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Abstract

Notes taken while studying Galois Theory, mostly from Ian Stewart’s
book ”Galois Theory” [IJ.

Usually while reading books and papers I take handwritten notes in a
notebook, this document contains some of them re-written to LaTeX.

The notes are not complete, don’t include all the steps neither all the
proofs.

Contents

=

IL Recap on the degree of field extensions|

[2.3 _Elementary symmetric polynomials| . . . . .. ... ... ... ..

2.4 Cyclotomic polynomials| . . . . .. ... ... ... ... .....
2.4.1 om Elmyn Berlekamp’s ” Algebraic Coding Theory” book|
2.4.2  From lan Stewart’s “Galois Theory” book| . . . . . . . ..
243 Examples . . .. ... o oo

ESTEN JEN S, B NN RSO SESETN

|

B
pl
>
)
=)
S
e.
w0

oo
i
S
=

]

kA
©

Ne]

1 Recap on the degree of field extensions

(Definitions, theorems, lemmas, corollaries and examples enumeration follows
from Tan Stewart’s book [I]).

Definition 4.10. A simple extension is L : K such that L = K(«) for some
ac L.



Example 4.11. Beware, L = Q(i, —i,v/5, —v/5) = Q(i,v/5) = Q(i + v/5).

Definition 5.5. Let L : K, suppose a € L is algebraic over K. Then, the
minimal polynomial of o over K is the unique monic polynomial m over K,
m(t) € K[t], of smallest degree such that m(a) = 0.

eg.: i € C is algebraic over R. The minimal polynomial of 7 over R is m(t) =
2 4+ 1, so that m(i) = 0.

Lemma 5.9. Every polynomial a € K[t is congruent modulo m to a unique
polynomial of degree < dm.

Proof. Divide a/m with remainder, a = gm + r, with ¢,r € K[t] and dr < dm.
Then, a —r = gm, so a = r (mod m).

It remains to prove uniqueness.

Suppose 3 r = s (mod m), with dr, s < dm. Then, r — s is divisible by m,
but has smaller degree than m.

Therefore, r — s = 0, so r = s, proving uniqueness. O

Lemma 5.14. Let K(«) : K be a simple algebraic extension, let m be the
minimal polynomial of « over K, let dm = n.

Then {1,a,0a?,...,a" 1} is a basis for K(a) over K. In particular, [K () :
K] =n.

Definition 6.2. The degree [L : K] of a field extension L : K is the dimension
of L considered as a vector space over K.

Equivalently, the dimension of L as a vector space over K is the number of
terms in the expression for a general element of L using coefficients from K.

Example 6.3. 1. C elements are 2-dimensional over R (p + ¢i € C, with
p,q € R), because a basis is {1,¢}, hence [C: R] = 2.

2. [Q(i,v/5) : Q] = 4, since the elements {1,v/5,i,iv/5} form a basis for
QG, V5) over Q.
Theorem 6.4. (Short Tower Law) If K,L,M C C, and K C L C M, then
[M:K]|=[M:L]-[L:K]

Proof. Let (z;)ier be a basis for L over K, let (y;);jes be a basis for M over L.
Viel,jeJ, wehavex; € Lyuj € M.
Want to show that (z;y;)icr,jes is a basis for M over K.

i. prove linear independence:
Suppose that

Zkijxiyj =0 (li S K)

ij

Z(Z kijai)y; =0 (ki; € K)

rearrange

J
——

€L



Since ), kjjz; € L, and the y; € M are linearly independent over L, then
Zi k”l'l =0.

Repeating the argument inside L — k;; =0 Vie I,j € J.

So the elements x;y; are linearly independent over K.

ii. prove that x;y; span M over K:
Any x € M can be written x = Zj Ajy; for A; € L, because y; spans M
over L. Similarly, Vj € J, X\; = >, Aijjz;y; for \;; € K.
Putting the pieces together, x = Eij Aijx;y; as required.

O
Lemma 6.6. (Tower Law)
If Ko C Ky C...C K, are subfields of C, then
Ky : Kol =[Kp: Kn_1] [Kn_1: Kp_2] ... [K1: Ko
Proof. From[6.4] O

[...] TODO: pending to add key parts up to Chapter 15.



2 Tools

This section contains tools that I found useful to solve Galois Theory related
problems, and that don’t appear in Stewart’s book.

2.1 De Moivre’s Theorem and Euler’s formula

Useful for finding all the roots of a polynomial.
Euler’s formula: .
e = costh + i - sina)

The n-th roots of a complex number z = x + iy = r(cosh +1i - sinf) are given
by

0+ 2k 0+ 2k
2= R/r- (cos( + 7T)—l—i~sin( + 7T))
for k=0,...,n—1.
So, by Euler’s formula:

27i

» , and find the Q-automorphisms

Usually we will set « = {/r and ( = e
from there (see for examples).

2.2 Einsenstein’s Criterion

reference: Stewart’s book
Let f(t) = ag + a1t + ...+ a,t™, suppose there is a prime ¢ such that

L gta,
2. gqla; fori=0,...,n—1
3. ¢*fao
Then, f is irreducible over Q.
TODO proof € Gauss lemma.
2.3 Elementary symmetric polynomials

TODO from orange notebook, page 36

2.4 Cyclotomic polynomials
2.4.1 From Elmyn Berlekamp’s ” Algebraic Coding Theory” book

The notes in this section are from the book ”Algebraic Coding Theory” by
Elmyn Berlekamp [3].



Some times we might find polynomials that have the shape of " — 1, those
are cyclotomic polynomials, and have some properties that might be useful.
Observe that in a finite field of order ¢, factoring z? — x gives

2! -z =z(xit - 1)
The factor z9~! — 1 is a special case of ™ — 1: if we assume that the field
contains an element « of order n, then the roots of ™ — 1 = 0 are

La,o?,a%, ..., 0"t
and deg(z™ — 1) = n, thus 2™ — 1 has at most n roots in any field, henceforth
the powers of @ must include all the n-th roots of unity.

There fore, in any field which contains a primitive n-th root of unity we
have:

Theorem 4.31.

n—1 n
" —1= H(x—o/'):H(xfozi)
i=0 i=1
If n =k-d, then o, a?*, 0%, ..., a% are all roots of ¥ —1 =0

Every element with order dividing n, must be a power of «, since an element
of order d is a d-th root of unity.

Every power of a has order which divides n, and every field element whose
order divides n is a power of . This suggests that we partition the powers of
« according to their orders:

2 —1=1][[=-8
a, B

dln

where at each iteration, 3 is a field element of order d for each d.
The polynomial whose roots are the field elements of order d is called the
cyclotomic polynomial, denoted by QD ().

Theorem 4.32.
v —1= [ ()
d

dl;’L

2.4.2 From Ian Stewart’s “Galois Theory” book

Notes from Tan Stewart’s book [1].

Consider the case n = 12, let ¢ = e™/6 be a primitive 12-th root of unity.
Classify its powers (¢7) according to their minimal power d such that (¢7)¢ =1
(ie. when they are primitive d-th roots of unity).

d=1, 1
d=2, (¢



d=3, ¢4¢®
d=4, (3,
d=6, (2,0
d

12, ¢,¢% ¢ ¢t

Observe that we can factorize 12 — 1 by grouping the corresponding zeros:

2 —1=(t—1)x
(t = ¢%)x
(t— ¢t —¢)x
(t =)t - C)
(t— ¢t —¢)x
(t—= Ot =)t =Nt —¢M)
which simplifies to
2 A=t-D)t+D)E+t+D)(E+ 1) -t +1)F(t)

where F(t) = (t — {)(t — ) (t — (") (t — (1Y) = t* — t2 + 1 (this last step can
be obtained either by multiplying (¢t — ¢)(t — ¢3)(t — ¢7)(t — ¢!') together, or by
dividing ¢'? — 1 by all the other factors).
Let ®4(t) be the factor corresponding to primitive d-th roots of unity, then
we have proved that
t'2 -1 = 00,30, D P15

Definition 21.5. The polynomial ®4(t) defined by
HOEE | ()
a€Zn,(a,n)=1
is the n-th cyclotomic polynomial over C.

Lemma 21.6. Vn € N, the polynomial ®,(¢) lies in Z[t] and is monic and
irreducible.

Theorem 21.9. 1. The Galois group I'(Q(¢) : Q) consists of the Q-automorphisms
1 defined by

¥ (¢) = ¢
where 0 < j <n —1 and j is prime to n.
2. T(Q((¢) : Q) = Z?, and is an abelian group.
3. its order is ¢(n)

4. if n is prime, Z} is cyclic



2.4.3 Examples

Examples of cyclotomic polynomials:

n—1
bp(z)=a" 42" P4ttt = sz
i=0
p—1
Pop(z) =aP . ta2? -+ 1= Z(fx)l
=0

B, (x) = 2™2 4+ 1, when m is a power of 2

2.5 Lemma 1.42 from J.S.Milne’s book

Lemma from J.S.Milne’s book [2].
Useful for when dealing with P — 1 with p prime.
Observe that

2P —1=(z—1)(@P 2P 24 ... +1)
Notice that
Oy (z)=aP 4P 24+ 1
is the p-th Cyclotomic polynomial.

Lemma 1.42. If p prime, then 2P~ 4. ..+ 1 is irreducible; hence Q[e2”/”] has
degree p — 1 over Q.

Proof. Let f(x) = (2? —1)/(x — 1) = 2P~ 1 + ... + 1 then

(z+1)P -1 _(@+1)P—1 _

_ p—1 o
er 11 - x +...+taqx +...+p

fla+1)=

. .p
witha; = (7+1).

We know that pla; for i = 1,...,p — 2, therefore f(z + 1) is irreducibe by
Einsenstein’s Criterion.
This implies that f(x) is irreducible. O

2.6 Dihedral groups - Groups of symmetries

Source: Wikipedia and [4].
Dihedral groups (D,,) represent the symmetries of a regular n-gon.
Properties:

e are non-abelian (for n > 2), ie. rs # sr
e order 2n

e generated by a rotation r and a reflection s



o =3s2=id, (rs)®=id
Subgroups of D,,:
e rotation form a cyclic subgroup of order n, denoted as < r >
e for each d such that d|n, 3 Dy with order 2d
e normal subgroups

— for n odd: D, and < r¢ > for every d|n
— for n even: 2 additional normal subgroups

e Klein four-groups: Zs X Zs, of order 4

Total number of subgroups in D,,: d(n) 4+ s(n), where d(n) is the number of
positive disivors of n, and s(n) is the sum of those divisors.
Example . For Dg, we have {1,2,3,6}|6, so d(n) = d(6) =4, and s(6) = 1+2+
3+6 = 12; henceforth, the total amount of subgroups is d(n)+s(n) = 4+12 = 16.

For n >3, D, CS, (subgroup of the Symmetry group).



3

Exercises

3.1 Galois groups

3.1

1 5-7€0Q

This exercise comes from a combination of exercises 12.4 and 13.7 from [IJ.

First let’s find the roots. By De Moivre’s Theorem lb ty = T e 5",
From which we denote o« = ¥/7, and ¢ = e%, so that the roots of the

polynomial are {a, a(, a¢?, a¢®, al*, al®}, ie. {aC*}3.

Hence the splitting field is Q(«, ¢).
Degree of the extension
In order to find [Q(«, () : Q, we're going to split it in tow parts. By the

Tower Law ,

[Q(a,¢) : Q] = [Q(e, ) : Q)] - [Q(e) = Q)

To find each degree, we will find the minimal polynomial of the adjoined

term over the base field of the extension:

i

ii.

. minimal polynomial of « over QQ

By Einsenstein’s Criterion (2.2)), with ¢ = 7 we have that ¢ 1, 7|-7,0,0,. ..,
and 72 § —7, hence f(t) is irreducibe over Q, thus is the minimal polynomial

which has roots {a¢*}5.

minimal polynomial of ¢ over Q(«)
Since ( is the primitive 6th root of unity, we know that the minimal poly-
nomial will be the 6th cyclotomic polynomial (2.4):

mii(t) = ®g(t) =t —t 4+ 1

which has roots ¢, —(.
Since Q(a) C R, and the roots of ®g(t) =t —t+1 are in C, ®4(t) remains
irreducible over Q(a).

Therefore, by the tower of law,

[Q(a,¢) : Q] = deg P (t) - deg f(t) =2-6 = 12

and by the Fundamental Theorem of Galois Theory, we know that

IT(Q(a, ) : Q)] = [Q(ex, ¢) : Q] = 12

which tells us that there exist 12 Q-automorphisms of the Galois group.



Let’s find the 12 Q-automorphisms. Start by defining o which fixes ¢ and
acts on «, sending it to another of the roots of the minimal polynomial of «
over Q, f(t), choose a(.

Now define 7 which fixes o and acts on (, sending it into another root of the
minimal polynomial of ¢ over Q(«), choose —(.

cra—al Tia—

¢ ¢ (s —(¢=¢"
In other words, we have 12 Q-automorphisms, which are the combination of
o and T:

ofri s a oz(k

¢

for 0 <k <5andj==l.
al? alt
o
a(?) 0
-
| o

4 5

NOTE: WIP diagram. ag aq

Observe, that T is generated by the combination of o and 7, and it is isomor-
phic to the group of symmetries of order 12, the dihedral group (2.6|) of order
12, D67 ie. I' = Dﬁ.

Let’s find the subgroups of T', and the fixed fields of Q(«, ¢).

We know that I' 2 Dg, and we know from the properties of the dihedral
group that the number of subgroups of Dg will be d(6)+s(6) = 44+12 =16
subgroups.

10



generators order group fixed field notes (check fixed field)
() = (% = (%) 1 id Q(e, ¢)
(o) = (o) 6 Ze Q(¢)
(%) = (o) 3 7, Q(ad,0) o2(0%) = @32 — %S = ad 1 = a?
(0?) 2 Zs Q(e?,¢) o’(a?) = (a®)? = a?¢® = a®
(1) 2 Zo Q(a)
(o) 2 Zo Qo+ af) ol(la+al) =o(latal ) = al+al"I( = al+a
(o?7) 2 Ly Qla+a¢?),Q(a¢) | o*r(a+a?) =o(la+aC?) =al®+a(?¢ =
al?+a
(o3T) 2 Zs Qa + al?) Ara+al®) =cla+al™?) =al®+ a3 =
al3® + o
(oh7) 2 Zs Q(a + ac?),Q(a?) olr(a+al?) =c(a+al™) =alt + a4 =
al* + «
(0°7) 2 Ly Qo+ ac®) 05€(a+04<5) =o(a+a(?) =al®+a(?C =
al’ + «
(o,7) = (6°,7) 6-2=12 D¢ Q
(0%, 1) = (o', 7) 3-2= D3 Q(a?) o2(a?) = a3¢3? = o® and 7(a?) = o3
(03, 7) 2:2=14 Do Q(a?) o3(a?) = a?(?? = o? and 7(a?) = o?
<(727O'T> 3.2 6 Dg Q(a3 + a3<3) 0.2(a3 +a3<3) — 04343 +a3<3§3 — a3<3 +CY3C6 —
043(:3 +
(03, 07T) 2:2=4 ZoxZy Q(a*C?),Q(a®+a%C?) | 03(a? + a?C?) = a?¢*3 4 a?(?3(? = a? + a?(?
and O’T(OL2+052§2) — 0424'24*042(72(2 — 012§2+012
(03, 0%T) 2:2=4 ZoyxZy Q(a%C*),Q(a?+a%C*) | 02¢(a?¢*) = a?C*¢* = a?C? = a%¢* and
0'3(04244) — a2c2»3<4 — a2<4
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