Sigma protocol and OR proofs - notes

arnaucube

March 2022

Abstract

This document contains the notes taken during the Cryptography Sem-
inars given by Rebekah Mercerl

Contents

[1__Sigma protocol|

1.1 eprotocoll
1.2 Non interactive protocol|
1.3 What could go wrong (Simulator)[.

W N = =

2.1 The protocollo
2.1.1 Simulator o

W w w W

1 Sigma protocol

1.1 The protocol

Let g be a prime, ¢ a prime divisor in p—1, and g and element of order ¢ in Zg.
Then we have G = (g).

We assume that computationally for a given A it’s hard to find a € F such that
A= g°.

Alice wants to prove that knows the witness w € F, such that the statement
X = ¢", without revealing w.

1. Alice generates a random a < F, and computes A = ¢®. And sends A to
Bob.

2. Bob generates a challenge ¢ <~ F, and sends it to Alice.

3. Alice computes z = a + ¢ - w, and sends it to Bob.

https://github.com/rbkhmrcr

4. Bob verifies it by checking that g* == X°¢ - A.

We can unfold Bob’s verification and see that:

gz —— X°. A
ga+cw —— gwcga
a-+cw —— gwc+a
Alice Bob
A
C
\
ok

Properties:

i. correctness/completness: if Alice know the witness for the statement, then
they can create a valid proof.

ii. soundness: if someone does not have knowledge of the witness, can not
form a valid proof (verifier will always reject).

iii. zero knowledge: nobody gains knowledge of anything new with the proof.
prior knowledge + proof = prior knowledge

1.2 Non interactive protocol
With the Fiat-Shamir Heuristic, we model a hash function as a random oracle,
thus we can replace Bob’s role by a hash function in order to obtain the challenge

cel.
So, we replace the step 2 from the described protocol by ¢ = H(X||A) (where

H is a known hash function).

1.3 What could go wrong (Simulator)

If the verifier (Bob) sends ¢ € F, prior to the prover committed to A, the prover
could create a proof about a public key which they don’t know w.

1. Bob sends ¢ < F to Alice
Alice generates z <~ F

Alice then computes A = ¢g*X ¢, and sends z, A to Bob

Ll

Bob would check that g* == X°A and it would pass the verification, as
gz — XC'A:>gZ ::XC'QZX_C:>QZ ::gz_

As we’ve seen, it’s really important the order of the steps, so Alice must
commit to A before knowing c.
This 'fake’ proof generation is often called the simulator and used for further
constructions.

2 OR proof

OR proofs allows the prover to prove that they know the witness w of one of
the two known public keys Xy, X1 € F, without revealing which one. It uses the
construction seen in the sigma protocols together with the idea of the simulator.

A similar construction is used for n statements in the ring signatures scheme
(used for example in Monero). In our case, we will work with n = 2.

2.1 The protocol
2.1.1 Simulator

We can assume that the simulator is a box that for given the inputs (g, X), it
will output (As, cs, 25), such that verification succeeds (g% == X% - Ay).

g, X . Ag, sy 26
simulator

Internally, the simulator computes

2 & TF, ¢ & F, Ay =g - X

2.2 Flow

For two known public keys Xo, X7 € G, Alice knows wy, € F, for b € {0,1}, such
that g¥* = Xy or ¢g** = X;. As we don’t know if Alice controls 0 or 1, from
now on, we will use b and 1 — b.

So, Alice knows w, € F such that X, = ¢g"*, and does not know wj_; for
Xi_p = g¥r-o.

1. First of all, as in the Sigma protocol, Alice generates a random commitment
ap <~ F, and computes A, = g®.
2. Then, Alice will run the simulator for 1 — b.
Sets a random ¢;_p < F, and runs the simulator with inputs

(c1-1, X1-p), and outputs (A1 _p,c1-p,21-5)-

Remember that internally the simulator will set random
Z1-p, c1—p + F, and compute an A;_; such that
Ay =g X1

3. Now, Alice sends Ay, A1_, to Bob
4. And Bob sends back the challenge s < F.

5. Alice then splits the challenge s into ¢y, c1—p, by s = c1-p D ¢p. So Alice
can compute ¢, = s D c1_p.

6. Then Alice computes 2z, = ap-wp+¢p. And sends to Bob (¢, ¢1-p, 2, 21—p)-
7. Bob can perform the verification by checking that:

. s==c¢,Pciyp
—ci-p

ii. 921y == Ay Xl—b
i, g., == Ay X,

Alice Bob

%
/
Cby C1—by 2by Z1—b

3 Resources

1. |https://cs.au.dk/ ivan/Sigma.pdf

2. Cryptography Made Simple, Nigel Smart. Section 21.3.

https://cs.au.dk/~ivan/Sigma.pdf

	Sigma protocol
	The protocol
	Non interactive protocol
	What could go wrong (Simulator)

	OR proof
	The protocol
	Simulator

	Flow

	Resources

