
Notes on Spartan

arnaucube

April 2023

Abstract

Notes taken while reading about Spartan [1].
Usually while reading papers I take handwritten notes, this document

contains some of them re-written to LaTeX.
The notes are not complete, don’t include all the steps neither all the

proofs.

Contents

1 R1CS into Sum-Check protocol 1

2 NIZKs with succint proofs for R1CS 3
2.1 Full protocol . 5

1 R1CS into Sum-Check protocol

Def 1.1. R1CS ∃w ∈ Fm−|io|−1 such that (A · z) ◦ (B · z) = (C · z), where
z = (io, 1, w).

Thm 4.1 ∀ R1CS instance x = (F, A,B,C, io,m, n), ∃ a degree-3 log m-
variate polynomial G such that

∑
x∈{0,1}logm G(x) = 0 iff ∃ a witness w such

that SatR1CS(x,w) = 1.

We can view matrices A,B,C ∈ Fm×m as functions {0, 1}s × {0, 1}s → F
(s = ⌈logm⌉). For a given witness w to x, let z = (io, 1, w). View z as a
function {0, 1}s → F, so any entry in z can be accessed with a s-bit identifier.

Fio(x) =

 ∑
y∈{0,1}s

A(x, y) · Z(y)

 ·

 ∑
y∈{0,1}s

B(x, y) · Z(y)

−
∑

y∈{0,1}s
C(x, y) · Z(y)

Lemma 4.1. ∀x ∈ {0, 1}s, Fio(x) = 0 iff SatR1CS(x,w) = 1.

1

Fio(·) is a function, not a polynomial, so it can not be used in the Sum-check
protocol.

Fio(x) function is converted to a polynomial by using its polynomial exten-

sion F̃io(x) : Fs → F,

F̃io(x) =

 ∑
y∈{0,1}s

Ã(x, y) · Z̃(y)

 ·

 ∑
y∈{0,1}s

B̃(x, y) · Z̃(y)

−
∑

y∈{0,1}s
C̃(x, y) · Z̃(y)

Lemma 4.2. ∀x ∈ {0, 1}s, F̃io(x) = 0 iff SatR1CS(x,w) = 1.

(proof: ∀x ∈ {0, 1}s, F̃io(x) = Fio(x), so, result follows from Lemma 4.1.)

So, for this, V will need to check that F̃io vanishes over the boolean hyper-
cube (F̃io(x) = 0 ∀x ∈ {0, 1}s).

Recall that F̃io(·) is a low-degree multivariate polynomial over F in s vari-

ables. Thus, checking that F̃io vanishes over the boolean hypercube is equivalent
to checking that F̃io = 0.

Thus, V can check
∑

x∈{0,1}s F̃io(x) = 0 using the Sum-check protocol

(through SZ lemma, V can check if for a random value it equals to 0, and
be convinced that applies to all the points whp.).

But: as F̃io(x) is not multilinear, so
∑

x∈{0,1}s F̃io(x) = 0 ⇍⇒ Fio(x) =

0 ∀x ∈ {0, 1}s. Bcs: the 2s terms in the sum might cancel each other even when
the individual terms are not zero.

Solution: combine F̃io(x) with ẽq(t, x) to get Qio(t, x) which will be the
unique multilinear polynomial, and then check that it is a zero-polynomial

Qio(t) =
∑

x∈{0,1}s

F̃io(x) · ẽq(t, x)

where ẽq(t, x) =
∏s

i=1(ti · xi + (1 − ti) · (1 − xi)), which is the MLE of
eq(x, e) = {1 if x = e, 0 otherwise}.

Basically Qio(·) is a multivariate (the unique multilinear) polynomial such
that

Qio(t) = F̃io(t) ∀t ∈ {0, 1}s

thus, Qio(·) is a zero-polynomial iff F̃io(x) = 0 ∀x ∈ {0, 1}s. ⇐⇒ iff F̃io(·)
encodes a witness w such that SatR1CS(x,w) = 1.

F̃io(x) has degree 2 in each variable, and ẽq(t, x) has degree 1 in each variable,
so Qio(t) has degree 3 in each variable.

To check that Qio(·) is a zero-polynomial: check Qio(τ) = 0, τ ∈R Fs

(Schwartz-Zippel-DeMillo–Lipton lemma) through the sum-check protocol.
This would mean that the R1CS instance is satisfied.

Recap

We have that SatR1CS(x,w) = 1 iff Fio(x) = 0.

2

To be able to use sum-check, we use its polynomial extension F̃io(x),

using sum-check to prove that F̃io(x) = 0 ∀x ∈ {0, 1}s, which means that
SatR1CS(x, w) = 1.

To prevent potential canceling terms, we combine F̃io(x) with ẽq(t, x),

obtaining Gio,τ (x) = F̃io(x) · ẽq(t, x).

Thus Qio(t) =
∑

x∈{0,1}s F̃io(x) · ẽq(t, x), and then we prove that Qio(τ) =

0, for τ ∈R Fs.

2 NIZKs with succint proofs for R1CS

From Thm 4.1: to check R1CS instance (F, A,B,C, io,m, n) V can check if∑
x∈{0,1}s Gio,τ (x) = 0, which through sum-check protocol can be reduced to

ex = Gio,τ (rx), where rx ∈ Fs.

Recall: Gio,τ (x) = F̃io(x) · ẽq(τ, x).
Evaluating ẽq(τ, rx) takes O(log m), but to evaluate F̃io(rx), V needs to

evaluate
Ã(rx, y), B̃(rx, y), C̃(rx, y), Z̃(y), ∀y ∈ {0, 1}s

which requires 3 sum-check instances (
(∑

y∈{0,1}s Ã(x, y) · Z̃(y)
)
,(∑

y∈{0,1}s B̃(x, y) · Z̃(y)
)
,
(∑

y∈{0,1}s C̃(x, y) · Z̃(y)
)
), one for each summation in

F̃io(x).

But note that evaluations of Z̃(y) ∀y ∈ {0, 1}s are already known as (io, 1, w).
Solution: combination of 3 protocols:

� Sum-check protocol

� randomized mini protocol

� polynomial commitment scheme

Basically to do a random linear combination of the 3 summations to end up
doing just a single sum-check.

Observation: let F̃io(rx) = A(rx) ·B(rx)− C(rx), where

A(rx) =
∑

y∈{0,1}

Ã(rx, y) · Z̃(y), B(rx) =
∑

y∈{0,1}

B̃(rx, y) · Z̃(y)

C(rx) =
∑

y∈{0,1}

C̃(rx, y) · Z̃(y)

Prover makes 3 separate claims: A(rx) = vA, B(rx) = vB , C(rx) = vC ,
then V evaluates:

Gio,τ (rx) = (vA · vB − vC) · ẽq(rx, τ)

3

which equals to
=

(
A(rx) ·B(rx)− C(rx)

)
· ẽq(rx, τ) = ∑

y∈{0,1}
Ã(rx, y) · Z̃(y)

 ·

 ∑
y∈{0,1}

B̃(rx, y) · Z̃(y)

−
∑

y∈{0,1}
C̃(rx, y) · Z̃(y)

 · ẽq(rx, τ)

This would be 3 sum-check protocol instances (3 claims: A(rx) = vA,
B(rx) = vB , C(rx) = vC).

Instead, combine 3 claims into a single claim:

� V samples rA, rB , rC ∈R F, and computes c = rAvA + rBvB + rCvC .

� V, P use sum-check protocol to check:

rA ·A(rx) + rB ·B(rx) + rC · C(rx) == c

Let

L(rx) = rA ·A(rx) + rB ·B(rx) + rC · C(rx)

=
∑

y∈{0,1}s

(
rA · Ã(rx, y) · Z̃(y) + rB · B̃(rx, y) · Z̃(y) + rC · C̃(rx, y) · Z̃(y)

)
=

∑
y∈{0,1}s

Mrx(y)

Mrx(y) is a s-variate polynomial with deg ≤ 2 in each variable (⇐⇒ µ =
s, l = 2, T = c).

Mrx(ry) = rA · Ã(rx, ry) · Z̃(ry) + rB · B̃(rx, ry) · Z̃(ry) + rC · C̃(rx, ry) · Z̃(ry)

= (rA · Ã(rx, ry) + rB · B̃(rx, ry) + rC · C̃(rx, ry)) · Z̃(ry)

only one term in Mrx(ry) depends on prover’s witness: Z̃(ry), the other
terms can be computed locally by V in O(n) time (Section 6 of the paper for
sub-linear in n).

Instead of evaluating Z̃(ry) in O(|w|) communications, P sends a commit-
ment to w̃(·) (= MLE of the witness w) to V before the first instance of the
sum-check protocol.

Recap

To check the R1CS instance, V can check
∑

x∈{0,1}s Gio,τ (x) = 0, which

through the sum-check is reduced to ex = Gio,τ (rx), for rx ∈ Fs.

Evaluating Gio,τ (x) (Gio,τ (x) = F̃io(x) · ẽq(τ, x)) is not cheap. Evaluating
ẽq(τ, rx) takes O(log m), but to evaluate F̃io(rx), V needs to evaluate

Ã, B̃, C̃, Z̃, ∀y ∈ {0, 1}s

4

P makes 3 separate claims: A(rx) = vA, B(rx) = vB , C(rx) = vC , so V
can evaluate Gio,τ (rx) = (vA · vB − vC) · ẽq(rx, τ)

The previous claims are combined into a single claim (random linear com-
bination) to use only a single sum-check protocol:

P: c = rAvA + rBvB + rCvC , for rA, rB , rC ∈R F
V, P: sum-check rA ·A(rx) + rB ·B(rx) + rC · C(rx) == c

c = L(rx) =
∑

y∈{0,1}s Mrx(y), where Mrx(y) is a s-variate polynomial

with deg ≤ 2 in each variable (⇐⇒ µ = s, l = 2, T = c). Only Z̃(ry)
depends on P’s witness, the other terms can be computed locally by V.

Instead of evaluating Z̃(ry) in O(|w|) communications, P uses a commit-
ment to w̃(·) (= MLE of the witness w).

2.1 Full protocol

(Recall: Sum-Check params: µ: n vars, n rounds, l: degree in each variable upper bound, T :

claimed result.)

� pp← Setup(1λ): invoke pp← PC.Setup(1λ, logm); output pp

� b←< P (w), V (r) > (F, A,B,C, io,m, n):

1. P: (C, S)← PC.Commit(pp, w̃) and send C to V

2. V: send τ ∈R Flog m to P

3. let T1 = 0, µ1 = log m, l1 = 3

4. V: set rx ∈R Fµ1

5. Sum-check 1. ex ←< PSC(Gio,τ), VSC(rx) > (µ1, l1, T1)

6. P: compute vA = A(rx), vB = B(rx), vC = C(rx), send (vA, vB , vC)
to V

7. V: abort with b = 0 if ex ̸= (vA · vB − vC) · ẽq(rx, τ)
8. V: send rA, rB , rC ∈R F to P

9. let T2 = rA · vA + rB · vB + rC · vC , µ2 = log m, l2 = 2

10. V: set ry ∈R Fµ2

11. Sum-check 2. ey ←< PSC(Mrx), VSC(ry) > (µ2, l2, T2)

12. P: v ← w̃(ry[1..]), send v to V

13. be ←< PPC.Eval(w̃, S), VPC.Eval(r) > (pp, C, ry, v, µ2)

14. V: abourt with b = 0 if be == 0

15. V: vz ← (1− ry[0]) · w̃(ry[1..]) + ry[0](̃io, 1)(ry[1..])

16. V: v1 ← Ã(rx, ry), v2 ← B̃(rx, ry), v3 ← C̃(rx, ry)

5

17. V: abort with b = 0 if ey ̸= (rAv1 + rBv2 + rCv3) · vz
18. V: output b = 1

Section 6 of the paper, describes how in step 16, instead of evaluating
Ã, B̃, C̃ at rx, ry with O(n) costs, P commits to Ã, B̃, C̃ and later pro-
vides proofs of openings.

In a practical implementation those commits to Ã, B̃, C̃ could be done in
a preprocessing step.

WIP: covered until sec.6

References

[1] Srinath Setty. Spartan: Efficient and general-purpose zksnarks without
trusted setup. Cryptology ePrint Archive, Paper 2019/550, 2019. https:

//eprint.iacr.org/2019/550.

6

https://eprint.iacr.org/2019/550
https://eprint.iacr.org/2019/550

	R1CS into Sum-Check protocol
	NIZKs with succint proofs for R1CS
	Full protocol

