Notes on Spartan

arnaucube

April 2023

Abstract

Notes taken while reading about Spartan [1]. Usually while reading papers I take handwritten notes, this document contains some of them re-written to LaTeX.

The notes are not complete, don't include all the steps neither all the proofs.

Contents

1 R1CS into Sum-Check protocol 1
2 NIZKs with succint proofs for R1CS 3
2.1 Full protocol . 5

1 R1CS into Sum-Check protocol

Def 1.1. R1CS $\exists w \in \mathbb{F}^{m-|i o|-1}$ such that $(A \cdot z) \circ(B \cdot z)=(C \cdot z)$, where $z=(i o, 1, w)$.

Thm 4.1 \forall R1CS instance $x=(\mathbb{F}, A, B, C, i o, m, n), \exists$ a degree- $3 \log \mathrm{~m}$ variate polynomial G such that $\sum_{x \in\{0,1\}^{\log m}} G(x)=0$ iff \exists a witness w such that $\operatorname{Sat}_{R 1 C S}(x, w)=1$.

We can view matrices $A, B, C \in \mathbb{F}^{m \times m}$ as functions $\{0,1\}^{s} \times\{0,1\}^{s} \rightarrow \mathbb{F}$ $(s=\lceil\log m\rceil)$. For a given witness w to x, let $z=(i o, 1, w)$. View z as a function $\{0,1\}^{s} \rightarrow \mathbb{F}$, so any entry in z can be accessed with a s-bit identifier.
$F_{i o}(x)=\left(\sum_{y \in\{0,1\}^{s}} A(x, y) \cdot Z(y)\right) \cdot\left(\sum_{y \in\{0,1\}^{s}} B(x, y) \cdot Z(y)\right)-\sum_{y \in\{0,1\}^{s}} C(x, y) \cdot Z(y)$
Lemma 4.1. $\forall x \in\{0,1\}^{s}, F_{i o}(x)=0$ iff $\operatorname{Sat}_{R 1 C S}(x, w)=1$.
$F_{i o}(\cdot)$ is a function, not a polynomial, so it can not be used in the Sum-check protocol.
$F_{i o}(x)$ function is converted to a polynomial by using its polynomial exten$\operatorname{sion} \widetilde{F}_{i o}(x): \mathbb{F}^{s} \rightarrow \mathbb{F}$,
$\widetilde{F}_{i o}(x)=\left(\sum_{y \in\{0,1\}^{s}} \widetilde{A}(x, y) \cdot \widetilde{Z}(y)\right) \cdot\left(\sum_{y \in\{0,1\}^{s}} \widetilde{B}(x, y) \cdot \widetilde{Z}(y)\right)-\sum_{y \in\{0,1\}^{s}} \widetilde{C}(x, y) \cdot \widetilde{Z}(y)$
Lemma 4.2. $\forall x \in\{0,1\}^{s}, \widetilde{F}_{i o}(x)=0$ iff $\operatorname{Sat}_{R 1 C S}(x, w)=1$.
(proof: $\forall x \in\{0,1\}^{s}, \widetilde{F}_{i o}(x)=F_{i o}(x)$, so, result follows from Lemma 4.1.)

So, for this, V will need to check that $\widetilde{F}_{i o}$ vanishes over the boolean hypercube $\left(\widetilde{F}_{i o}(x)=0 \forall x \in\{0,1\}^{s}\right)$.

Recall that $\widetilde{F}_{i o}(\cdot)$ is a low-degree multivariate polynomial over \mathbb{F} in s variables. Thus, checking that $\widetilde{F}_{i o}$ vanishes over the boolean hypercube is equivalent to checking that $\widetilde{F}_{i} o=0$.

Thus, V can check $\sum_{x \in\{0,1\}^{s}} \widetilde{F}_{i o}(x)=0$ using the Sum-check protocol (through SZ lemma, V can check if for a random value it equals to 0 , and be convinced that applies to all the points whp.).

But: as $\widetilde{F}_{i o}(x)$ is not multilinear, so $\sum_{x \in\{0,1\}^{s}} \widetilde{F}_{i o}(x)=0 \Longleftrightarrow F_{i o}(x)=$ $0 \forall x \in\{0,1\}^{s}$. Bcs: the 2^{s} terms in the sum might cancel each other even when the individual terms are not zero.

Solution: combine $\widetilde{F}_{i o}(x)$ with $\widetilde{e q}(t, x)$ to get $Q_{i o}(t, x)$ which will be the unique multilinear polynomial, and then check that it is a zero-polynomial

$$
Q_{i o}(t)=\sum_{x \in\{0,1\}^{s}} \widetilde{F}_{i o}(x) \cdot \widetilde{e q}(t, x)
$$

where $\tilde{e q}(t, x)=\prod_{i=1}^{s}\left(t_{i} \cdot x_{i}+\left(1-t_{i}\right) \cdot\left(1-x_{i}\right)\right)$, which is the MLE of $e q(x, e)=\{1$ if $x=e, 0$ otherwise $\}$.

Basically $Q_{i o}(\cdot)$ is a multivariate (the unique multilinear) polynomial such that

$$
Q_{i o}(t)=\widetilde{F}_{i o}(t) \forall t \in\{0,1\}^{s}
$$

thus, $Q_{i o}(\cdot)$ is a zero-polynomial iff $\widetilde{F}_{i o}(x)=0 \forall x \in\{0,1\}^{s} . \Longleftrightarrow$ iff $\widetilde{F}_{i o}(\cdot)$ encodes a witness w such that $\operatorname{Sat}_{R 1 C S}(x, w)=1$.
$\widetilde{F}_{i o}(x)$ has degree 2 in each variable, and $\widetilde{e q}(t, x)$ has degree 1 in each variable, so $Q_{i o}(t)$ has degree 3 in each variable.

To check that $Q_{i o}(\cdot)$ is a zero-polynomial: check $Q_{i o}(\tau)=0, \tau \in \in^{R} \mathbb{F}^{s}$ (Schwartz-Zippel-DeMillo-Lipton lemma) through the sum-check protocol.

This would mean that the R1CS instance is satisfied.

Recap

We have that $\operatorname{Sat}_{R 1 C S}(x, w)=1$ iff $F_{i o}(x)=0$.

To be able to use sum-check, we use its polynomial extension $\widetilde{F}_{i o}(x)$, using sum-check to prove that $\widetilde{F}_{i o}(x)=0 \forall x \in\{0,1\}^{s}$, which means that $\operatorname{Sat}_{R 1 C S}(x, w)=1$.

To prevent potential canceling terms, we combine $\widetilde{F}_{i o}(x)$ with $\widetilde{e q}(t, x)$, obtaining $G_{i o, \tau}(x)=\widetilde{F}_{i o}(x) \cdot \widetilde{e q}(t, x)$.

Thus $Q_{i o}(t)=\sum_{x \in\{0,1\}^{s}} \widetilde{F}_{i o}(x) \cdot \widetilde{e q}(t, x)$, and then we prove that $Q_{i o}(\tau)=$ 0 , for $\tau \in \in^{R} \mathbb{F}^{s}$.

2 NIZKs with succint proofs for R1CS

From Thm 4.1: to check R1CS instance $(\mathbb{F}, A, B, C, i o, m, n) \mathrm{V}$ can check if $\sum_{x \in\{0,1\}^{s}} G_{i o, \tau}(x)=0$, which through sum-check protocol can be reduced to $e_{x}=G_{i o, \tau}\left(r_{x}\right)$, where $r_{x} \in \mathbb{F}^{s}$.

Recall: $G_{i o, \tau}(x)=\widetilde{F}_{i o}(x) \cdot \widetilde{e q}(\tau, x)$.
Evaluating $\tilde{e q}\left(\tau, r_{x}\right)$ takes $O(\log m)$, but to evaluate $\widetilde{F}_{i o}\left(r_{x}\right), \mathrm{V}$ needs to evaluate

$$
\widetilde{A}\left(r_{x}, y\right), \widetilde{B}\left(r_{x}, y\right), \widetilde{C}\left(r_{x}, y\right), \widetilde{Z}(y), \forall y \in\{0,1\}^{s}
$$

which requires 3 sum-check instances $\left(\left(\sum_{y \in\{0,1\}^{s}} \widetilde{A}(x, y) \cdot \widetilde{Z}(y)\right)\right.$,
$\left.\left(\sum_{y \in\{0,1\}} \widetilde{B}(x, y) \cdot \widetilde{Z}(y)\right),\left(\sum_{y \in\{0,1\} s} \widetilde{C}(x, y) \cdot \widetilde{Z}(y)\right)\right)$, one for each summation in $\widetilde{F}_{i o}(x)$.

But note that evaluations of $\widetilde{Z}(y) \forall y \in\{0,1\}^{s}$ are already known as $(i o, 1, w)$.
Solution: combination of 3 protocols:

- Sum-check protocol
- randomized mini protocol
- polynomial commitment scheme

Basically to do a random linear combination of the 3 summations to end up doing just a single sum-check.

Observation: let $\widetilde{F}_{i o}\left(r_{x}\right)=\bar{A}\left(r_{x}\right) \cdot \bar{B}\left(r_{x}\right)-\bar{C}\left(r_{x}\right)$, where

$$
\begin{gathered}
\bar{A}\left(r_{x}\right)=\sum_{y \in\{0,1\}} \widetilde{A}\left(r_{x}, y\right) \cdot \widetilde{Z}(y), \quad \bar{B}\left(r_{x}\right)=\sum_{y \in\{0,1\}} \widetilde{B}\left(r_{x}, y\right) \cdot \widetilde{Z}(y) \\
\bar{C}\left(r_{x}\right)=\sum_{y \in\{0,1\}} \widetilde{C}\left(r_{x}, y\right) \cdot \widetilde{Z}(y)
\end{gathered}
$$

Prover makes 3 separate claims: $\bar{A}\left(r_{x}\right)=v_{A}, \bar{B}\left(r_{x}\right)=v_{B}, \bar{C}\left(r_{x}\right)=v_{C}$, then V evaluates:

$$
G_{i o, \tau}\left(r_{x}\right)=\left(v_{A} \cdot v_{B}-v_{C}\right) \cdot \tilde{e q}\left(r_{x}, \tau\right)
$$

$$
\begin{array}{ll}
\text { which equals to } & =\left(\bar{A}\left(r_{x}\right) \cdot \bar{B}\left(r_{x}\right)-\bar{C}\left(r_{x}\right)\right) \cdot \widetilde{e q}\left(r_{x}, \tau\right)= \\
\left(\left(\sum_{y \in\{0,1\}} \widetilde{A}\left(r_{x}, y\right) \cdot \widetilde{Z}(y)\right) \cdot\left(\sum_{y \in\{0,1\}} \widetilde{B}\left(r_{x}, y\right) \cdot \widetilde{Z}(y)\right)-\sum_{y \in\{0,1\}} \widetilde{C}\left(r_{x}, y\right) \cdot \widetilde{Z}(y)\right) \cdot \widetilde{e q}\left(r_{x}, \tau\right)
\end{array}
$$

This would be 3 sum-check protocol instances (3 claims: $\bar{A}\left(r_{x}\right)=v_{A}$, $\left.\bar{B}\left(r_{x}\right)=v_{B}, \bar{C}\left(r_{x}\right)=v_{C}\right)$.

Instead, combine 3 claims into a single claim:

- V samples $r_{A}, r_{B}, r_{C} \in R \mathbb{F}$, and computes $c=r_{A} v_{A}+r_{B} v_{B}+r_{C} v_{C}$.
- V, P use sum-check protocol to check:

$$
r_{A} \cdot \bar{A}\left(r_{x}\right)+r_{B} \cdot \bar{B}\left(r_{x}\right)+r_{C} \cdot \bar{C}\left(r_{x}\right)==c
$$

Let

$$
\begin{aligned}
& L\left(r_{x}\right)=r_{A} \cdot \bar{A}\left(r_{x}\right)+r_{B} \cdot \bar{B}\left(r_{x}\right)+r_{C} \cdot \bar{C}\left(r_{x}\right) \\
& =\sum_{y \in\{0,1\}^{s}}\left(r_{A} \cdot \widetilde{A}\left(r_{x}, y\right) \cdot \widetilde{Z}(y)+r_{B} \cdot \widetilde{B}\left(r_{x}, y\right) \cdot \widetilde{Z}(y)+r_{C} \cdot \widetilde{C}\left(r_{x}, y\right) \cdot \widetilde{Z}(y)\right) \\
& =\sum_{y \in\{0,1\}^{s}} M_{r_{x}}(y)
\end{aligned}
$$

$M_{r_{x}}(y)$ is a s-variate polynomial with $\operatorname{deg} \leq 2$ in each variable $(\Longleftrightarrow \mu=$ $s, l=2, T=c)$.

$$
\begin{aligned}
M_{r_{x}}\left(r_{y}\right) & =r_{A} \cdot \widetilde{A}\left(r_{x}, r_{y}\right) \cdot \widetilde{Z}\left(r_{y}\right)+r_{B} \cdot \widetilde{B}\left(r_{x}, r_{y}\right) \cdot \widetilde{Z}\left(r_{y}\right)+r_{C} \cdot \widetilde{C}\left(r_{x}, r_{y}\right) \cdot \widetilde{Z}\left(r_{y}\right) \\
& =\left(r_{A} \cdot \widetilde{A}\left(r_{x}, r_{y}\right)+r_{B} \cdot \widetilde{B}\left(r_{x}, r_{y}\right)+r_{C} \cdot \widetilde{C}\left(r_{x}, r_{y}\right)\right) \cdot \widetilde{Z}\left(r_{y}\right)
\end{aligned}
$$

only one term in $M_{r_{x}}\left(r_{y}\right)$ depends on prover's witness: $\widetilde{Z}\left(r_{y}\right)$, the other terms can be computed locally by V in $O(n)$ time (Section 6 of the paper for sub-linear in n).

Instead of evaluating $\widetilde{Z}\left(r_{y}\right)$ in $O(|w|)$ communications, P sends a commitment to $\widetilde{w}(\cdot)(=$ MLE of the witness $w)$ to V before the first instance of the sum-check protocol.

Recap

To check the R1CS instance, V can check $\sum_{x \in\{0,1\}^{s}} G_{i o, \tau}(x)=0$, which through the sum-check is reduced to $e_{x}=G_{i o, \tau}\left(r_{x}\right)$, for $r_{x} \in \mathbb{F}^{s}$.

Evaluating $G_{i o, \tau}(x)\left(G_{i o, \tau}(x)=\widetilde{F}_{i o}(x) \cdot \tilde{e q}(\tau, x)\right)$ is not cheap. Evaluating $\tilde{e q}\left(\tau, r_{x}\right)$ takes $O(\log m)$, but to evaluate $\widetilde{F}_{i o}\left(r_{x}\right), \mathrm{V}$ needs to evaluate $\widetilde{A}, \widetilde{B}, \widetilde{C}, \widetilde{Z}, \forall y \in\{0,1\}^{s}$

P makes 3 separate claims: $\bar{A}\left(r_{x}\right)=v_{A}, \bar{B}\left(r_{x}\right)=v_{B}, \bar{C}\left(r_{x}\right)=v_{C}$, so V can evaluate $G_{i o, \tau}\left(r_{x}\right)=\left(v_{A} \cdot v_{B}-v_{C}\right) \cdot \widetilde{e q}\left(r_{x}, \tau\right)$

The previous claims are combined into a single claim (random linear combination) to use only a single sum-check protocol:

$$
\mathrm{P}: c=r_{A} v_{A}+r_{B} v_{B}+r_{C} v_{C}, \text { for } r_{A}, r_{B}, r_{C} \in R \mathbb{F}
$$

V, P: sum-check $r_{A} \cdot \bar{A}\left(r_{x}\right)+r_{B} \cdot \bar{B}\left(r_{x}\right)+r_{C} \cdot \bar{C}\left(r_{x}\right)==c$
$c=L\left(r_{x}\right)=\sum_{y \in\{0,1\}^{s}} M_{r_{x}}(y)$, where $M_{r_{x}}(y)$ is a s-variate polynomial with $\operatorname{deg} \leq 2$ in each variable $(\Longleftrightarrow \mu=s, l=2, T=c)$. Only $\widetilde{Z}\left(r_{y}\right)$ depends on P's witness, the other terms can be computed locally by V.
Instead of evaluating $\widetilde{Z}\left(r_{y}\right)$ in $O(|w|)$ communications, P uses a commitment to $\widetilde{w}(\cdot)(=$ MLE of the witness $w)$.

2.1 Full protocol

(Recall: Sum-Check params: μ : n vars, n rounds, l : degree in each variable upper bound, T : claimed result.)

- $p p \leftarrow \operatorname{Setup}\left(1^{\lambda}\right)$: invoke $p p \leftarrow P C \cdot \operatorname{Setup}\left(1^{\lambda}, \operatorname{logm}\right)$; output $p p$
- $b \leftarrow<P(w), V(r)>(\mathbb{F}, A, B, C, i o, m, n)$:

1. P: $(C, S) \leftarrow P C . C o m m i t(p p, \widetilde{w})$ and send C to V
2. V: send $\tau \in \in^{R} \mathbb{F}^{\log m}$ to P
3. let $T_{1}=0, \mu_{1}=\log m, l_{1}=3$
4. V: set $r_{x} \in^{R} \mathbb{F}^{\mu_{1}}$
5. Sum-check 1. $e_{x} \leftarrow<P_{S C}\left(G_{i o, \tau}\right), V_{S C}\left(r_{x}\right)>\left(\mu_{1}, l_{1}, T_{1}\right)$
6. P: compute $v_{A}=\bar{A}\left(r_{x}\right), v_{B}=\bar{B}\left(r_{x}\right), v_{C}=\bar{C}\left(r_{x}\right)$, send $\left(v_{A}, v_{B}, v_{C}\right)$ to V
7. V: abort with $b=0$ if $e_{x} \neq\left(v_{A} \cdot v_{B}-v_{C}\right) \cdot \tilde{e q}\left(r_{x}, \tau\right)$
8. V: send $r_{A}, r_{B}, r_{C} \in{ }^{R} \mathbb{F}$ to P
9. let $T_{2}=r_{A} \cdot v_{A}+r_{B} \cdot v_{B}+r_{C} \cdot v_{C}, \mu_{2}=\log m, l_{2}=2$
10. V: set $r_{y} \in^{R} \mathbb{F}^{\mu_{2}}$
11. Sum-check 2. $e_{y} \leftarrow<P_{S C}\left(M_{r_{x}}\right), V_{S C}\left(r_{y}\right)>\left(\mu_{2}, l_{2}, T_{2}\right)$
12. $\mathrm{P}: v \leftarrow \widetilde{w}\left(r_{y}[1 .].\right)$, send v to V
13. $b_{e} \leftarrow<P_{P C . E v a l}(\widetilde{w}, S), V_{P C . E v a l}(r)>\left(p p, C, r_{y}, v, \mu_{2}\right)$
14. V: abourt with $b=0$ if $b_{e}==0$
15. V: $v_{z} \leftarrow\left(1-r_{y}[0]\right) \cdot \widetilde{w}\left(r_{y}[1 .].\right)+r_{y}[0] \widetilde{(i o, 1)}\left(r_{y}[1 .].\right)$
16. V: $v_{1} \leftarrow \widetilde{A}\left(r_{x}, r_{y}\right), v_{2} \leftarrow \widetilde{B}\left(r_{x}, r_{y}\right), v_{3} \leftarrow \widetilde{C}\left(r_{x}, r_{y}\right)$
17. V: abort with $b=0$ if $e_{y} \neq\left(r_{A} v_{1}+r_{B} v_{2}+r_{C} v_{3}\right) \cdot v_{z}$
18. V: output $b=1$

Section 6 of the paper, describes how in step 16, instead of evaluating $\widetilde{A}, \widetilde{B}, \widetilde{C}$ at r_{x}, r_{y} with $O(n)$ costs, P commits to $\widetilde{A}, \widetilde{B}, \widetilde{C}$ and later provides proofs of openings.

In a practical implementation those commits to $\widetilde{A}, \widetilde{B}, \widetilde{C}$ could be done in a preprocessing step.

WIP: covered until sec. 6

References

[1] Srinath Setty. Spartan: Efficient and general-purpose zksnarks without trusted setup. Cryptology ePrint Archive, Paper 2019/550, 2019. https: //eprint.iacr.org/2019/550.

