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Abstract

Notes taken while studying Galois Theory, mostyly from Ian Stewart’s
book ”Galois Theory” [1].

Usually while reading books and papers I take handwritten notes in a
notebook, this document contains some of them re-written to LaTeX.

The notes are not complete, don’t include all the steps neither all the
proofs.
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1 Recap on the degree of field extensions

(Definitions, theorems, lemmas, corollaries and examples enumeration follows
from Ian Stewart’s book [1]).

Definition 4.10. A simple extension is L : K such that L = K(α) for some
α ∈ L.

Example 4.11. Beware, L = Q(i,−i,
√
5,−

√
5) = Q(i,

√
5) = Q(i+

√
5).
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Definition 5.5. Let L : K, suppose α ∈ L is algebraic over K. Then, the
minimal polynomial of α over K is the unique monic polynomial m over K,
m(t) ∈ K[t], of smallest degree such that m(α) = 0.
eg.: i ∈ C is algebraic over R. The minimal polynomial of i over R is m(t) =
t2 + 1, so that m(i) = 0.

Lemma 5.9. Every polynomial a ∈ K[t] is congruent modulo m to a unique
polynomial of degree < δm.

Proof. Divide a/m with remainder, a = qm+ r, with q, r ∈ K[t] and δr < δm.
Then, a− r = qm, so a ≡ r (mod m).

It remains to prove uniqueness.
Suppose ∃ r ≡ s (mod m), with δr, δs < δm. Then, r − s is divisible by m,

but has smaller degree than m.
Therefore, r − s = 0, so r = s, proving uniqueness.

Lemma 5.14. Let K(α) : K be a simple algebraic extension, let m be the
minimal polynomial of α over K, let δm = n.

Then {1, α, α2, . . . , αn−1} is a basis for K(α) over K. In particular, [K(α) :
K] = n.

Definition 6.2. The degree [L : K] of a field extension L : K is the dimension
of L considered as a vector space over K.

Equivalently, the dimension of L as a vector space over K is the number of
terms in the expression for a general element of L using coefficients from K.

Example 6.3. 1. C elements are 2-dimensional over R (p + qi ∈ C, with
p, q ∈ R), because a basis is {1, i}, hence [C : R] = 2.

2. [Q(i,
√
5) : Q] = 4, since the elements {1,

√
5, i, i

√
5} form a basis for

Q(i,
√
5) over Q.

Theorem 6.4. (Short Tower Law) If K,L,M ⊆ C, and K ⊆ L ⊆ M , then
[M : K] = [M : L] · [L : K].

Proof. Let (xi)i∈I be a basis for L over K, let (yj)j∈J be a basis for M over L.
∀i ∈ I, j ∈ J , we have xi ∈ L, uj ∈M .
Want to show that (xiyj)i∈I,j∈J is a basis for M over K.

i. prove linear independence:
Suppose that ∑

ij

kijxiyj = 0 (kij ∈ K)

rearrange ∑
j

(
∑
i

kijxi︸ ︷︷ ︸
∈L

)yj = 0 (kij ∈ K)

Since
∑
i kijxi ∈ L, and the yj ∈ M are linearly independent over L, then∑

i kijxi = 0.
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Repeating the argument inside L −→ kij = 0 ∀i ∈ I, j ∈ J .
So the elements xiyj are linearly independent over K.

ii. prove that xiyj span M over K:
Any x ∈ M can be written x =

∑
j λjyj for λj ∈ L, because yj spans M

over L. Similarly, ∀j ∈ J, λj =
∑
i λijxiyj for λij ∈ K.

Putting the pieces together, x =
∑
ij λijxiyj as required.

Lemma 6.6. (Tower Law)
If K0 ⊆ K1 ⊆ . . . ⊆ Kn are subfields of C, then

[Kn : K0] = [Kn : Kn−1] · [Kn−1 : Kn−2] · . . . · [K1 : K0]

Proof. From 6.4.

[...]
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2 Tools

This section contains tools that I found useful to solve Galois Theory related
problems, and that don’t appear in Stewart’s book.

2.1 De Moivre’s Theorem and Euler’s formula

Useful for finding all the roots of a polynomial.
Euler’s formula:

eiψ = cosψ + i · sinψ

The n-th roots of a complex number z = x+ iy = r(cosθ+ i · sinθ) are given
by

zk = n
√
r ·

(
cos(

θ + 2kπ

n
) + i · sin(θ + 2kπ

n
)

)
for k = 0, . . . , n− 1.

So, by Euler’s formula:

zk = n
√
r · ei(

θ+2kπ
n )

2.2 Einsenstein’s Criterion

reference: Stewart’s book
Let f(t) = a0 + a1t+ . . .+ ant

n, suppose there is a prime q such that

1. q ∤ an

2. q|ai for i = 0, . . . , n− 1

3. q2 ∤ a0

Then, f is irreducible over Q.
TODO proof & Gauss lemma.

2.3 Elementary symmetric polynomials

TODO from orange notebook, page 36

2.4 Cyclotomic polynomials

TODO theory from brown muji notebook, page 82
Examples:

4



Φn(x) = xn−1 + xn−2 + . . .+ x2 + x+ 1 =

n−1∑
i=0

xi

Φ2p(x) = xp−1 + . . .+ x2 − x+ 1 =

p−1∑
i=0

(−x)i

Φm(x) = xm/2 + 1, when m is a power of 2

2.5 Lemma 1.42 from J.S.Milne’s book

TODO add reference to Milne’s book
Useful for when dealing with xp − 1 with p prime.
Observe that

xp − 1 = (x− 1)(xp−1 + xp−2 + . . .+ 1)

Notice that
Φp(x) = xp−1 + xp−2 + . . .+ 1

is the p-th Cyclotomic polynomial.

Lemma 1.42. If p prime, then xp−1+ . . .+1 is irreducible; hence Q[e2πi/p] has
degree p− 1 over Q.

Proof. Let f(x) = (xp − 1)/(x− 1) = xp−1 + . . .+ 1 then

f(x+ 1) =
(x+ 1)p − 1

x+ 1− 1
=

(x+ 1)p − 1

x
= xp−1 + . . .+ aix

i + . . .+ p

with ai =

(
p

i+ 1

)
.

We know that p|ai for i = 1, . . . , p − 2, therefore f(x + 1) is irreducibe by
Einsenstein’s Criterion.

This implies that f(x) is irreducible.

2.6 Dihedral groups - Groups of symmetries

Source: Wikipedia and [2].
Dihedral groups (Dn) represent the symmetries of a regular n-gon.
Properties:

• are non-abelian (for n > 2), ie. rs ̸= sr

• order 2n

• generated by a rotation r and a reflextion s

• rn = s2 = id, (rs)2 = id
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Subgroups of Dn:

• rotation form a cyclic subgroup of order n, denoted as < r >

• for each d such that d|n, ∃ Dd with order 2d

• normal subgroups

– for n odd: Dn and < rd > for every d|n
– for n even: 2 additional normal subgroups

• Klein four-groups: Z2 × Z2, of order 4

Total number of subgroups in Dn: d(n) + s(n), where d(n) is the number of
positive disivors of n, and s(n) is the sum of those divisors.

Example . For D6, we have {1, 2, 3, 6}|6, so d(n) = d(6) = 4, and s(6) = 1+2+
3+6 = 12; henceforth, the total amount of subgroups is d(n)+s(n) = 4+12 = 16.

For n ≥ 3, Dn ⊆ Sn (subgroup of the Symmetry group).
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3 Exercises

3.1 Galois groups

3.1.1 t6 − 7 ∈ Q

This exercise comes from a combination of exercises 12.4 and 13.7 from [1].

First let’s find the roots. By De Moivre’s Theorem (2.1), tk = 6
√
7 · ei 2πk

6 .

From which we denote α = 6
√
7, and ζ = e

2πi
6 , so that the roots of the

polynomial are {α, αζ, αζ2, αζ3, αζ4, αζ5}, ie. {αζk}50.
Hence the splitting field is Q(α, ζ).
Degree of the extension
In order to find [Q(α, ζ) : Q, we’re going to split it in tow parts. By the

Tower Law (6.6),

[Q(α, ζ) : Q] = [Q(α, ζ) : Q(α)] · [Q(α) : Q]

To find each degree, we will find the minimal polynomial of the adjoined
term over the base field of the extension:

i. minimal polynomial of α over Q
By Einsenstein’s Criterion (2.2), with q = 7 we have that q ∤ 1, 7|−7, 0, 0, . . .,
and 72 ∤ −7, hence f(t) is irreducibe over Q, thus is the minimal polynomial

mi(t) = f(t) = t6 − 7

which has roots {αζk}50.

ii. minimal polynomial of ζ over Q(α)
Since ζ is the primitive 6th root of unity, we know that the minimal poly-
nomial will be the 6th cyclotomic polynomial (2.4):

mii(t) = Φ6(t) = t2 − t+ 1

which has roots ζ,−ζ.
Since Q(α) ⊆ R, and the roots of Φ6(t) = t2 − t+1 are in C, Φ6(t) remains
irreducible over Q(α).

Therefore, by the tower of law,

[Q(α, ζ) : Q] = degΦ6(t) · deg f(t) = 2 · 6 = 12

and by the Fundamental Theorem of Galois Theory, we know that

|Γ(Q(α, ζ) : Q)| = [Q(α, ζ) : Q] = 12

which tells us that there exist 12 Q-automorphisms of the Galois group.
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Let’s find the 12 Q-automorphisms. Start by defining σ which fixes ζ and
acts on α, sending it to another of the roots of the minimal polynomial of α
over Q, f(t), choose αζ.

Now define τ which fixes α and acts on ζ, sending it into another root of the
minimal polynomial of ζ over Q(α), choose −ζ.

σ : α 7→ αζ

ζ 7→ ζ

τ : α 7→ α

ζ 7→ −ζ = ζ−1

In other words, we have 12 Q-automorphisms, which are the combination of
σ and τ :

σkτ j : α 7→ αζk

ζ 7→ ζj

for 0 ≤ k ≤ 5 and j = ±1.

TODO diagram

Observe, that Γ is generated by the combination of σ and τ , and it is isomor-
phic to the group of symmetries of order 12, the dihedral group (2.6) of order
12, D6, ie. Γ ∼= D6.

Let’s find the subgroups of Γ, and the fixed fields of Q(α, ζ).
We know that Γ ∼= D6, and we know from the properties of the dihedral

group (2.6) that the number of subgroups of D6 will be d(6)+s(6) = 4+12 = 16
subgroups.
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generators order group fixed field notes (check fixed field)
⟨⟩ = ⟨σ6⟩ = ⟨τ2⟩ 1 id Q(α, ζ)

⟨σ⟩ = ⟨σ5⟩ 6 Z6 Q(ζ)
⟨σ2⟩ = ⟨σ4⟩ 3 Z3 Q(α3, ζ) σ2(α3) = α3ζ3·2 = α3ζ6 = α3 · 1 = α3

⟨σ3⟩ 2 Z2 Q(α2, ζ) σ3(α2) = (αζ3)2 = α2ζ6 = α2

⟨τ⟩ 2 Z2 Q(α)
⟨στ⟩ 2 Z2 Q(α+ αζ) σζ(α+αζ) = σ(α+αζ−1) = αζ+αζ−1ζ = αζ+α
⟨σ2τ⟩ 2 Z2 Q(α+ αζ2),Q(αζ) σ2τ(α + αζ2) = σ(α + αζ−2) = αζ2 + αζ−2ζ2 =

αζ2 + α
⟨σ3τ⟩ 2 Z2 Q(α+ αζ3) σ3τ(α + αζ3) = σ(α + αζ−3) = αζ3 + αζ−3ζ3 =

αζ3 + α
⟨σ4τ⟩ 2 Z2 Q(α+ αζ4),Q(αζ2) σ4τ(α + αζ4) = σ(α + αζ−4) = αζ4 + αζ−4ζ4 =

αζ4 + α
⟨σ5τ⟩ 2 Z2 Q(α+ αζ5) σ5τ(α + αζ5) = σ(α + αζ−5) = αζ5 + αζ−5ζ5 =

αζ5 + α
⟨σ, τ⟩ = ⟨σ5, τ⟩ 6 · 2 = 12 D6 Q
⟨σ2, τ⟩ = ⟨σ4, τ⟩ 3 · 2 = 6 D3 Q(α3) σ2(α3) = α3ζ3·2 = α3 and τ(α3) = α3

⟨σ3, τ⟩ 2 · 2 = 4 D2 Q(α2) σ3(α2) = α2ζ2·2 = α2 and τ(α2) = α2

⟨σ2, στ⟩ 3 · 2 = 6 D3 Q(α3 + α3ζ3) σ2(α3 +α3ζ3) = α3ζ3 +α3ζ3ζ3 = α3ζ3 +α3ζ6 =
α3ζ3 + α3

⟨σ3, στ⟩ 2 · 2 = 4 Z2 × Z2 Q(α2ζ2),Q(α2 + α2ζ2) σ3(α2 + α2ζ2) = α2ζ2·3 + α2ζ2·3ζ2 = α2 + α2ζ2

and στ(α2+α2ζ2) = α2ζ2+α2ζ−2ζ2 = α2ζ2+α2

⟨σ3, σ2τ⟩ 2 · 2 = 4 Z2 × Z2 Q(α2ζ4),Q(α2 + α2ζ4) σ2ζ(α2ζ4) = α2ζ2ζ−4 = α2ζ−2 = α2ζ4 and
σ3(α2ζ4) = α2ζ2·3ζ4 = α2ζ4
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