow y-y=0$
iii. $(x, y) \cdot(0,0)+(x, y) \cdot(0,0)+\left(x^{2}, y^{2}\right) \cdot(1,1)=z \longrightarrow x^{2}+y^{2}=z$

So,

$$
\begin{array}{clll}
u_{1}=(1,0) & v_{1}=(-1,0) & w_{1}=(0,0) & k_{1}=0 \\
u_{2}=(0,1) & v_{2}=(0,-1) & w_{2}=(0,0) & k_{2}=0 \\
u_{3}=(0,0) & v_{3}=(0,0) & w_{3}=(1,1) & k_{2}=z
\end{array}
$$

Compress n multiplication constraints into an equation in formal indeterminate Y :

$$
\sum_{i=1}^{n}\left(a_{i} b_{i}-c_{i}\right) \cdot Y^{i}=0
$$

encode into negative exponents of Y :

$$
\sum_{i=1}^{n}\left(a_{i} b_{i}-c_{i}\right) \cdot Y^{-} i=0
$$

Also, compress the Q linear constraints, scaling by Y^{n} to preserve linear independence:

$$
\sum_{q=1}^{Q}\left(a \cdot u_{q}+b \cdot v_{q}+c \cdot w_{q}-k_{q}\right) \cdot Y^{q+n}=0
$$

Polys:

$$
\begin{aligned}
& u_{i}(Y)=\sum_{q=1}^{Q} Y^{q+n} \cdot u_{q, i} \\
& v_{i}(Y)=\sum_{q=1}^{Q} Y^{q+n} \cdot v_{q, i} \\
& w_{i}(Y)=-Y^{i}-Y^{-1}+\sum_{q=1}^{Q} Y^{q+n} \cdot w_{q, i} \\
& k(Y)=\sum_{q=1}^{Q} Y^{q+n} \cdot k_{q}
\end{aligned}
$$

Combine the multiplicative and linear constraints to:

$$
a \cdot u(Y)+b \cdot v(Y)+c \cdot w(Y)+\sum_{i=1}^{n} a_{i} b_{i}\left(Y^{i}+Y^{-i}\right)-k(Y)=0
$$

where $a \cdot u(Y)+b \cdot v(Y)+c \cdot w(Y)$ is embeded into the constant term of the polynomial $t(X, Y)$.

Define $r(X, Y)$ s.t. $r(X, Y)=r(X Y, 1)$.

$$
\begin{aligned}
\Longrightarrow r(X, Y) & =\sum_{i=1}^{n}\left(a_{i} X^{i} Y^{i}+b_{i} X^{-i} Y^{-i}+c_{i} X^{-i-n} Y^{-i-n}\right) \\
s(X, Y) & =\sum_{i=1}^{n}\left(u_{i}(Y) X^{-i}+v_{i}(Y) X^{i}+w_{i}(Y) X^{i+n}\right)
\end{aligned}
$$

$$
\begin{gathered}
r^{\prime}(X, Y)=r(X, Y)+s(X, Y) \\
t(X, Y)=r(X, Y)+r^{\prime}(X, Y)-k(Y)
\end{gathered}
$$

The coefficient of X^{0} in $t(X, Y)$ is the left-hand side of the equation.
Sonic demonstrates that the constant term of $t(X, Y)$ is zero, thus demonstrating that our constraint system is satisfied.

2.2.1 The basic Sonic protocol

1. Prover constructs $r(X, Y)$ using their hidden witness
2. Prover commits to $r(X, 1)$, setting the maximum degree to n
3. Verifier sends random challenge y
4. Prover commits to $t(X, y)$. The commitment scheme ensures that $t(X, y)$ has no constant term.
5. Verifier sends random challenge z
6. Prover opens commitments to $r(z, 1), r(z, y), t(z, y)$
7. Verifier calculates $r^{\prime}(z, y)$, and checks that

$$
r(z, y) \cdot r^{\prime}(z, y)-k(y)==t(z, y)
$$

Steps 3 and 5 can be made non-interactive by the Fiat-Shamir transformation.

2.2.2 Polynomial Commitment Scheme

Sonic uses an adaptation of KZG [3], want:
i. evaluation binding, i.e. given a commitment F, an adversary cannot open F to two different evaluations v_{1} and v_{2}
ii. bounded polynomial extractable, i.e. any algebraic adversary that opens a commitment F knows an opening $f(X)$ with powers $-d \leq i \leq \max , i \neq 0$.

PC scheme (adaptation of KZG):
i. Commit(info, $f(X)) \longrightarrow F$:

$$
F=g^{\alpha \cdot x^{d-m a x}} \cdot f(x)
$$

ii. Open(info, $F, z, f(x)) \longrightarrow(f(z), W)$:

$$
\begin{gathered}
w(X)=\frac{f(X)-f(z)}{X-z} \\
W=g^{w(x)}
\end{gathered}
$$

iii. Verify (info, $F, z,(v, W)) \longrightarrow 0 / 1$:

Check:

$$
e\left(W, h^{\alpha \cdot x}\right) \cdot e\left(g^{v} W^{-z}, h^{\alpha}\right)==e\left(F, h^{x^{-d+\max }}\right)
$$

2.3 Succint signatures of correct computation

Signature of correct computation to ensure that an element $s=s(z, y)$ for a known polynomial

$$
s(X, Y)=\sum_{i, j=-d}^{d} s_{i, j} \cdot X^{i} \cdot Y^{i}
$$

Use the structure of $s(X, Y)$ to prove its correct calculation using a permutation argument \longrightarrow grand-product argument inspired by Bayer and Groth, and Bootle et al.

Restrict to constraint systems where $s(X, Y)$ can be expressed as the sum of M polynomials. Where $j-t h$ poly is of the form:

$$
\Psi_{j}(X, Y)=\sum_{i=1}^{n} \psi_{j, \sigma_{j, i}} \cdot X^{i} \cdot Y^{\sigma_{j, i}}
$$

where σ_{j} is the fixed polynomial permutation, and $\phi_{j, i} \in \mathbb{F}$ are the coefficients.

$$
\begin{array}{|l|}
\hline \text { WIP } \\
\hline
\end{array}
$$

3 BLS signatures

Notes taken while reading about BLS signatures [4].
Key generation $s k \in \mathbb{Z}_{q}, p k=[s k] \cdot g_{1}$, where $g_{1} \in G_{1}$, and is the generator.

Signature

$$
\sigma=[s k] \cdot H(m)
$$

where H is a function that maps to a point in G_{2}. So $H(m), \sigma \in G_{2}$.

Verification

$$
e\left(g_{1}, \sigma\right)==e(p k, H(m))
$$

Unfold:
$e(p k, H(m))=e\left([s k] \cdot g_{1}, H(m)=e\left(g_{1}, H(m)\right)^{s k}=e\left(g_{1},[s k] \cdot H(m)\right)=e\left(g_{1}, \sigma\right)\right)$

Aggregation Signatures aggregation:

$$
\sigma_{a g g r}=\sigma_{1}+\sigma_{2}+\ldots+\sigma_{n}
$$

where $\sigma_{\text {aggr }} \in G_{2}$, and an aggregated signatures is indistinguishible from a non-aggregated signature.

Public keys aggregation

$$
p k_{a g g r}=p k_{1}+p k_{2}+\ldots+p k_{n}
$$

where $p k_{\text {aggr }} \in G_{1}$, and an aggregated public keys is indistinguishible from a non-aggregated public key.

Verification of aggregated signatures Identical to verification of a normal signature as long as we use the same corresponding aggregated public key:

$$
e\left(g_{1}, \sigma_{a g g r}\right)==e\left(p k_{\text {aggr }}, H(m)\right)
$$

Unfold:

$$
\begin{gathered}
\mathrm{e}\left(\mathrm{pk}_{\text {aggr }}, H(m)\right)=e\left(p k_{1}+p k_{2}+\ldots+p k_{n}, H(m)\right)= \\
=e\left(\left[s k_{1}\right] \cdot g_{1}+\left[s k_{2}\right] \cdot g_{1}+\ldots+\left[s k_{n}\right] \cdot g_{1}, H(m)\right)= \\
=e\left(\left[s k_{1}+s k_{2}+\ldots+s k_{n}\right] \cdot g_{1}, H(m)\right)= \\
=e\left(g_{1}, H(m)\right)^{\left(s k_{1}+s k_{2}+\ldots+s k_{n}\right)}= \\
=e\left(g_{1},\left[s k_{1}+s k_{2}+\ldots+s k_{n}\right] \cdot H(m)\right)= \\
=e\left(g_{1},\left[s k_{1}\right] \cdot H(m)+\left[s k_{2}\right] \cdot H(m)+\ldots+\left[s k_{n}\right] \cdot H(m)\right)= \\
=e\left(g_{1}, \sigma_{1}+\sigma_{2}+\ldots+\sigma_{n}\right)=\mathrm{e}\left(\mathrm{~g}_{1}, \sigma_{\text {aggr }}\right)
\end{gathered}
$$

4 modified IPA (from Halo)

Notes taken while reading about the modified Inner Product Argument (IPA) from the Halo paper [5].

4.1 Notation

Scalar mul $[a] G$, where a is a scalar and $G \in \mathbb{G}$
Inner product $<\vec{a}, \vec{b}>=a_{0} b_{0}+a_{1} b_{1}+\ldots+a_{n-1} b_{n-1}$
Multiscalar mul $<\vec{a}, \vec{b}>=\left[a_{0}\right] G_{0}+\left[a_{1}\right] G_{1}+\ldots\left[a_{n-1}\right] G_{n-1}$

4.2 Transparent setup

$\vec{G} \in^{r} \mathbb{G}^{d}, H \in^{r} \mathbb{G}$
Prover wants to commit to $p(x)=a_{0}$

4.3 Protocol

Prover:

$$
\begin{gathered}
P=<\vec{a}, \vec{G}>+[r] H \\
v=<\vec{a},\left\{1, x, x^{2}, \ldots, x^{d-1}\right\}>
\end{gathered}
$$

where $\left\{1, x, x^{2}, \ldots, x^{d-1}\right\}=\vec{b}$.
We can see that computing v is the equivalent to evaluating $p(x)$ at $x(p(x)=$ $v)$.

We will prove:
i. polynomial $p(X)=\sum a_{i} X^{i}$ $p(x)=v($ that $p(X)$ evaluates x to $v)$.
ii. $\operatorname{deg}(p(X)) \leq d-1$

Both parties know P, point x and claimed evaluation v. For $U \in^{r} \mathbb{G}$,

$$
P^{\prime}=P+[v] U=<\vec{a}, G>+[r] H+[v] U
$$

Now, for k rounds $\left(d=2^{k}\right.$, from $j=k$ to $j=1$):

- random blinding factors: $l_{j}, r_{j} \in \mathbb{F}_{p}$
-

$$
\begin{aligned}
L_{j} & =<\vec{a}_{l o}, \vec{G}_{h i}>+\left[l_{j}\right] H+\left[<\vec{a}_{l o}, \vec{b}_{h i}>\right] U \\
L_{j} & =<\vec{a}_{l o}, \vec{G}_{h i}>+\left[l_{j}\right] H+\left[<\vec{a}_{l o}, \vec{b}_{h i}>\right] U
\end{aligned}
$$

- Verifier sends random challenge $u_{j} \in \mathbb{I}$
- Prover computes the halved vectors for next round:

$$
\begin{aligned}
& \vec{a} \leftarrow \vec{a}_{h i} \cdot u_{j}^{-1}+\vec{a}_{l o} \cdot u_{j} \\
& \vec{b} \leftarrow \vec{b}_{l o} \cdot u_{j}^{-1}+\vec{b}_{h i} \cdot u_{j} \\
& \vec{G} \leftarrow \vec{G}_{l o} \cdot u_{j}^{-1}+\vec{G}_{h i} \cdot u_{j}
\end{aligned}
$$

After final round, $\vec{a}, \vec{b}, \vec{G}$ are each of length 1 . Verifier can compute

$$
G=\vec{G}_{0}=<\vec{s}, \vec{G}>
$$

and

$$
b=\vec{b}_{0}=<\vec{s}, \vec{b}>
$$

where \vec{s} is the binary counting structure:

$$
\begin{gathered}
s=\left(\begin{array}{cccc}
u_{1}^{-1} & u_{2}^{-1} & \cdots & u_{k}^{-1}, \\
u_{1} & u_{2}^{-1} & \cdots & u_{k}^{-1}, \\
u_{1}^{-1} & u_{2} & \cdots & u_{k}^{-1}, \\
\vdots & & \\
& u_{1} & u_{2} & \cdots
\end{array} u_{k}\right)
\end{gathered}
$$

And verifier checks:

$$
[a] G+\left[r^{\prime}\right] H+[a b] U==P^{\prime}+\sum_{j=1}^{k}\left(\left[u_{j}^{2}\right] L_{j}+\left[u_{j}^{-2}\right] R_{j}\right)
$$

where the synthetic blinding factor r^{\prime} is $r^{\prime}=r+\sum_{j=1}^{k}\left(l_{j} u_{j}^{2}+r_{j} u_{j}^{-2}\right)$.

Unfold:

$$
\left.\left.\left.\begin{array}{l}
{[a] G+\left[r^{\prime}\right] H+[a b] U==P^{\prime}+\sum_{j=1}^{k}\left(\left[u_{j}^{2}\right] L_{j}+\left[u_{j}^{-2}\right] R_{j}\right)} \\
\text { Right side }=P^{\prime}+\sum_{j=1}^{k}\left(\left[u_{j}^{2}\right] L_{j}+\left[u_{j}^{-2}\right] R_{j}\right) \\
=<\vec{a}, \vec{G}>+[r] H+[v] U \\
\quad+\sum_{j=1}^{k}(\\
{\left[u_{j}^{2}\right] \cdot<\vec{a}_{l o}, \vec{G}_{h i}>+\left[l_{j}\right] H+\left[<\vec{a}_{l o}, \vec{b}_{h i}>\right] U} \\
+\left[u_{j}^{-2}\right] \cdot<\vec{a}_{h i}, \vec{G}_{l o}>+\left[r_{j}\right] H+\left[<\vec{a}_{h i}, \vec{b}\right. \\
l o
\end{array}\right]\right] U\right) \text {. }
$$

$$
\begin{aligned}
& \text { Left side }=[a] G+\left[r^{\prime}\right] H+[a b] U \\
& =<\vec{a}, \vec{G}> \\
& +\left[r+\sum_{j=1}^{k}\left(l_{j} \cdot u_{j}^{2}+r_{j} u_{j}^{-2}\right)\right] \cdot H \\
& +<\vec{a}, \vec{b}>U
\end{aligned}
$$

References

[1] Nicolas Gailly, Mary Maller, and Anca Nitulescu. Snarkpack: Practical snark aggregation. Cryptology ePrint Archive, Paper 2021/529, 2021. https://eprint.iacr.org/2021/529.
[2] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge snarks from linear-size universal and updateable structured reference strings. Cryptology ePrint Archive, Paper 2019/099, 2019. https : //eprint.iacr.org/2019/099.
[3] A. Kate, G. M. Zaverucha, , and I. Goldberg. Constant-size commitments to polynomials and their application, 2010. https://www.iacr.org/archive/ asiacrypt2010/6477178/6477178.pdf.
[4] Eth2.0. Eth2.0 book - bls signatures, 2010. https://eth2book.info/ altair/part2/building_blocks/signatures.
[5] Sean Bowe, Jack Grigg, and Daira Hopwood. Recursive proof composition without a trusted setup. Cryptology ePrint Archive, Paper 2019/1021, 2019. https://eprint.iacr.org/2019/1021.

