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Abstract

Notes taken while studying Galois Theory, mostyly from lan Stewart’s
book ”Galois Theory” [IJ.

Usually while reading books and papers I take handwritten notes in a
notebook, this document contains some of them re-written to LaTeX.

The notes are not complete, don’t include all the steps neither all the

proofs.
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1 Recap on the degree of field extensions

(Definitions, theorems, lemmas, corollaries and examples enumeration follows
from Tan Stewart’s book [I]).

Definition 4.10. A simple extension is L : K such that L = K(«) for some
a€ L.

Example 4.11. Beware, L = Q(i, —i,v/5, —/5) = Q(i,v/5) = Q(i + /5).



Definition 5.5. Let L : K, suppose a € L is algebraic over K. Then, the
minimal polynomial of o over K is the unique monic polynomial m over K,
m(t) € K[t], of smallest degree such that m(a) = 0.

eg.: i € C is algebraic over R. The minimal polynomial of i over R is m(t) =
2 4+ 1, so that m(i) = 0.

Lemma 5.9. Every polynomial a € KJt] is congruent modulo m to a unique
polynomial of degree < dm.

Proof. Divide a/m with remainder, a = gm + r, with ¢,r € K[t] and ér < dm.
Then, a — r = gm, so a = r (mod m).

It remains to prove uniqueness.

Suppose 3 r = s (mod m), with dr,ds < édm. Then, r — s is divisible by m,
but has smaller degree than m.

Therefore, r — s = 0, so r = s, proving uniqueness. O

Lemma 5.14. Let K(«) : K be a simple algebraic extension, let m be the
minimal polynomial of « over K, let dm = n.

Then {1,a,0a?,...,a" 1} is a basis for K(a) over K. In particular, [K () :
K] =n.

Definition 6.2. The degree [L : K] of a field extension L : K is the dimension
of L considered as a vector space over K.

Equivalently, the dimension of L as a vector space over K is the number of
terms in the expression for a general element of L using coefficients from K.

Example 6.3. 1. C elements are 2-dimensional over R (p + ¢i € C, with
p,q € R), because a basis is {1,i}, hence [C : R] = 2.

2. [Q(i,v/5) : Q] = 4, since the elements {1,v/5,i,iv/5} form a basis for
Q(i,V/5) over Q.

Theorem 6.4. (Short Tower Law) If K,L,M C C, and K C L C M, then
[M:K|=[M:L]-[L:K].

Proof. Let (x;);cr be a basis for L over K, let (y;);jes be a basis for M over L.
Viel,je€J, wehavex; € Lyu; € M.
Want to show that (z;y;)icr,jes is a basis for M over K.

i. prove linear independence:
Suppose that
> kijriy; =0 (ki; € K)

ij

DO kijw)y; =0 (kij € K)
j i
eL

rearrange

Since ), kijz; € L, and the y; € M are linearly independent over L, then



Repeating the argument inside L — k;; =0 Vie I, j € J.
So the elements z;y; are linearly independent over K.

ii. prove that x;y; span M over K:
Any x € M can be written x = Zj Ajy; for A; € L, because y; spans M
over L. Similarly, Vj € J, X\j = >, Aijjzy; for Aj; € K.
Putting the pieces together, x = Zij Aijx;y; as required.

O
Lemma 6.6. (Tower Law)
If Ko C Ky C...C K, are subfields of C, then
(K, : Kol =K, : Kn—1] - [Kn-1: Kpna] - ... [K1 : Ko
Proof. From[6.4] O

]



2 Tools

This section contains tools that I found useful to solve Galois Theory related
problems, and that don’t appear in Stewart’s book.

2.1 De Moivre’s Theorem and Euler’s formula

Useful for finding all the roots of a polynomial.
Euler’s formula: .
e = costh + i - sina)

The n-th roots of a complex number z = x + iy = r(cosh +1i - sinf) are given
by

0+ 2k 0+ 2k
2= R/r- (cos( + 7T)—l—i~sin( + 7T))
for k=0,...,n—1.
So, by Euler’s formula:

2.2 Einsenstein’s Criterion

reference: Stewart’s book
Let f(t) = ag + ait + ...+ a,t™, suppose there is a prime ¢ such that

L. gtay,
2. ¢qla; fori=0,...,n—1
3. ¢®tap
Then, f is irreducible over Q.
TODO proof €& Gauss lemma.
2.3 Elementary symmetric polynomials

TODO from orange notebook, page 36

2.4 Cyclotomic polynomials

TODO theory from brown muji notebook, page 82
Examples:



n—1

<I>n(x):m"71+x”72+...+x2+x+1:in

=0
p—1

Dop(x) =aP . 2P+l = Z(—;zc)z
i=0

D, (z) = ™2 4 1, when m is a power of 2

2.5 Lemma 1.42 from J.S.Milne’s book
TODO add reference to Milne’s book

Useful for when dealing with 2P — 1 with p prime.
Observe that
P —1=(z—1)(@P 2P 24 ... +1)

Notice that
by(z)=aP 4P 2+ 41

is the p-th Cyclotomic polynomial.

Lemma 1.42. If p prime, then z7~! 4... 41 is irreducible; hence Q[e*>"*/?] has
degree p — 1 over Q.

Proof. Let f(x) = (2P —1)/(x — 1) = 2P~ 1 + ...+ 1 then

(:c—i—l)p—l_(gj—i—l)p—l_
x+1—-1 T B

flx+1)= P et

p
witha; = (i+1).

We know that pla; for i = 1,...,p — 2, therefore f(z + 1) is irreducibe by
Einsenstein’s Criterion.
This implies that f(z) is irreducible. O

2.6 Dihedral groups - Groups of symmetries

Source: Wikipedia and [2].
Dihedral groups (ID,,) represent the symmetries of a regular n-gon.
Properties:

e are non-abelian (for n > 2), ie. rs # sr

e order 2n

generated by a rotation r and a reflextion s

o M =3s2=id, (rs)?>=id



Subgroups of D,,:
e rotation form a cyclic subgroup of order n, denoted as < r >
e for each d such that d|n, 3 Dy with order 2d
e normal subgroups

— for n odd: D,, and < r? > for every d|n

— for n even: 2 additional normal subgroups
e Klein four-groups: Zs X Zs, of order 4
Total number of subgroups in D,,: d(n) + s(n), where d(n) is the number of
positive disivors of n, and s(n) is the sum of those divisors.
Example . For Dg, we have {1,2,3,6}|6, so d(n) = d(6) =4, and s(6) = 1+2+
3+6 = 12; henceforth, the total amount of subgroups is d(n)+s(n) = 4+12 = 16.

Forn >3, D, CS, (subgroup of the Symmetry group).



3

Exercises

3.1 Galois groups
3.1.1 5—-7€Q

This exercise comes from a combination of exercises 12.4 and 13.7 from [IJ.

First let’s find the roots. By De Moivre’s Theorem lb ty = T e 5",
From which we denote o« = ¥/7, and ¢ = e%, so that the roots of the

polynomial are {a, a(, a¢?, a¢®, al*, al®}, ie. {aC*}3.

Hence the splitting field is Q(«, ¢).
Degree of the extension
In order to find [Q(«, () : Q, we're going to split it in tow parts. By the

Tower Law ,

[Q(a,¢) : Q] = [Q(e, ) : Q)] - [Q(e) = Q)

To find each degree, we will find the minimal polynomial of the adjoined

term over the base field of the extension:

i.

i.

minimal polynomial of o over Q
By Einsenstein’s Criterion (2.2)), with ¢ = 7 we have that ¢ 1 1, 7|—7,0,0, .. .,
and 721 —7, hence f(t) is irreducibe over Q, thus is the minimal polynomial

which has roots {a¢*}3.

minimal polynomial of ¢ over Q(«)
Since ( is the primitive 6th root of unity, we know that the minimal poly-
nomial will be the 6th cyclotomic polynomial (2.4):

mi(t) = ®g(t) =t —t 41

which has roots ¢, —C.

Since Q(a) C R, and the roots of ®¢(t) =t? —t+ 1 are in C, ®g(t) remains
irreducible over Q(«).

Therefore, by the tower of law,

[Q(ar,¢) : Q] = deg P (t) - deg f(t) =2-6 = 12

and by the Fundamental Theorem of Galois Theory, we know that

IT(Q(e,¢) : Q)] = [Q(ar,¢) : Q] = 12

which tells us that there exist 12 Q-automorphisms of the Galois group.



Let’s find the 12 Q-automorphisms. Start by defining o which fixes ¢ and
acts on «, sending it to another of the roots of the minimal polynomial of «
over Q, f(t), choose a(.

Now define 7 which fixes o and acts on (, sending it into another root of the
minimal polynomial of ¢ over Q(«), choose —(.

cra—al Tia—

¢ ¢ (s —(¢=¢"
In other words, we have 12 Q-automorphisms, which are the combination of
o and T:

ofri s a oz(k

(¢
for 0 <k <5andj==l.

TODO diagram

Observe, that I is generated by the combination of o and 7, and it is isomor-
phic to the group of symmetries of order 12, the dihedral group (2.6) of order
12, ]D)G, ie. I'= DG-

Let’s find the subgroups of T', and the fixed fields of Q(«;, ().

We know that I' 2 Dg, and we know from the properties of the dihedral
group that the number of subgroups of Dg will be d(6)+s(6) = 4412 =16
subgroups.



generators order group fixed field notes (check fixed field)
T=(=07 1 i Q.0
(@) = (%) 6 Zs Q(¢)
(%) = (o) 3 7, Q(e,¢) o2(0%) = @32 — %S = ad 1 = a?
(0?) 2 Zs Q(e?,¢) o’(a?) = (a®)? = a?¢® = a®
(1) 2 Zo Q(a)
(o) 2 Zo Qo+ af) ol(la+al) =o(latal ) = al+al"I( = al+a
(o?7) 2 Zs Qe + a¢?), Q(ag) 022(04+0442) =o(a+ta(?) =a+a(?C =
ol + «
(0%7) 2 Z, Qa + a?) Fr(a-+ac?) = ofa+ac) = a¢’ + aC¢? =
al’ + «
() 2 Z Qatac)Qa¢?) | o'ra+act) = ola+a¢™) = a¢' +a¢i¢! =
al* + «
(0°7) 2 Zs Q(ar + a¢?) o’1(a+al®) =o(a+a(™?) = al® +a(?C =
al® + o
(o,7) = (6°,7) 6-2=12 Dg Q
(0%, 1) = (o*,7) 3-2=6 D3 Q(a?) o2(a?) = a3¢3? = o® and 7(a?) = o3
(o3, 7) 2.2=4 Dy Q(a?) o3(a?) = a?¢*? = a? and 7(a?) = o?
<(727O'T> 3.2=6 Dg Q(OZ3+OZ3C3) 02(a3+a3<3) :a343+a3<3g3:a3<3+a3c6:
a3C 1 ad
(03, 07) 2:2=4 ZoxZy Q%C?),Q(a®+a2¢?) | o®(a® + a2¢?) = a?¢%3 + a2(?3¢% = a? + a?(?
and O’T(OL2+052§2) — 0424'24*042(72(2 — 012§2+012
(0%.0%) 2224 ZoxZy Q%1 QM+a%(Y) | 0202 = aP(( = a2(? = X! and
0'3(04244) — a2<2»3<4 — a2<4
References

[1] Ian Stewart. Galois Theory, Third Edition, 2004.
[2] Gaurab Bardhan, Palash Nath, and Himangshu Chakraborty.



	Recap on the degree of field extensions
	Tools
	De Moivre's Theorem and Euler's formula
	Einsenstein's Criterion
	Elementary symmetric polynomials
	Cyclotomic polynomials
	Lemma 1.42 from J.S.Milne's book
	Dihedral groups - Groups of symmetries

	Exercises
	Galois groups
	t6-7



