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Abstract

Notes taken while studying Galois Theory, mostly from Ian Stewart’s
book ”Galois Theory” [1].

Usually while reading books and papers I take handwritten notes in a
notebook, this document contains some of them re-written to LaTeX.

The notes are not complete, don’t include all the steps neither all the
proofs.
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1 Recap on the degree of field extensions

(Definitions, theorems, lemmas, corollaries and examples enumeration follows
from Ian Stewart’s book [1]).

Definition 4.10. A simple extension is L : K such that L = K(α) for some
α ∈ L.
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Example 4.11. Beware, L = Q(i,−i,
√
5,−

√
5) = Q(i,

√
5) = Q(i+

√
5).

Definition 5.5. Let L : K, suppose α ∈ L is algebraic over K. Then, the
minimal polynomial of α over K is the unique monic polynomial m over K,
m(t) ∈ K[t], of smallest degree such that m(α) = 0.
eg.: i ∈ C is algebraic over R. The minimal polynomial of i over R is m(t) =
t2 + 1, so that m(i) = 0.

Lemma 5.9. Every polynomial a ∈ K[t] is congruent modulo m to a unique
polynomial of degree < δm.

Proof. Divide a/m with remainder, a = qm+ r, with q, r ∈ K[t] and δr < δm.
Then, a− r = qm, so a ≡ r (mod m).

It remains to prove uniqueness.
Suppose ∃ r ≡ s (mod m), with δr, δs < δm. Then, r − s is divisible by m,

but has smaller degree than m.
Therefore, r − s = 0, so r = s, proving uniqueness.

Lemma 5.14. Let K(α) : K be a simple algebraic extension, let m be the
minimal polynomial of α over K, let δm = n.

Then {1, α, α2, . . . , αn−1} is a basis for K(α) over K. In particular, [K(α) :
K] = n.

Definition 6.2. The degree [L : K] of a field extension L : K is the dimension
of L considered as a vector space over K.

Equivalently, the dimension of L as a vector space over K is the number of
terms in the expression for a general element of L using coefficients from K.

Example 6.3. 1. C elements are 2-dimensional over R (p + qi ∈ C, with
p, q ∈ R), because a basis is {1, i}, hence [C : R] = 2.

2. [Q(i,
√
5) : Q] = 4, since the elements {1,

√
5, i, i

√
5} form a basis for

Q(i,
√
5) over Q.

Theorem 6.4. (Short Tower Law) If K,L,M ⊆ C, and K ⊆ L ⊆ M , then
[M : K] = [M : L] · [L : K].

Proof. Let (xi)i∈I be a basis for L over K, let (yj)j∈J be a basis for M over L.
∀i ∈ I, j ∈ J , we have xi ∈ L, uj ∈M .
Want to show that (xiyj)i∈I,j∈J is a basis for M over K.

i. prove linear independence:
Suppose that ∑

ij

kijxiyj = 0 (kij ∈ K)

rearrange ∑
j

(
∑
i

kijxi︸ ︷︷ ︸
∈L

)yj = 0 (kij ∈ K)

2



Since
∑
i kijxi ∈ L, and the yj ∈ M are linearly independent over L, then∑

i kijxi = 0.
Repeating the argument inside L −→ kij = 0 ∀i ∈ I, j ∈ J .
So the elements xiyj are linearly independent over K.

ii. prove that xiyj span M over K:
Any x ∈ M can be written x =

∑
j λjyj for λj ∈ L, because yj spans M

over L. Similarly, ∀j ∈ J, λj =
∑
i λijxiyj for λij ∈ K.

Putting the pieces together, x =
∑
ij λijxiyj as required.

Lemma 6.6. (Tower Law)
If K0 ⊆ K1 ⊆ . . . ⊆ Kn are subfields of C, then

[Kn : K0] = [Kn : Kn−1] · [Kn−1 : Kn−2] · . . . · [K1 : K0]

Proof. From 6.4.

[...] TODO: pending to add key parts up to Chapter 15.
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2 Tools

This section contains tools that I found useful to solve Galois Theory related
problems, and that don’t appear in Stewart’s book.

2.1 De Moivre’s Theorem and Euler’s formula

Useful for finding all the roots of a polynomial.
Euler’s formula:

eiψ = cosψ + i · sinψ

The n-th roots of a complex number z = x+ iy = r(cosθ+ i · sinθ) are given
by

zk = n
√
r ·

(
cos(

θ + 2kπ

n
) + i · sin(θ + 2kπ

n
)

)
for k = 0, . . . , n− 1.

So, by Euler’s formula:

zk = n
√
r · ei(

θ+2kπ
n )

Usually we will set α = n
√
r and ζ = e

2πi
n , and find the Q-automorphisms

from there (see 3.1 for examples).

2.2 Einsenstein’s Criterion

reference: Stewart’s book
Let f(t) = a0 + a1t+ . . .+ ant

n, suppose there is a prime q such that

1. q ∤ an

2. q|ai for i = 0, . . . , n− 1

3. q2 ∤ a0

Then, f is irreducible over Q.
TODO proof & Gauss lemma.

2.3 Elementary symmetric polynomials

TODO from orange notebook, page 36

2.4 Cyclotomic polynomials

2.4.1 From Elmyn Berlekamp’s ”Algebraic Coding Theory” book

The notes in this section are from the book ”Algebraic Coding Theory” by
Elmyn Berlekamp [3].
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Some times we might find polynomials that have the shape of tn − 1, those
are cyclotomic polynomials, and have some properties that might be useful.

Observe that in a finite field of order q, factoring xq − x gives

xq − x = x(xq−1 − 1)

The factor xq−1 − 1 is a special case of xn − 1: if we assume that the field
contains an element α of order n, then the roots of xn − 1 = 0 are

1, α, α2, α3, . . . , αn−1

and deg(xn − 1) = n, thus xn − 1 has at most n roots in any field, henceforth
the powers of α must include all the n-th roots of unity.

There fore, in any field which contains a primitive n-th root of unity we
have:

Theorem 4.31.

xn − 1 =

n−1∏
i=0

(x− αi) =

n∏
i=1

(x− αi)

If n = k · d, then αk, α2k, α3k, . . . , αdk are all roots of xd − 1 = 0
Every element with order dividing n, must be a power of α, since an element

of order d is a d-th root of unity.
Every power of α has order which divides n, and every field element whose

order divides n is a power of α. This suggests that we partition the powers of
α according to their orders:

xn − 1 =
∏
d,

d|n

∏
β

(x− β)

where at each iteration, β is a field element of order d for each d.
The polynomial whose roots are the field elements of order d is called the

cyclotomic polynomial, denoted by Q(d)(x).

Theorem 4.32.
xn − 1 =

∏
d,

d|n

Q(d)(x)

2.4.2 From Ian Stewart’s “Galois Theory” book

Notes from Ian Stewart’s book [1].
Consider the case n = 12, let ζ = eπi/6 be a primitive 12-th root of unity.

Classify its powers (ζj) according to their minimal power d such that (ζj)d = 1
(ie. when they are primitive d-th roots of unity).

d = 1, 1

d = 2, ζ6
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d = 3, ζ4, ζ8

d = 4, ζ3, ζ9

d = 6, ζ2, ζ10

d = 12, ζ, ζ5, ζ7, ζ11

Observe that we can factorize t12 − 1 by grouping the corresponding zeros:

t12 − 1 =(t− 1)×
(t− ζ6)×
(t− ζ4)(t− ζ8)×
(t− ζ3)(t− ζ9)×
(t− ζ2)(t− ζ10)×
(t− ζ)(t− ζ5)(t− ζ7)(t− ζ11)

which simplifies to

t12 − 1 = (t− 1)(t+ 1)(t2 + t+ 1)(t2 + 1)(t2 − t+ 1)F (t)

where F (t) = (t − ζ)(t − ζ5)(t − ζ7)(t − ζ11) = t4 − t2 + 1 (this last step can
be obtained either by multiplying (t− ζ)(t− ζ5)(t− ζ7)(t− ζ11) together, or by
dividing t12 − 1 by all the other factors).

Let Φd(t) be the factor corresponding to primitive d-th roots of unity, then
we have proved that

t12 − 1 = Φ1Φ2Φ3Φ4Φ6Φ12

Definition 21.5. The polynomial Φd(t) defined by

Φn(t) =
∏

a∈Zn,(a,n)=1

(t− ζa)

is the n-th cyclotomic polynomial over C.

Lemma 21.6. ∀n ∈ N, the polynomial Φn(t) lies in Z[t] and is monic and
irreducible.

Theorem 21.9. 1. The Galois group Γ(Q(ζ) : Q) consists of theQ-automorphisms
ψj defined by

ψj(ζ) = ζj

where 0 ≤ j ≤ n− 1 and j is prime to n.

2. Γ(Q(ζ) : Q)
iso∼= Z∗

n, and is an abelian group.

3. its order is ϕ(n)

4. if n is prime, Z∗
n is cyclic
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2.4.3 Examples

Examples of cyclotomic polynomials:

Φn(x) = xn−1 + xn−2 + . . .+ x2 + x+ 1 =

n−1∑
i=0

xi

Φ2p(x) = xp−1 + . . .+ x2 − x+ 1 =

p−1∑
i=0

(−x)i

Φm(x) = xm/2 + 1, when m is a power of 2

2.5 Lemma 1.42 from J.S.Milne’s book

Lemma from J.S.Milne’s book [2].
Useful for when dealing with xp − 1 with p prime.
Observe that

xp − 1 = (x− 1)(xp−1 + xp−2 + . . .+ 1)

Notice that
Φp(x) = xp−1 + xp−2 + . . .+ 1

is the p-th Cyclotomic polynomial.

Lemma 1.42. If p prime, then xp−1+ . . .+1 is irreducible; hence Q[e2πi/p] has
degree p− 1 over Q.

Proof. Let f(x) = (xp − 1)/(x− 1) = xp−1 + . . .+ 1 then

f(x+ 1) =
(x+ 1)p − 1

x+ 1− 1
=

(x+ 1)p − 1

x
= xp−1 + . . .+ aix

i + . . .+ p

with ai =

(
p

i+ 1

)
.

We know that p|ai for i = 1, . . . , p − 2, therefore f(x + 1) is irreducibe by
Einsenstein’s Criterion.

This implies that f(x) is irreducible.

2.6 Dihedral groups - Groups of symmetries

Source: Wikipedia and [4].
Dihedral groups (Dn) represent the symmetries of a regular n-gon.
Properties:

• are non-abelian (for n > 2), ie. rs ̸= sr

• order 2n

• generated by a rotation r and a reflection s
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• rn = s2 = id, (rs)2 = id

Subgroups of Dn:
• rotation form a cyclic subgroup of order n, denoted as < r >

• for each d such that d|n, ∃ Dd with order 2d

• normal subgroups

– for n odd: Dn and < rd > for every d|n
– for n even: 2 additional normal subgroups

• Klein four-groups: Z2 × Z2, of order 4

Total number of subgroups in Dn: d(n) + s(n), where d(n) is the number of
positive disivors of n, and s(n) is the sum of those divisors.

Example . For D6, we have {1, 2, 3, 6}|6, so d(n) = d(6) = 4, and s(6) = 1+2+
3+6 = 12; henceforth, the total amount of subgroups is d(n)+s(n) = 4+12 = 16.

For n ≥ 3, Dn ⊆ Sn (subgroup of the Symmetry group).

8



3 Exercises

3.1 Galois groups

3.1.1 t6 − 7 ∈ Q

This exercise comes from a combination of exercises 12.4 and 13.7 from [1].

First let’s find the roots. By De Moivre’s Theorem (2.1), tk = 6
√
7 · ei 2πk

6 .

From which we denote α = 6
√
7, and ζ = e

2πi
6 , so that the roots of the

polynomial are {α, αζ, αζ2, αζ3, αζ4, αζ5}, ie. {αζk}50.
Hence the splitting field is Q(α, ζ).
Degree of the extension
In order to find [Q(α, ζ) : Q, we’re going to split it in tow parts. By the

Tower Law (6.6),

[Q(α, ζ) : Q] = [Q(α, ζ) : Q(α)] · [Q(α) : Q]

To find each degree, we will find the minimal polynomial of the adjoined
term over the base field of the extension:

i. minimal polynomial of α over Q
By Einsenstein’s Criterion (2.2), with q = 7 we have that q ∤ 1, 7|−7, 0, 0, . . .,
and 72 ∤ −7, hence f(t) is irreducibe over Q, thus is the minimal polynomial

mi(t) = f(t) = t6 − 7

which has roots {αζk}50.
ii. minimal polynomial of ζ over Q(α)

Since ζ is the primitive 6th root of unity, we know that the minimal poly-
nomial will be the 6th cyclotomic polynomial (2.4):

mii(t) = Φ6(t) = t2 − t+ 1

which has roots ζ,−ζ.
Since Q(α) ⊆ R, and the roots of Φ6(t) = t2− t+1 are in C, Φ6(t) remains
irreducible over Q(α).

Therefore, by the tower of law,

[Q(α, ζ) : Q] = degΦ6(t) · deg f(t) = 2 · 6 = 12

and by the Fundamental Theorem of Galois Theory, we know that

|Γ(Q(α, ζ) : Q)| = [Q(α, ζ) : Q] = 12

which tells us that there exist 12 Q-automorphisms of the Galois group.
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Let’s find the 12 Q-automorphisms. Start by defining σ which fixes ζ and
acts on α, sending it to another of the roots of the minimal polynomial of α
over Q, f(t), choose αζ.

Now define τ which fixes α and acts on ζ, sending it into another root of the
minimal polynomial of ζ over Q(α), choose −ζ.

σ : α 7→ αζ

ζ 7→ ζ

τ : α 7→ α

ζ 7→ −ζ = ζ−1

In other words, we have 12 Q-automorphisms, which are the combination of
σ and τ :

σkτ j : α 7→ αζk

ζ 7→ ζj

for 0 ≤ k ≤ 5 and j = ±1.

NOTE: WIP diagram.

αζ0

αζ1αζ2

αζ3

αζ4 αζ5

τ

0

σ

0

σ

0

σ

0

σ

0

σ

0

σ

Observe, that Γ is generated by the combination of σ and τ , and it is isomor-
phic to the group of symmetries of order 12, the dihedral group (2.6) of order
12, D6, ie. Γ ∼= D6.

Let’s find the subgroups of Γ, and the fixed fields of Q(α, ζ).
We know that Γ ∼= D6, and we know from the properties of the dihedral

group (2.6) that the number of subgroups of D6 will be d(6)+s(6) = 4+12 = 16
subgroups.
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generators order group fixed field notes (check fixed field)
⟨⟩ = ⟨σ6⟩ = ⟨τ2⟩ 1 id Q(α, ζ)

⟨σ⟩ = ⟨σ5⟩ 6 Z6 Q(ζ)
⟨σ2⟩ = ⟨σ4⟩ 3 Z3 Q(α3, ζ) σ2(α3) = α3ζ3·2 = α3ζ6 = α3 · 1 = α3

⟨σ3⟩ 2 Z2 Q(α2, ζ) σ3(α2) = (αζ3)2 = α2ζ6 = α2

⟨τ⟩ 2 Z2 Q(α)
⟨στ⟩ 2 Z2 Q(α+ αζ) σζ(α+αζ) = σ(α+αζ−1) = αζ+αζ−1ζ = αζ+α
⟨σ2τ⟩ 2 Z2 Q(α+ αζ2),Q(αζ) σ2τ(α + αζ2) = σ(α + αζ−2) = αζ2 + αζ−2ζ2 =

αζ2 + α
⟨σ3τ⟩ 2 Z2 Q(α+ αζ3) σ3τ(α + αζ3) = σ(α + αζ−3) = αζ3 + αζ−3ζ3 =

αζ3 + α
⟨σ4τ⟩ 2 Z2 Q(α+ αζ4),Q(αζ2) σ4τ(α + αζ4) = σ(α + αζ−4) = αζ4 + αζ−4ζ4 =

αζ4 + α
⟨σ5τ⟩ 2 Z2 Q(α+ αζ5) σ5τ(α + αζ5) = σ(α + αζ−5) = αζ5 + αζ−5ζ5 =

αζ5 + α
⟨σ, τ⟩ = ⟨σ5, τ⟩ 6 · 2 = 12 D6 Q
⟨σ2, τ⟩ = ⟨σ4, τ⟩ 3 · 2 = 6 D3 Q(α3) σ2(α3) = α3ζ3·2 = α3 and τ(α3) = α3

⟨σ3, τ⟩ 2 · 2 = 4 D2 Q(α2) σ3(α2) = α2ζ2·2 = α2 and τ(α2) = α2

⟨σ2, στ⟩ 3 · 2 = 6 D3 Q(α3 + α3ζ3) σ2(α3 +α3ζ3) = α3ζ3 +α3ζ3ζ3 = α3ζ3 +α3ζ6 =
α3ζ3 + α3

⟨σ3, στ⟩ 2 · 2 = 4 Z2 × Z2 Q(α2ζ2),Q(α2 + α2ζ2) σ3(α2 + α2ζ2) = α2ζ2·3 + α2ζ2·3ζ2 = α2 + α2ζ2

and στ(α2+α2ζ2) = α2ζ2+α2ζ−2ζ2 = α2ζ2+α2

⟨σ3, σ2τ⟩ 2 · 2 = 4 Z2 × Z2 Q(α2ζ4),Q(α2 + α2ζ4) σ2ζ(α2ζ4) = α2ζ2ζ−4 = α2ζ−2 = α2ζ4 and
σ3(α2ζ4) = α2ζ2·3ζ4 = α2ζ4
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