Notes on HyperNova

arnaucube

May 2023

Abstract

Notes taken while reading about Spartan [1], 2]. Usually while reading papers I take handwritten notes, this document contains some of them re-written to LaTeX.

The notes are not complete, don't include all the steps neither all the proofs.

Contents

1 CCS 1
1.1 R1CS to CCS overview 1
1.2 Committed CCS 2
1.3 Linearized Committed CCS 2
2 Multifolding Scheme for CCS 2
A Appendix: Some details 4
A. 1 Matrix and Vector to Sparse Multilinear Extension 4

1 CCS

1.1 R1CS to CCS overview

R1CS instance $S_{R 1 C S}=(m, n, N, l, A, B, C)$
where m, n are such that $A \in \mathbb{F}^{m \times n}$, and l such that the public inputs $x \in \mathbb{F}^{l}$. Also $z=(w, 1, x) \in \mathbb{F}^{n}$, thus $w \in \mathbb{F}^{n-l-1}$.

CCS instance $S_{C C S}=(m, n, N, l, t, q, d, M, S, c)$
where we have the same parameters than in $S_{R 1 C S}$, but additionally: $t=|M|, q=|c|=|S|, d=$ max degree in each variable.

R1CS-to-CCS parameters $n=n, m=m, N=N, l=l, t=3, q=2, d=$ $2, M=\{A, B, C\}, S=\{\{0,1\},\{2\}\}, c=\{1,-1\}$

The CCS relation check:

$$
\sum_{i=0}^{q-1} c_{i} \cdot \bigcirc_{j \in S_{i}} M_{j} \cdot z==0
$$

where $z=(w, 1, x) \in \mathbb{F}^{n}$.
In our R1CS-to-CCS parameters is equivalent to

$$
\begin{aligned}
& c_{0} \cdot\left(\left(M_{0} z\right) \circ\left(M_{1} z\right)\right)+c_{1} \cdot\left(M_{2} z\right)==0 \\
\Longrightarrow & 1 \cdot((A z) \circ(B z))+(-1) \cdot(C z)==0 \\
\Longrightarrow & ((A z) \circ(B z))-(C z)==0
\end{aligned}
$$

which is equivalent to the R1CS relation: $A z \circ B z==C z$
An example of the conversion from R1CS to CCS implemented in SageMath can be found at
https://github.com/arnaucube/math/blob/master/r1cs-ccs.sage

1.2 Committed CCS

$R_{C C C S}$ instance: (C, x), where C is a commitment to a multilinear polynomial in $s^{\prime}-1$ variables.

Sat if:
i. $\operatorname{Commit}(p p, \widetilde{w})=C$
ii. $\sum_{i=1}^{q} c_{i} \cdot\left(\prod_{j \in S_{i}}\left(\sum_{y \in\{0,1\}^{\log m}} \widetilde{M}_{j}(x, y) \cdot \widetilde{z}(y)\right)\right)$
where $\widetilde{z}(y)=(w, 1, \times)(x) \forall x \in\{0,1\}^{s^{\prime}}$

1.3 Linearized Committed CCS

$R_{L C C C S}$ instance: $\left(C, u, \mathrm{x}, r, v_{1}, \ldots, v_{t}\right)$, where C is a commitment to a multilinear polynomial in $s^{\prime}-1$ variables, and $u \in \mathbb{F}, \mathrm{x} \in \mathbb{F}^{l}, r \in \mathbb{F}^{s}, v_{i} \in \mathbb{F} \forall i \in[t]$.

Sat if:
i. $\operatorname{Commit}(p p, \widetilde{w})=C$
ii. $\forall i \in[t], v_{i}=\sum_{y \in\{0,1\}^{s^{\prime}}} \widetilde{M}_{i}(r, y) \cdot \widetilde{z}(y)$
where $\widetilde{z}(y)=(w, u, x)(x) \forall x \in\{0,1\}^{s^{\prime}}$

2 Multifolding Scheme for CCS

Recall sum-check protocol notation: $C \underline{\leftarrow\langle P, V(r)\rangle(g, l, d, T)}$:

$$
T=\sum_{x_{1} \in\{0,1\}} \sum_{x_{2} \in\{0,1\}} \ldots \sum_{x_{l} \in\{0,1\}} g\left(x_{1}, x_{2}, \ldots, x_{l}\right)
$$

where g is a l-variate polynomial, with degree at most d in each variable, and T is the claimed value.

Let $s=\log m, s^{\prime}=\log n$.

1. $V \rightarrow P: \gamma \in^{R} \mathbb{F}, \beta \in^{R} \mathbb{F}^{s}$
2. $V: r_{x}^{\prime} \in^{R} \mathbb{F}^{s}$
3. $V \leftrightarrow P$: sum-check protocol:

$$
c \leftarrow\left\langle P, V\left(r_{x}^{\prime}\right)\right\rangle(g, s, d+1, \overbrace{\sum_{j \in[t]} \gamma^{j} \cdot v_{j}}^{\mathrm{T}})
$$

where:

$$
\begin{aligned}
& \qquad g(x):=\left(\sum_{j \in[t]} \gamma^{j} \cdot L_{j}(x)\right)+\gamma^{t+1} \cdot Q(x) \\
& \text { for LCCCS: } L_{j}(x):=\widetilde{e q}\left(r_{x}, x\right) \cdot(\underbrace{\sum_{y \in\left\{0,1 s^{s^{\prime}}\right.} \widetilde{M}_{j}(x, y) \cdot \widetilde{z}_{1}(y)}_{\text {this is the check from LCCCS }}) \\
& \text { for CCCS: } Q(x):=\widetilde{e q}(\beta, x) \cdot(\underbrace{\sum_{i=1}^{q} c_{i} \cdot \prod_{j \in S_{i}}\left(\sum_{y \in\{0,1\}^{s^{\prime}}} \widetilde{M}_{j}(x, y) \cdot \widetilde{z}_{2}(y)\right)}_{\text {this is the check from CommittedCCS }})
\end{aligned}
$$

Notice that $v_{j}=\sum_{y \in\{0,1\}^{s^{s}}} \widetilde{M}_{j}(r, y) \cdot \widetilde{z}(y)=\sum_{x \in\{0,1\}^{s}} L_{j}(x)$.
4. $P \rightarrow V:\left(\left(\sigma_{1}, \ldots, \sigma_{t}\right),\left(\theta_{1}, \ldots, \theta_{t}\right)\right)$, where $\forall j \in[t]$,

$$
\begin{aligned}
& \sigma_{j}=\sum_{y \in\{0,1\}^{s^{\prime}}} \widetilde{M}_{j}\left(r_{x}^{\prime}, y\right) \cdot \widetilde{z}_{1}(y) \\
& \theta_{j}=\sum_{y \in\{0,1\}^{s^{\prime}}} \widetilde{M}_{j}\left(r_{x}^{\prime}, y\right) \cdot \widetilde{z}_{2}(y)
\end{aligned}
$$

where σ_{j}, θ_{j} are the checks from LCCCS and CCCS respectively with $x=r_{x}^{\prime}$.
5. V: $e_{1} \leftarrow \widetilde{e q}\left(r_{x}, r_{x}^{\prime}\right), e_{2} \leftarrow \widetilde{e q}\left(\beta, r_{x}^{\prime}\right)$
check:

$$
c=\left(\sum_{j \in[t]} \gamma^{j} e_{1} \sigma_{j}+\gamma^{t+1} e_{2}\left(\sum_{i=1}^{q} c_{i} \cdot \prod_{j \in S_{i}} \sigma\right)\right)
$$

which should be equivalent to the $g(x)$ computed by V, P in the sum-check protocol.
6. $V \rightarrow P: \rho \in^{R} \mathbb{F}$
7. V, P : output the folded LCCCS instance $\left(C^{\prime}, u^{\prime}, \mathrm{x}^{\prime}, r_{x}^{\prime}, v_{1}^{\prime}, \ldots, v_{t}^{\prime}\right)$, where $\forall i \in[t]:$

$$
\begin{aligned}
C^{\prime} & \leftarrow C_{1}+\rho \cdot C_{2} \\
u^{\prime} & \leftarrow u+\rho \cdot 1 \\
\mathrm{x}^{\prime} & \leftarrow \mathrm{x}_{1}+\rho \cdot \mathrm{x}_{2} \\
v_{i}^{\prime} & \leftarrow \sigma_{i}+\rho \cdot \theta_{i}
\end{aligned}
$$

8. P : output folded witness: $\widetilde{w}^{\prime} \leftarrow \widetilde{w}_{1}+\rho \cdot \widetilde{w}_{2}$.

A Appendix: Some details

This appendix contains some notes on things that don't specifically appear in the paper, but that would be needed in a practical implementation of the scheme.

A. 1 Matrix and Vector to Sparse Multilinear Extension

Let $M \in \mathbb{F}^{m \times n}$ be a matrix. We want to compute its MLE

$$
\widetilde{M}\left(x_{1}, \ldots, x_{l}\right)=\sum_{e \in\{0,1\}^{l}} M(e) \cdot \widetilde{e q}(x, e)
$$

We can view the matrix $M \in \mathbb{F}^{m \times n}$ as a function with the following signature:

$$
M(\cdot):\{0,1\}^{s} \times\{0,1\}^{s^{\prime}} \rightarrow \mathbb{F}
$$

where $s=\lceil\log m\rceil, s^{\prime}=\lceil\log n\rceil$.
An entry in M can be accessed with a $\left(s+s^{\prime}\right)$-bit identifier.
eg.:

$$
M=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \in \mathbb{F}^{3 \times 2}
$$

$m=3, n=2, \quad s=\lceil\log 3\rceil=2, s^{\prime}=\lceil\log 2\rceil=1$
So, $M\left(s_{0}, s_{1}\right)=x$, where $s_{0} \in\{0,1\}^{s}, s_{1} \in\{0,1\}^{s^{\prime}}, x \in \mathbb{F}$

$$
M=\left(\begin{array}{lll}
M(00,0) & M(01,0) & M(10,0) \\
M(00,1) & M(01,1) & M(10,1)
\end{array}\right) \in \mathbb{F}^{3 \times 2}
$$

This logic can be defined as follows:

```
Algorithm 1 Generating a Sparse Multilinear Polynomial from a matrix
    set empty vector \(v \in(\text { index: } \mathbb{Z}, x: \mathbb{F})^{s \times s^{\prime}}\)
    for \(i\) to \(n\) do
        for \(j\) to \(m\) do
            if \(M_{i, j} \neq 0\) then
                    \(v\).append \(\left(\left\{\right.\right.\) index \(\left.\left.: i \cdot m+j, x: M_{i, j}\right\}\right)\)
            end if
        end for
    end for
    return \(v \quad \triangleright v\) represents the evaluations of the polynomial
```

Once we have the polynomial, its MLE comes from

$$
\begin{gathered}
\widetilde{M}\left(x_{1}, \ldots, x_{s+s^{\prime}}\right)=\sum_{e \in\{0,1\}^{s+s^{\prime}}} M(e) \cdot \widetilde{e q}(x, e) \\
M(X) \in \mathbb{F}\left[X_{1}, \ldots, X_{s}\right]
\end{gathered}
$$

Multilinear extensions of vectors Given a vector $u \in \mathbb{F}^{m}$, the polynomial \widetilde{u} is the MLE of u, and is obtained by viewing u as a function mapping $(s=\log m)$

$$
u(x):\{0,1\}^{s} \rightarrow \mathbb{F}
$$

$\widetilde{u}(x, e)$ is the multilinear extension of the function $u(x)$

$$
\widetilde{u}\left(x_{1}, \ldots, x_{s}\right)=\sum_{e \in\{0,1\}^{s}} u(e) \cdot \widetilde{e q}(x, e)
$$

References

[1] Abhiram Kothapalli and Srinath Setty. Hypernova: Recursive arguments for customizable constraint systems. Cryptology ePrint Archive, Paper 2023/573, 2023. https://eprint.iacr.org/2023/573.
[2] Srinath Setty, Justin Thaler, and Riad Wahby. Customizable constraint systems for succinct arguments. Cryptology ePrint Archive, Paper 2023/552, 2023. https://eprint.iacr.org/2023/552.

