Notes on Nova

arnaucube

February 2023

Abstract

Notes taken while reading Nova [1] paper.

Usually while reading papers I take handwritten notes, this document contains some of them re-written to LaTeX.

The notes are not complete, don't include all the steps neither all the proofs.

Contents

1	NIFS	1
	1.1 R1CS modification	1
	1.2 Folding scheme for committed relaxed R1CS	2
_	Nova 2.1 IVC proofs	3

1 NIFS

1.1 R1CS modification

Want: merge 2 instances of R1CS with the same matrices into a single one. Each instance has $z_i = (W_i, x_i)$ (public witness, private values resp.).

traditional R1CS Merged instance with $z = z_1 + rz_2$, for rand r. But, since R1CS is not linear \longrightarrow can not apply.

eg

$$Az \circ Bz = A(z_1 + rz_2) \circ B(z_1 + rz_2)$$

= $Az_1 \circ Bz_1 + r(Az_1 \circ Bz_2 + Az_2 \circ Bz_1) + r^2(Az_2 \circ Bz_2)$
 $\neq Cz$

- \longrightarrow introduce error vector $E \in \mathbb{F}^m$, which absorbs the cross-terms generated by folding.
- \longrightarrow introduce scalar u, which absorbs an extra factor of r in $Cz_1 + r^2Cz_2$ and in $z = (W, x, 1 + r \cdot 1)$.

Relaxed R1CS

$$u = u_1 + ru_2$$

 $E = E_1 + r(Az_1 \circ Bz_2 + Az_2 \circ Bz_1 - u_1Cz_2 - u_2Cz_1) + r^2E_2$
 $Az \circ Bz = uCz + E$, with $z = (W, x, u)$

where R1CS set E = 0, u = 1.

$$Az \circ Bz = Az_1 \circ Bz_1 + r(Az_1 \circ Bz_2 + Az_2 \circ Bz_1) + r^2(Az_2 \circ Bz_2)$$

$$= (u_1Cz_1 + E_1) + r(Az_1 \circ Bz_2 + Az_2 \circ Bz_1) + r^2(u_2Cz_2 + E_2)$$

$$= u_1Cz_1 + \underbrace{E_1 + r(Az_1 \circ Bz_2 + Az_2 \circ Bz_1) + r^2E_2}_{\text{E}} + r^1u_2Cz_2$$

$$= u_1Cz_1 + r^2u_2Cz_2 + E$$

$$= (u_1 + ru_2) \cdot C \cdot (z_1 + rz_2) + E$$

$$= uCz + E$$

For R1CS matrices (A, B, C), the folded witness W is a satisfying witness for the folded instance (E, u, x).

Problem: not non-trivial, and not zero-knowledge. Solution: use polynomial commitment with hiding, binding, succintness and additively homomorphic properties.

Committed Relaxed R1CS Instance for a Committed Relaxed R1CS $(\overline{E}, u, \overline{W}, x)$, satisfyied by a witness (E, r_E, W, r_W) such that

$$\begin{split} \overline{E} &= Com(E, r_E) \\ \overline{W} &= Com(E, r_W) \\ Az \circ Bz &= uCz + E, \quad where \ z = (W, x, u) \end{split}$$

1.2 Folding scheme for committed relaxed R1CS

V and P take two committed relaxed R1CS instances

$$\varphi_1 = (\overline{E}_1, u_1, \overline{W}_1, x_1)$$

$$\varphi_2 = (\overline{E}_2, u_2, \overline{W}_2, x_2)$$

P additionally takes witnesses to both instances

$$(E_1, r_{E_1}, W_1, r_{W_1})$$

 $(E_2, r_{E_2}, W_2, r_{W_2})$

Let
$$Z_1 = (W_1, x_1, u_1)$$
 and $Z_2 = (W_2, x_2, u_2)$.

- 1. P send $\overline{T} = Com(T, r_T)$, where $T = Az_1 \circ Bz_1 + Az_2 \circ Bz_2 u_1Cz_2 u_2Cz_2$ and rand $r_T \in \mathbb{F}$
- 2. V sample random challenge $r \in \mathbb{F}$
- 3. V, P output the folded instance $\varphi = (\overline{E}, u, \overline{W}, x)$

$$\overline{E} = \overline{E}_1 + r\overline{T} + r^2\overline{E}_2$$

$$u = u_1 + ru_2$$

$$\overline{W} = \overline{W}_1 + r\overline{W}_2$$

$$x = x_1 + rx_2$$

4. P outputs the folded witness (E, r_E, W, r_W)

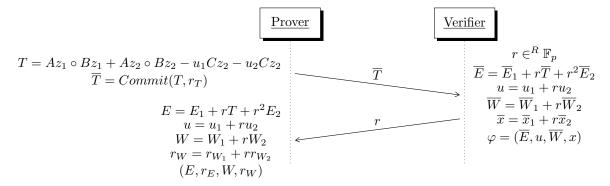
$$E = E_1 + rT + r^2 E_2$$

$$r_E = r_{E_1} + r \cdot r_T + r^2 r_{E_2}$$

$$W = W_1 + rW_2$$

$$r_W = r_{W_1} + r \cdot r_{W_2}$$

P will proof that knows the valid witness (E, r_E, W, r_W) for the committed relaxed R1CS without revealing its value.



The previous protocol achieves non-interactivity via Fiat-Shamir transform, obtaining a Non-Interactive Folding Scheme for Committed Relaxed R1CS.

Note: the paper later uses u_i , U_i for the two inputed φ_1 , φ_2 , and later u_{i+1} for the outputed φ . Also, the paper later uses w, W to refer to the witnesses of two folded instances (eg. $w = (E, r_E, W, r_W)$).

2 Nova

IVC (Incremental Verifiable Computation) scheme for a non-interactive folding scheme.

2.1 IVC proofs

Allows prover to show $z_n = F^{(n)}(z_0)$, for some count n, initial input z_0 , and output z_n .

F: program function (polynomial-time computable)

F': augmented function, invokes F and additionally performs fold-related stuff.

Two committed relaxed R1CS instances:

 U_i : represents the correct execution of invocations $1, \ldots, i-1$ of F'

 u_i : represents the correct execution of invocations i of F'

Simplified version of F' for intuition F' performs two tasks:

- i. execute a step of the incremental computation: instance u_i contains z_i , used to output $z_{i+1} = F(z_i)$
- ii. invokes the verifier of the non-interactive folding scheme to fold the task of checking u_i and U_i into the task of checking a single instance U_{i+1}

F' proves that:

1.
$$\exists ((i, z_0, z_i, \mathsf{u}_i, \mathsf{U}_i), \mathsf{U}_{i+1}, \overline{T}) \text{ such that }$$

i.
$$u_i.x = H(vk, i, z_0, z_i, U_i)$$

ii.
$$h_{i+1} = H(vk, i+1, z_0, F(z_i), \mathsf{U}_{i+1})$$

iii.
$$U_{i+1} = NIFS.V(vk, U_i, u_i, \overline{T})$$

2. F' outputs h_{i+1}

F' is described as follows:

$$F'(vk, \mathsf{U}_i, \mathsf{u}_i, (i, z_0, z_i), w_i, \overline{T}) \to x$$
:
if $i = 0$, output $H(vk, 1, z_0, F(z_0, w_i), \mathsf{u}_\perp)$
otherwise

- 1. check $u_i.x = H(vk, i, z_0, z_i, U_i)$
- 2. check $(\mathbf{u}_i.\overline{E},\mathbf{u}_i.u)=(\mathbf{u}_{\perp}.\overline{E},1)$
- 3. compute $U_{i+1} \leftarrow NIFS.V(vk, U, u, \overline{T})$
- 4. output $H(vk, i + 1, z_0, F(z_i, w_i), \bigcup_{i+1})$

IVC Proof iteration i + 1: prover runs F' and computes u_{i+1} , U_{i+1} , with corresponding witnesses w_{i+1} , W_{i+1} . (u_{i+1}, U_{i+1}) attest correctness of i + 1 invocations of F', the IVC proof is $\pi_{i+1} = ((U_{i+1}, W_{i+1}), (u_{i+1}, w_{i+1}))$.

$$\begin{aligned} & \underbrace{P(pk,(i,z_0,z_i),\mathsf{w}_i,\pi_i) \rightarrow \pi_{i+1}}_{\text{Parse } \pi_i = ((\mathsf{U}_i,\mathsf{W}_i),(\mathsf{u}_i,\mathsf{w}_i)), \text{ then} \end{aligned}$$

- 1. if i = 0: $(\mathsf{U}_{i+1}, \mathsf{W}_{i+1}, \overline{T}) \leftarrow (\mathsf{u}_{\perp}, \mathsf{w}_{\perp}, \mathsf{u}_{\perp}.\overline{E})$ otherwise: $(\mathsf{U}_{i+1}, \mathsf{W}_{i+1}, \overline{T}) \leftarrow NIFS.P(pk, (\mathsf{U}_i, \mathsf{W}_i), (\mathsf{u}_i, \mathsf{w}_i))$
- 2. compute $(\mathsf{u}_{i+1}, \mathsf{w}_{i+1}) \leftarrow trace(F', (vk, \mathsf{U}_i, \mathsf{u}_i, (i, z_0, z_i), \mathsf{w}_i, \overline{T}))$
- 3. output $\pi_{i+1} \leftarrow ((\mathsf{U}_{i+1}, \mathsf{W}_{i+1}), (\mathsf{u}_{i+1}, \mathsf{w}_{i+1}))$

$$V(vk,(i,z_0,z_i),\pi_i) \to \{0,1\}$$
: if $i=0$: check that $z_i=z_0$ otherwise, parse $\pi_i=((\mathsf{U}_i,\mathsf{W}_i),(\mathsf{u}_i,\mathsf{w}_i))$, then

- 1. check $u_i.x = H(vk, i, z_0, z_i, U_i)$
- 2. check $(\mathbf{u}_i.\overline{E},\mathbf{u}_i.u)=(\mathbf{u}_{\perp}.\overline{E},1)$
- 3. check that W_i , w_i are satisfying witnesses to U_i , u_i respectively

A zkSNARK of a Valid IVC Proof

References

[1] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-knowledge arguments from folding schemes. Cryptology ePrint Archive, Paper 2021/370, 2021. https://eprint.iacr.org/2021/370.