Notes on Nova

arnaucube

March 2023

Abstract

Notes taken while reading Nova 11 paper. Usually while reading papers I take handwritten notes, this document contains some of them re-written to $L a T e X$.

The notes are not complete, don't include all the steps neither all the proofs.

Thanks to Levs57, Nalin Bhardwaj and Carlos Pérez for clarifications on the Nova paper.

Contents

1 NIFS 1
1.1 R1CS modification 1
1.2 Folding scheme for committed relaxed R1CS 3
1.3 NIFS 4
2 Nova 4
2.1 IVC proofs 4

1 NIFS

1.1 R1CS modification

R1CS R1CS instance: $(A, B, C, i o, m, n)$, where $i o$ denotes the public input and output, $A, B, C \in \mathbb{F}^{m \times n}$, with $m \geq|i o|+1$. R1CS is satisfied by a witness $w \in \mathbb{F}^{m-|i o|-1}$ such that

$$
A z \circ B z=C z
$$

where $z=(i o, 1, w)$.

Want: merge 2 instances of R1CS with the same matrices into a single one. Each instance has $z_{i}=\left(W_{i}, x_{i}\right)$ (public witness, private values resp.).
traditional R1CS Merged instance with $z=z_{1}+r z_{2}$, for rand r. But, since R1CS is not linear \longrightarrow can not apply.
eg.

$$
\begin{aligned}
A z \circ B z & =A\left(z_{1}+r z_{2}\right) \circ B\left(z_{1}+r z_{2}\right) \\
& =A z_{1} \circ B z_{1}+r\left(A z_{1} \circ B z_{2}+A z_{2} \circ B z_{1}\right)+r^{2}\left(A z_{2} \circ B z_{2}\right) \\
& \neq C z
\end{aligned}
$$

\longrightarrow introduce error vector $E \in \mathbb{F}^{m}$, which absorbs the cross-temrs generated by folding.
\longrightarrow introduce scalar u, which absorbs an extra factor of r in $C z_{1}+r^{2} C z_{2}$ and in $z=(W, x, 1+r \cdot 1)$.

Relaxed R1CS

$$
\begin{aligned}
& u=u_{1}+r u_{2} \\
& E=E_{1}+r\left(A z_{1} \circ B z_{2}+A z_{2} \circ B z_{1}-u_{1} C z_{2}-u_{2} C z_{1}\right)+r^{2} E_{2} \\
& A z \circ B z=u C z+E, \quad \text { with } z=(W, x, u)
\end{aligned}
$$

where R1CS set $E=0, u=1$.

$$
\begin{aligned}
A z \circ B z & =A z_{1} \circ B z_{1}+r\left(A z_{1} \circ B z_{2}+A z_{2} \circ B z_{1}\right)+r^{2}\left(A z_{2} \circ B z_{2}\right) \\
& =\left(u_{1} C z_{1}+E_{1}\right)+r\left(A z_{1} \circ B z_{2}+A z_{2} \circ B z_{1}\right)+r^{2}\left(u_{2} C z_{2}+E_{2}\right) \\
& =u_{1} C z_{1}+\underbrace{E_{1}+r\left(A z_{1} \circ B z_{2}+A z_{2} \circ B z_{1}\right)+r^{2} E_{2}}_{\mathrm{E}}+r^{1} u_{2} C z_{2} \\
& =u_{1} C z_{1}+r^{2} u_{2} C z_{2}+E \\
& =\left(u_{1}+r u_{2}\right) \cdot C \cdot\left(z_{1}+r z_{2}\right)+E \\
& =u C z+E
\end{aligned}
$$

For R1CS matrices (A, B, C), the folded witness W is a satisfying witness for the folded instance (E, u, x).

Problem: not non-trivial, and not zero-knowledge. Solution: use polynomial commitment with hiding, binding, succintness and additively homomorphic properties.

Committed Relaxed R1CS Instance for a Committed Relaxed R1CS (\bar{E}, u, \bar{W}, x), satisfyied by a witness $\left(E, r_{E}, W, r_{W}\right)$ such that

$$
\begin{aligned}
& \bar{E}=\operatorname{Com}\left(E, r_{E}\right) \\
& \bar{W}=\operatorname{Com}\left(E, r_{W}\right) \\
& A z \circ B z=u C z+E, \quad \text { where } z=(W, x, u)
\end{aligned}
$$

1.2 Folding scheme for committed relaxed R1CS

V and P take two committed relaxed $R 1 C S$ instances

$$
\begin{aligned}
& \varphi_{1}=\left(\bar{E}_{1}, u_{1}, \bar{W}_{1}, x_{1}\right) \\
& \varphi_{2}=\left(\bar{E}_{2}, u_{2}, \bar{W}_{2}, x_{2}\right)
\end{aligned}
$$

P additionally takes witnesses to both instances

$$
\begin{aligned}
& \left(E_{1}, r_{E_{1}}, W_{1}, r_{W_{1}}\right) \\
& \left(E_{2}, r_{E_{2}}, W_{2}, r_{W_{2}}\right)
\end{aligned}
$$

Let $Z_{1}=\left(W_{1}, x_{1}, u_{1}\right)$ and $Z_{2}=\left(W_{2}, x_{2}, u_{2}\right)$.

1. P send $\bar{T}=\operatorname{Com}\left(T, r_{T}\right)$,
where $T=A z_{1} \circ B z_{1}+A z_{2} \circ B z_{2}-u_{1} C z_{2}-u_{2} C z_{2}$ and rand $r_{T} \in \mathbb{F}$
2. V sample random challenge $r \in \mathbb{F}$
3. V, P output the folded instance $\varphi=(\bar{E}, u, \bar{W}, x)$

$$
\begin{aligned}
& \bar{E}=\bar{E}_{1}+r \bar{T}+r^{2} \bar{E}_{2} \\
& u=u_{1}+r u_{2} \\
& \bar{W}=\bar{W}_{1}+r \bar{W}_{2} \\
& x=x_{1}+r x_{2}
\end{aligned}
$$

4. P outputs the folded witness $\left(E, r_{E}, W, r_{W}\right)$

$$
\begin{aligned}
& E=E_{1}+r T+r^{2} E_{2} \\
& r_{E}=r_{E_{1}}+r \cdot r_{T}+r^{2} r_{E_{2}} \\
& W=W_{1}+r W_{2} \\
& r_{W}=r_{W_{1}}+r \cdot r_{W_{2}}
\end{aligned}
$$

P will prove that knows the valid witness $\left(E, r_{E}, W, r_{W}\right)$ for the committed relaxed R1CS without revealing its value.

$$
\begin{aligned}
& T=A z_{1} \circ B z_{1}+A z_{2} \circ B z_{2}-u_{1} C z_{2}-u_{2} C z_{2} \\
& \bar{T}=\operatorname{Commit}\left(T, r_{T}\right) \\
& E=E_{1}+r T+r^{2} E_{2} \\
& u=u_{1}+r u_{2} \\
& W=W_{1}+r W_{2} \\
& r_{W}=r_{W_{1}}+r r_{W_{2}} \\
& \left(E, r_{E}, W, r_{W}\right) \\
& r \in{ }^{R} \mathbb{F}_{p} \\
& \begin{array}{c}
\bar{E}=\bar{E}_{1}+r \bar{T}+r^{2} \bar{E}_{2} \\
u=u_{1}+r u_{2}
\end{array} \\
& \bar{W}=\bar{W}_{1}+r \bar{W}_{2} \\
& \bar{x}=\bar{x}_{1}+r \bar{x}_{2} \\
& \varphi=(\bar{E}, u, \bar{W}, x)
\end{aligned}
$$

The previous protocol achieves non-interactivity via Fiat-Shamir transform, obtaining a Non-Interactive Folding Scheme for Committed Relaxed R1CS.

Note: the paper later uses $\mathrm{u}_{i}, \mathrm{U}_{i}$ for the two inputed φ_{1}, φ_{2}, and later u_{i+1} for the outputed φ. Also, the paper later uses w, W to refer to the witnesses of two folded instances (eg. w $=\left(E, r_{E}, W, r_{W}\right)$).

1.3 NIFS

fold witness, $\left(p k,\left(u_{1}, w_{1}\right),\left(u_{2}, w_{2}\right)\right)$:

1. $T=A z_{1} \circ B z_{1}+A z_{2} \circ B z_{2}-u_{1} C z_{2}-u_{2} C z_{2}$
2. $\bar{T}=\operatorname{Commit}\left(T, r_{T}\right)$
3. output the folded witness $\left(E, r_{E}, W, r_{W}\right)$

$$
\begin{aligned}
& E=E_{1}+r T+r^{2} E_{2} \\
& r_{E}=r_{E_{1}}+r \cdot r_{T}+r^{2} r_{E_{2}} \\
& W=W_{1}+r W_{2} \\
& r_{W}=r_{W_{1}}+r \cdot r_{W_{2}}
\end{aligned}
$$

fold instances $\left(\varphi_{1}, \varphi_{2}\right) \rightarrow \varphi,\left(v k, u_{1}, u_{2}, \bar{E}_{1}, \bar{E}_{2}, \bar{W}_{1}, \bar{W}_{2}, \bar{T}\right):$
V compute folded instance $\varphi=(\bar{E}, u, \bar{W}, x)$

$$
\begin{aligned}
& \bar{E}=\bar{E}_{1}+r \bar{T}+r^{2} \bar{E}_{2} \\
& u=u_{1}+r u_{2} \\
& \bar{W}=\bar{W}_{1}+r \bar{W}_{2} \\
& x=x_{1}+r x_{2}
\end{aligned}
$$

2 Nova

IVC (Incremental Verifiable Computation) scheme for a non-interactive folding scheme.

2.1 IVC proofs

Allows prover to show $z_{n}=F^{(n)}\left(z_{0}\right)$, for some count n, initial input z_{0}, and output z_{n}.
F : program function (polynomial-time computable)
F^{\prime} : augmented function, invokes F and additionally performs fold-related stuff.

Two committed relaxed R1CS instances:
U_{i} : represents the correct execution of invocations $1, \ldots, i-1$ of F^{\prime}
u_{i} : represents the correct execution of invocations i of F^{\prime}

Simplified version of F^{\prime} for intuition F^{\prime} performs two tasks:

i. execute a step of the incremental computation: instance \mathbf{u}_{i} contains z_{i}, used to output $z_{i+1}=F\left(z_{i}\right)$
ii. invokes the verifier of the non-interactive folding scheme to fold the task of checking u_{i} and U_{i} into the task of checking a single instance U_{i+1}
F^{\prime} proves that:

1. $\exists\left(\left(i, z_{0}, z_{i}, \mathbf{u}_{i}, \mathrm{U}_{i}\right), \mathrm{U}_{i+1}, \bar{T}\right)$ such that
i. $\mathrm{u}_{i} \cdot x=H\left(v k, i, z_{0}, z_{i}, \mathrm{U}_{i}\right)$
ii. $h_{i+1}=H\left(v k, i+1, z_{0}, F\left(z_{i}\right), \mathrm{U}_{i+1}\right)$
iii. $\mathrm{U}_{i+1}=\operatorname{NIFS.V}\left(v k, \mathrm{U}_{i}, \mathrm{u}_{i}, \bar{T}\right)$
2. F^{\prime} outputs h_{i+1}
F^{\prime} is described as follows:
$F^{\prime}\left(v k, \mathrm{U}_{i}, \mathrm{u}_{i},\left(i, z_{0}, z_{i}\right), w_{i}, \bar{T}\right) \rightarrow x:$

otherwise
3. check $\mathbf{u}_{i} \cdot x=H\left(v k, i, z_{0}, z_{i}, \mathrm{U}_{i}\right)$
4. check $\left(\mathrm{u}_{i} \cdot \bar{E}, \mathrm{u}_{i} \cdot u\right)=\left(\mathrm{u}_{\perp} \cdot \bar{E}, 1\right)$
5. compute $\mathrm{U}_{i+1} \leftarrow \operatorname{NIFS.V}(v k, U, u, \bar{T})$
6. output $H\left(v k, i+1, z_{0}, F\left(z_{i}, w_{i}\right), \mathrm{U}_{i+1}\right)$

IVC Proof iteration $i+1$: prover runs F^{\prime} and computes $\mathbf{u}_{i+1}, \mathrm{U}_{i+1}$, with corresponding witnesses $\mathrm{w}_{i+1}, \mathrm{~W}_{i+1} .\left(\mathrm{u}_{i+1}, \mathrm{U}_{i+1}\right)$ attest correctness of $i+1$ invocations of F^{\prime}, the IVC proof is $\pi_{i+1}=\left(\left(\mathrm{U}_{i+1}, \mathrm{~W}_{i+1}\right),\left(\mathrm{u}_{i+1}, \mathrm{w}_{i+1}\right)\right)$.
$P\left(p k,\left(i, z_{0}, z_{i}\right), \mathrm{w}_{i}, \pi_{i}\right) \rightarrow \pi_{i+1}:$
Parse $\pi_{i}=\left(\left(\mathrm{U}_{i}, \mathrm{~W}_{i}\right),\left(\mathrm{u}_{i}, \mathrm{w}_{i}\right)\right)$, then

1. if $i=0:\left(\mathrm{U}_{i+1}, \mathrm{~W}_{i+1}, \bar{T}\right) \leftarrow\left(\mathrm{u}_{\perp}, \mathrm{w}_{\perp}, \mathrm{u}_{\perp} \cdot \bar{E}\right)$
otherwise: $\left(\mathrm{U}_{i+1}, \mathrm{~W}_{i+1}, \bar{T}\right) \leftarrow \operatorname{NIFS.P}\left(p k,\left(\mathrm{U}_{i}, \mathrm{~W}_{i}\right),\left(\mathrm{u}_{i}, \mathrm{w}_{i}\right)\right)$
2. compute $\left(\mathrm{u}_{i+1}, \mathrm{w}_{i+1}\right) \leftarrow \operatorname{trace}\left(F^{\prime},\left(v k, \mathrm{U}_{i}, \mathrm{u}_{i},\left(i, z_{0}, z_{i}\right), \mathrm{w}_{i}, \bar{T}\right)\right)$
3. output $\pi_{i+1} \leftarrow\left(\left(\mathrm{U}_{i+1}, \mathrm{~W}_{i+1}\right),\left(\mathrm{u}_{i+1}, \mathrm{w}_{i+1}\right)\right)$
$\left.\underline{V(v k,}\left(i, z_{0}, z_{i}\right), \pi_{i}\right) \rightarrow\{0,1\}:$ if $i=0$: check that $z_{i}=z_{0}$
otherwise, parse $\pi_{i}=\left(\left(\mathrm{U}_{i}, \mathrm{~W}_{i}\right),\left(\mathrm{u}_{i}, \mathrm{w}_{i}\right)\right)$, then
4. check $\mathrm{u}_{i} \cdot x=H\left(v k, i, z_{0}, z_{i}, \mathrm{U}_{i}\right)$
5. check $\left(\mathrm{u}_{i} \cdot \bar{E}, \mathrm{u}_{i} \cdot u\right)=\left(\mathrm{u}_{\perp} \cdot \bar{E}, 1\right)$
6. check that W_{i}, W_{i} are satisfying witnesses to U_{i}, u_{i} respectively

A zkSNARK of a Valid IVC Proof prover and verifier: $P\left(p k,\left(i, z_{0}, z_{i}\right), \Pi\right) \rightarrow \pi$:
if $i=0$, output \perp, otherwise:
parse Π as $((\mathrm{U}, \mathrm{W}),(\mathrm{u}, \mathrm{w}))$

1. compute $\left(\mathrm{U}^{\prime}, \mathrm{W}^{\prime}, \bar{T}\right) \leftarrow \operatorname{NIFS.P(pk_{NIFS},(\mathrm {U},\mathrm {W}),(\mathrm {u},\mathrm {w}))}$
2. compute $\pi_{\mathrm{u}^{\prime}} \leftarrow z k S N A R K . P\left(p k_{z k S N A R K}, \mathrm{U}^{\prime}, \mathrm{W}^{\prime}\right)$
3. output ($\mathbf{U}, \mathrm{u}, \bar{T}, \pi_{\mathbf{u}^{\prime}}$)
if $i \frac{V\left(v k,\left(i, z_{0}, z_{i}\right), \pi\right) \rightarrow\{0,1\}}{=0: \text { check that } z_{i}=z_{0}}:$
parse π as $\left(\mathrm{U}, \mathrm{u}, \bar{T}, \pi_{\mathrm{u}^{\prime}}\right)$
4. check u. $x=H\left(v k_{N I F S}, i, z_{0}, z_{i}, \mathrm{U}\right)$
5. check $(\mathrm{u} . \bar{E}, \mathrm{u} . u)=\left(\mathrm{u}_{\perp} . \bar{E}, 1\right)$
6. compute $\mathrm{U}^{\prime} \leftarrow N I F S . V\left(v k_{N I F S}, \mathrm{U}, \mathrm{u}, \bar{T}\right)$
7. check $z k S N A R K . V\left(v k_{z k S N A R K}, \mathrm{U}^{\prime}, \pi_{\mathrm{u}^{\prime}}\right)=1$

References

[1] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-knowledge arguments from folding schemes. Cryptology ePrint Archive, Paper 2021/370, 2021. https://eprint.iacr.org/2021/370.

