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Abstract

Notes taken from Matan Prasma math seminars and while reading
about Bilinear Pairings, Matan’s course seminars are available at the fol-
lowing youtube playlist:
https://www.youtube.com/watch?v=JYSQYaAhJYclist=PLV91V4b0yVqQinAjuIB5SwBNyYmA9S6M
and in his website there are the full notes on that course, named Elliptic
curves over finite fields and their pairings, an elementary and rigorous
account
https://sites.google.com/view/matanprasmashomepage/publications; highly
recommended!

Usually while learning I take handwritten notes, this document con-
tains some of them re-written to LaTeX. The notes are not complete,
don’t include all the steps neither all the proofs. I use these notes to
revisit the concepts after some time of reading the topic.
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1 Rational functions

Let E/k be an elliptic curve defined by: y2 = x3 +Ax+B.

set of polynomials over E: k[E] := k[x, y]/(y2 − x3 −Ax−B = 0)
we can replace y2 in the polynomial f ∈ k[E] with x3 +Ax+B
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canonical form: f(x, y) = v(x) + yw(x) for v, w ∈ k[x]

conjugate: f = v(x)− yw(x)

norm: Nf = f · f = v(x)2 − y2w(x)2 = v(x)2 − (x3 +Ax+B)w(x)2 ∈ k[x] ⊂
k[E]

we can see that Nfg = Nf ·Ng

set of rational functions over E: k(E) := k[E]× k[E]/ ∼
For r ∈ k(E) and a finite point P ∈ E(k), r is finite at P iff

∃ r =
f

g
with f, g ∈ k[E], s.t. g(P ) ̸= 0

We define r(P ) = f(P )
g(P ) . Otherwise, r(P ) = ∞.

Remark: r = f
g ∈ k(E), r = f

g = f ·g
g·g = fg

Ng
, thus

r(x, y) =
(fg)(x, y)

Ng(x, y)
=

v(x)

Ng(x)
+ y

w(x)

Ng(x)︸ ︷︷ ︸
canonical form of r(x, y)

degree of f : Let f ∈ k[E], in canonical form: f(x, y) = v(x) + yw(x),

deg(f) := max{2 · degx(v), 3 + 2 · degx(w)}

For f, g ∈ k[E]:

i. deg(f) = degx(Nf )

ii. deg(f · g) = deg(f) + deg(g)

Def 1.1. Let r = f
g ∈ k(E)

i. if deg(f) < deg(g) : r(0) = 0

ii. if deg(f) > deg(g) : r is not finite at 0

iii. if deg(f) = deg(g) with deg(f) even:
f ’s canonical form leading terms axd

g’s canonical form leading terms bxd

a, b ∈ k×, d = deg(f)
2 , set r(0) = a

b

iv. if deg(f) = deg(g) with deg(f) odd
f ’s canonical form leading terms axd

g’s canonical form leading terms bxd

a, b ∈ k×, deg(f) = deg(g) = 3 + 2d, set r(0) = a
b
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1.1 Zeros, poles, uniformizers and multiplicities

r ∈ k(E) has a zero in P ∈ E if r(P ) = 0
r ∈ k(E) has a pole in P ∈ E if r(P ) is not finite.

uniformizer: Let P ∈ E, uniformizer: rational function u ∈ k(E) with
u(P ) = 0 if ∀r ∈ k(E) \ {0}, ∃d ∈ Z, s ∈ k(E) finite at P with s(P ) ̸= 0
s.t.

r = ud · s

order: Let P ∈ E(k), let u ∈ k(E) be a uniformizer at P . For r ∈ k(E) \ {0}
being a rational function with r = ud · s with s(P ) ̸= 0,∞, we say that r has
order d at P (ordP (r) = d).

multiplicity: multiplicity of a zero of r is the order of r at that point, multi-
plicity of a pole of r is the order of r at that point.

if P ∈ E(k) is neither a zero or pole of r, then ordP (r) = 0 (= d, r = u0s).

Multiplicities, from the book ”Elliptic Tales” (p.69), to provide
intuition
Factorization into linear factors: p(x) = c · (x− a1) · · · (x− ad)
d: degree of p(x), ai ∈ k
Solutions to p(x) = 0 are x = a1, . . . , ad (some ai can be repeated)
eg.: p(x) = (x− 1)(x− 1)(x− 3), solutions to p(x) = 0 : 1, 1, 3
x = 1 is a solution to p(x) = 0 of multiplicity 2.
The total number of solutions (counted with multiplicity) is d, the degree
of the polynomial whose roots we are finding.

2 Divisors

Def 2.1. Divisor
D =

∑
P∈E(k)

np · [P ]

Def 2.2. Degree & Sum

deg(D) =
∑

P∈E(k)

np

sum(D) =
∑

P∈E(k)

np · P

The set of all divisors on E forms a group: for D =
∑

P∈E(k) nP [P ] and

D′ =
∑

P∈E(k) mP [P ],

D +D′ =
∑

P∈E(k)

(nP +mP )[P ]
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Def 2.3. Associated divisor

div(r) =
∑

P∈E(k)

ordP (r)[P ]

Observe that

div(rs) = div(r) + div(s)

div( rs ) = div(r)− div(s)

Observe that ∑
P∈E(k)

ordP (r) · P = 0

Def 2.4. Support of a divisor∑
P

nP [P ], ∀P ∈ E(k) s.t. nP ̸= 0

Def 2.5. Principal divisor iff

deg(D) = 0

sum(D) = 0

D ∼ D′ iff D −D′ is principal.

Def 2.6. Evaluation of a rational function (function r evaluated at D)

r(D) =
∏

r(P )np

3 Weil reciprocity

Thm 3.1. (Weil reciprocity) Let E/k be an e.c. over an algebraically closed
field. If r, s ∈ k\{0} are rational functions whose divisors have disjoint support,
then

r(div(s)) = s(div(r))

Proof. (todo)

Example

p(x) = x2 − 1, q(x) =
x

x− 2

div(p) = 1 · [1] + 1 · [−1]− 2 · [∞]

div(q) = 1 · [0]− 1 · [2]
(they have disjoint support)

p(div(q)) = p(0)1 · p(2)−1 = (02 − 1)1 · (22 − 1)−1 =
−1

3

q(div(p)) = q(1)1 · q(−1)1 − q(∞)2

= (
1

1− 2
)1 · ( −1

−1− 2
)1 · ( ∞

∞− 2
)2 =

−1

3
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so, p(div(q)) = q(div(p)).

4 Generic Weil Pairing

Let E(k), with k of char p, n s.t. p ∤ n.
k large enough: E(k)[n] = E(k) = Zn ⊕ Zn (with n2 elements).
For P,Q ∈ E[n],

DP ∼ [P ]− [0]

DQ ∼ [Q]− [0]

We need them to have disjoint support:

DP ∼ [P ]− [0]

D′
Q ∼ [Q+ T ]− [T ]

∆D = DQ −D′
Q = [Q]− [0]− [Q+ T ] + [T ]

Note that nDP and nDQ are principal. Proof:

nDP = n[P ]− n[O]

deg(nDP ) = n− n = 0

sum(nDP ) = nP − nO = 0

(nP = 0 bcs. P is n-torsion)
Since nDP , nDQ are principal, we know that fP , fQ exist.
Take

fP : div(fP ) = nDP

fQ : div(fQ) = nDQ

We define

en(P,Q) =
fP (DQ)

fQ(DP )

Remind: evaluation of a rational function over a divisor D:

D =
∑

nP [P ]

r(D) =
∏

r(P )nP

If DP = [P + S]− [S], DQ = [Q− T ]− [T ] what is en(P,Q)?

fP (DQ) = fP (Q+ T )1 · fP (T )−1

fQ(DP ) = fQ(P + S)1 · fQ(S)−1

en(P,Q) =
fP (Q+ T )

fP (T )
/
fQ(P + S)

fQ(S)

with S ̸= {O,P,−Q,P −Q}.
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5 Properties

i. en(P,Q)n = 1 ∀P,Q ∈ E[n]
(⇒ en(P,Q) is a nth root of unity)

ii. Bilinearity
en(P1 + P2, Q) = en(P1, Q) · en(P2, Q)

en(P,Q1 +Q2) = en(P,Q1) · en(P,Q2)

proof: recall that en(P,Q) = g(S+P )
g(S) , then,

en(P1, Q) · en(P2, Q) =
g(P1 + S)

g(S)
· g(P2 + P1 + S)

g(P1 + S)

(replace S by S + P1)

=
g(P2 + P1 + S)

g(S)
= en(P1 + P2, Q)

iii. Alternating
en(P, P ) = 1 ∀P ∈ E[n]

iv. Nondegenerate

if en(P,Q) = 1 ∀Q ∈ E[n], then P = 0

6 Exercises

An Introduction to Mathematical Cryptography, 2nd Edition - Section 6.8. Bi-
linear pairings on elliptic curves

6.29. div(R(x) · S(x)) = div(R(x)) + div(S(x)), where R(x), S(x) are rational
functions.
proof:
Norm of f : Nf = f · f , and we know that Nfg = Nf ·Ng ∀ k[E],
then

deg(f) = degx(Nf )

and
deg(f · g) = deg(f) + deg(g)

Proof:
deg(f · g) = degx(Nfg) = degx(Nf ·Ng)

= degx(Nf ) + degx(Ng) = deg(f) + deg(g)

So, ∀P ∈ E(k), ordP (rs) = ordP (r) + ordP (s).
As div(r) =

∑
P∈E(k) ordP (r)[P ], div(s) =

∑
ordP (s)[P ].
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So,

div(rs) =
∑

ordP (rs)[P ]

=
∑

ordP (r)[P ] +
∑

ordP (s)[P ] = div(r) + div(s)

6.31.
em(P,Q) = em(Q,P )−1∀P,Q ∈ E[m]

Proof: We know that em(P, P ) = 1, so:

1 = em(P +Q,P +Q) = em(P, P ) · em(P,Q) · em(Q,P ) · em(Q,Q)

and we know that em(P, P ) = 1, then we have:

1 = em(P,Q) · em(Q,P )

=⇒ em(P,Q) = em(Q,P )−1
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