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Abstract

Notes taken while studying Galois Theory, mostly from Ian Stewart’s
book ”Galois Theory” [IJ.

Usually while reading books and papers I take handwritten notes in a
notebook, this document contains some of them re-written to LaTeX.

The notes are not complete, don’t include all the steps neither all the

proofs.
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1 Galois Theory notes

1.1 Chapters 4-6

(Definitions, theorems, lemmas, corollaries and examples enumeration follows
from Tan Stewart’s book [I]).

Definition 4.10. A simple extension is L : K such that L = K(«) for some
ac L.

Example 4.11. Beware, L = Q(i, —i, /5, —v/5) = Q(i,v5) = Q(i + V/5).

Definition 5.5. Let L : K, suppose a € L is algebraic over K. Then, the
minimal polynomial of a over K is the unique monic polynomial m over K,
m(t) € K|t], of smallest degree such that m(a) = 0.

eg.: i € C is algebraic over R. The minimal polynomial of i over R is m(t) =
t? 4+ 1, so that m(i) = 0.

Lemma 5.9. Every polynomial a € K[t] is congruent modulo m to a unique
polynomial of degree < dm.

Proof. Divide a/m with remainder, a = gm + r, with ¢,r € K[t] and dr < dm.
Then, a — r = gm, so a = r (mod m).

It remains to prove uniqueness.

Suppose 3 r = s (mod m), with dr,ds < dm. Then, r — s is divisible by m,
but has smaller degree than m.

Therefore, r — s = 0, so r = s, proving uniqueness. O

Lemma 5.14. Let K(«) : K be a simple algebraic extension, let m be the
minimal polynomial of o over K, let dm = n.

Then {1,a,a?,...,a" 1} is a basis for K(a) over K. In particular, [K () :
K] =n.

Definition 6.2. The degree [L : K] of a field extension L : K is the dimension
of L considered as a vector space over K.

Equivalently, the dimension of L as a vector space over K is the number of
terms in the expression for a general element of L using coeflicients from K.

Example 6.3. 1. C elements are 2-dimensional over R (p + ¢i € C, with
p,q € R), because a basis is {1,i}, hence [C : R] = 2.

2. [Q(i,v/5) : Q] = 4, since the elements {1,v/5,i,iv/5} form a basis for
Q(i,/5) over Q.
Theorem 6.4. (Short Tower Law) If K,L,M C C, and K C L C M, then
[M:K|=[M:L]-[L:K].

Proof. Let (x;)icr be a basis for L over K, let (y;);jes be a basis for M over L.
Viel,je€J, wehave x; € Lyu; € M.
Want to show that (z;y;)icr jes is a basis for M over K.



i. prove linear independence:
Suppose that
> kiriy; =0 (ki € K)

ij

Z(Z kijzi)y; =0 (kij € K)
T
€L

rearrange

Since ), kijz; € L, and the y; € M are linearly independent over L, then
Repeating the argument inside L — k;; =0 Vie I, j € J.
So the elements z;; are linearly independent over K.

ii. prove that x;y; span M over K:
Any x € M can be written x = Zj Ajy; for A; € L, because y; spans M
over L. Similarly, Vj € J, X\j = >, Aijz;y; for \j; € K.
Putting the pieces together, x = Zu Aijx;y; as required.

O
Lemma 6.6. (Tower Law)
If Ko C Ky C...C K, are subfields of C, then
Ky Kol =[Kp: Kn1] [Kn—1: Kn_2] ... - [K1: Ko
Proof. From [6.4] O

[...] TODO: pending to add key parts up to Chapter 15.

1.2 Detour: Isomorphism Theorems

Theorem . (First Isomorphism Theorem)

Y

[ H
If ¢ : G — H a group homomorphism, then ker(¢) < G.
Let ¢ : G — G/ker(1)) be the canonical homomorphism.
Then 3 unique isomorphism 7 : G/ker(y)) — (G) such
that ¢ = 1. ¢ n
<~ ie. G/ker(v) 2 ¢(G).

G/ Ker(1)
Proof. (proof from Thomas W. Judson book ”Abstract Algebra” [5])

Let K = ker(). Since

n:G/K — ¢(G)



let
n:gK — Y(g)

ie. 7(gK) = 1(g).
i. show that n is a well defined map:
if g1 K = g2 K, then for some k € K, g1k = go, so
(g1 K) = (g1) = ¥(g91)¢(k) = P(g1k) = ¥(g2) = n(g2k)
Thus, 1 does not depend on the choice of coset representatives, and the
map 7 : G/ker(¢¥) — ¥(G) is uniquely defined since 1) = n¢.

ii. show that 7 is a homomorphism:

Observe:

(91K g2K) = 1(g192K) = ¥(g192) = ¥(g1)¥(92) = (g1 K)n(g92K)
= so 7 is a homomorphism.
iii. show that n is an isomorphism:
Since each element of H = 1(G) has at least a preimage, then 7 is surjective
(onto P(G)).
Show that it is also injective (onet-to-one):
Suppose 2 different preimatges lead to the same image in (G), ie. n(¢1 K) =
n(g2K)
then,
¥(g1) = ¥(92)

which implies (g7 ' g2) = e, ie. g7 'go € ker(z), hence
91 'K = K
n K =g K

so 7 is injective.

Since 7 is injective and surjective => 7 is a bijective homomorphism,
ie. n is an isomorphism. O

Theorem . (Second Isomorphism Theorem) Let H C G, N <« G. Then
i. HNCG

ii. HNN<H
H ~ HN
111. AN — N

Proof. (proof from Thomas W. Judson book ”Abstract Algebra” [5])



i.

ii.

iii.

show HN C G-
Note that HN = {hn: h € H,n € N}. Let hyny, hanas € HN.

Since N normal — h;lnlhg € N, so

(hlnl)(hgnz) = hlhg(hglnlhg) € HN

[Recall: since N <G, gN = Ng Vg € G = gn = n/g for some n’ € N.]
To see that (hn)~! € HN:
since (hn)™! =n~th=t = b= (hn=th~1), thus (hn)~t € HN.
Thus HN C G.
In fact,
HN = | J hN
heH

(TODO: diagram)

show that HN N < H:

Let he H ne HNN (recal: HNN C H).
Then h~'nh € H +— since h™!,n,h € H.
Since N <G, h™'nh € N.

Therefore, h"'nh€e HNN = HNN<H

H ~ HN.
show that 77y = 5

Define a map

HN
H — —
¢ N

by ¢ :h — hN

¢ is surjective (onto), since any coset hnN = hN is the image of h € H, ie.
¢(h)

¢ is a homomorphism, since
é(hh') = hh/N = hNIW N = ¢(h)p(h')

By the First Isomorphism Theorem ,

HN _ H
N ker(¢)

and since

ker(¢)={he€e H:he N}
then ker(¢p)=HNN



so then,

HN H H
N ¢(H) ker(¢) HNN
thus
HN , H
N HNN

Theorem . (Third Isomorphism Theorem)
Let HC K and K <G, H<«G.
Then % < % and
G/H G
K/H K

Proof. (proof from Dummit and Foote book “Abstract Algebra” [6])

Easy to see that % N %

Define

G
K
by ¢ :gH — gK

w:%—>

To show that i is well defined:

suppose g1 H = go H, then g; = goh for some h € H.

Since H C K = h € K, hence 1 K = g2 K,

ie. ¥(g1H) = ¥(g2H), which shows that v is well defined.
Since g € G may be chosen arbitrarily in G, 1) is a surjective homomorphism.
Finally,

ker(y) = (gH € 7 | (gH) = 1K)
={9H€%|9K=1K}

G
:{gHeﬁlgeK}

K
H
By the First Isomorphism Theorem (),
(4
G G
H K
10) n




So, by
G/H G
""K/H K
since 7 is bijective (we know it by the First Isomorphism Theorem), 7 it is the
isomorphism:
G/H G
K/H K

1.3 Chapter 14



2 Tools

This section contains tools that I found useful to solve Galois Theory related
problems, and that don’t appear in Stewart’s book.

2.1 De Moivre’s Theorem and Euler’s formula

Useful for finding all the roots of a polynomial.
Euler’s formula: .
e = costh + i - sina)

The n-th roots of a complex number z = x + iy = r(cosh +1i - sinf) are given
by

0+ 2k 0+ 2k
2= R/r- (cos( + 7T)—l—i~sin( + 7T))
for k=0,...,n—1.
So, by Euler’s formula:

27i

» , and find the Q-automorphisms

Usually we will set « = {/r and ( = e
from there (see for examples).

2.2 Einsenstein’s Criterion

reference: Stewart’s book
Let f(t) = ag + a1t + ...+ a,t™, suppose there is a prime ¢ such that

L gta,
2. gqla; fori=0,...,n—1
3. ¢*fao
Then, f is irreducible over Q.
TODO proof € Gauss lemma.
2.3 Elementary symmetric polynomials

TODO from orange notebook, page 36

2.4 Cyclotomic polynomials
2.4.1 From Elmyn Berlekamp’s ” Algebraic Coding Theory” book

The notes in this section are from the book ”Algebraic Coding Theory” by
Elmyn Berlekamp [3].



Some times we might find polynomials that have the shape of " — 1, those
are cyclotomic polynomials, and have some properties that might be useful.
Observe that in a finite field of order ¢, factoring z? — x gives

2! -z =z(xit - 1)
The factor z9~! — 1 is a special case of ™ — 1: if we assume that the field
contains an element « of order n, then the roots of ™ — 1 = 0 are

La,o?,a%, ..., 0"t
and deg(z™ — 1) = n, thus 2™ — 1 has at most n roots in any field, henceforth
the powers of @ must include all the n-th roots of unity.

There fore, in any field which contains a primitive n-th root of unity we
have:

Theorem 4.31.

n—1 n
" —1= H(x—o/'):H(xfozi)
i=0 i=1
If n =k-d, then o, a?*, 0%, ..., a% are all roots of ¥ —1 =0

Every element with order dividing n, must be a power of «, since an element
of order d is a d-th root of unity.

Every power of a has order which divides n, and every field element whose
order divides n is a power of . This suggests that we partition the powers of
« according to their orders:

2 —1=1][[=-8
a, B

dln

where at each iteration, 3 is a field element of order d for each d.
The polynomial whose roots are the field elements of order d is called the
cyclotomic polynomial, denoted by QD ().

Theorem 4.32.
v —1= [ ()
d

dl;’L

2.4.2 From Ian Stewart’s “Galois Theory” book

Notes from Tan Stewart’s book [1].

Consider the case n = 12, let ¢ = e™/6 be a primitive 12-th root of unity.
Classify its powers (¢7) according to their minimal power d such that (¢7)¢ =1
(ie. when they are primitive d-th roots of unity).

d=1, 1
d=2, (¢



d=3, (4¢3
d=4, 3,09
d=6, (2,C10
d=12, ¢, ¢5,¢7, ¢l
Observe that we can factorize 12 — 1 by grouping the corresponding zeros:
12 _1=(t-1)x
(t—¢%)x
(t = ¢t = ¢®)x
(t— )t — )
(t =)t = ¢1)x
(t= Q=)= ¢t —¢M)

which simplifies to
R A=t-D)t+D)E+t+D)(E+ 1) -t +1)F(t)

where F(t) = (t — )(t — ®)(t — ¢7)(t — ¢) = t* — ¢? + 1 (this last step can
be obtained either by multiplying (t — ¢)(t — ¢?)(t — ¢7)(t — (') together, or by
dividing t'2 — 1 by all the other factors).
Let ®4(t) be the factor corresponding to primitive d-th roots of unity, then
we have proved that
2 -1 = 010,30, D P10

Definition 21.5. The polynomial ®4(t) defined by
MOEE | ()
a€Ln,(a,n)=1
is the n-th cyclotomic polynomial over C.

Lemma 21.6. Vn € N, the polynomial ®,(¢) lies in Z[t] and is monic and
irreducible.

Theorem 21.9. 1. The Galois group I'(Q(¢) : Q) consists of the Q-automorphisms
1); defined by

¥;(¢) = ¢
where 0 < j <n — 1 and j is prime to n.
2. T(Q(¢) : Q) E Z?, and is an abelian group.
3. its order is ¢(n)

4. if n is prime, Z;, is cyclic

10



2.4.3 Examples

Examples of cyclotomic polynomials:

n—1
Pp(r)=a" 42" 2+ 4ttt l= Zmi
i=0
p—1
Pop(x) =aP t+ .+t —r+ 1= Z:(—ac)Z
=0

B, (x) = ™2 4+ 1, when m is a power of 2

2.5 Lemma 1.42 from J.S.Milne’s book

Lemma from J.S.Milne’s book [2].
Useful for when dealing with 2P — 1 with p prime.
Observe that

P —1=(z— 1)@ +aP 24 ... +1)

Notice that
by(z)=aP 4P 2+ 41

is the p-th Cyclotomic polynomial.

Lemma 1.42. If p prime, then zP~' 4 ... 41 is irreducible; hence Q[e*>"*/?] has
degree p — 1 over Q.

Proof. Let f(z) = (2P —1)/(x —1) =a2P~1 + ... + 1 then

r+1)P -1 (z+1)P -1 _ 4
(x+1)_1 _ x) =P 4. 4aat 4. 4D

fla+1) =

P
with a; = (l + l).
We know that pla; for i = 1,...,p — 2, therefore f(z + 1) is irreducibe by
Einsenstein’s Criterion.
This implies that f(x) is irreducible. O
2.6 Dihedral groups - Groups of symmetries

Source: Wikipedia and [4].
Dihedral groups (D,,) represent the symmetries of a regular n-gon.
Properties:

e are non-abelian (for n > 2), ie. rs # sr
e order 2n

e generated by a rotation r and a reflection s

11



o r"=s2=1id, (rs)’=id
Subgroups of D,,:

e rotation form a cyclic subgroup of order n, denoted as < r >

for each d such that d|n, 3 D4 with order 2d

normal subgroups

— for n odd: D,, and < r? > for every d|n

— for n even: 2 additional normal subgroups

Klein four-groups: Zs X Zs, of order 4

Total number of subgroups in D,,: d(n) + s(n), where d(n) is the number of
positive disivors of n, and s(n) is the sum of those divisors.

Example . For Dg, we have {1,2,3,6}|6, so d(n) = d(6) =4, and s(6) = 1+2+
3+6 = 12; henceforth, the total amount of subgroups is d(n)+s(n) = 4+12 = 16.

Forn >3, D, CS, (subgroup of the Symmetry group).

12



3

Exercises

3.1 Galois groups
3.1.1 5—-7€Q

This exercise comes from a combination of exercises 12.4 and 13.7 from [IJ.

First let’s find the roots. By De Moivre’s Theorem lb ty = T e 5",
From which we denote o« = ¥/7, and ¢ = e%, so that the roots of the

polynomial are {a, a(, a¢?, a¢®, al*, al®}, ie. {aC*}3.

Hence the splitting field is Q(«, ¢).
Degree of the extension
In order to find [Q(«, () : Q, we're going to split it in tow parts. By the

Tower Law ,

[Q(a,¢) : Q] = [Q(e, ) : Q)] - [Q(e) = Q)

To find each degree, we will find the minimal polynomial of the adjoined

term over the base field of the extension:

i.

i.

minimal polynomial of o over Q
By Einsenstein’s Criterion (2.2)), with ¢ = 7 we have that ¢ 1 1, 7|—7,0,0, .. .,
and 721 —7, hence f(t) is irreducibe over Q, thus is the minimal polynomial

which has roots {a¢*}3.

minimal polynomial of ¢ over Q(«)
Since ( is the primitive 6th root of unity, we know that the minimal poly-
nomial will be the 6th cyclotomic polynomial (2.4):

mi(t) = ®g(t) =t —t 41

which has roots ¢, —C.

Since Q(a) C R, and the roots of ®¢(t) =t? —t+ 1 are in C, ®g(t) remains
irreducible over Q(«).

Therefore, by the tower of law,

[Q(ar,¢) : Q] = deg P (t) - deg f(t) =2-6 = 12

and by the Fundamental Theorem of Galois Theory, we know that

IT(Q(e,¢) : Q)] = [Q(ar,¢) : Q] = 12

which tells us that there exist 12 Q-automorphisms of the Galois group.

13



Let’s find the 12 Q-automorphisms. Start by defining o which fixes ¢ and
acts on «, sending it to another of the roots of the minimal polynomial of «
over Q, f(t), choose a(.

Now define 7 which fixes o and acts on (, sending it into another root of the
minimal polynomial of ¢ over Q(«), choose —(.

cra—al Tia—

¢ ¢ (s —(¢=¢"
In other words, we have 12 Q-automorphisms, which are the combination of
o and T:

ofri s a oz(k

¢

for 0 <k <5andj==l.
al? alt
o
a(?) 0
-
| o

4 5

NOTE: WIP diagram. ag aq

Observe, that T is generated by the combination of o and 7, and it is isomor-
phic to the group of symmetries of order 12, the dihedral group (2.6|) of order
12, D67 ie. I' = Dﬁ.

Let’s find the subgroups of T', and the fixed fields of Q(«, ¢).

We know that I' 2 Dg, and we know from the properties of the dihedral
group that the number of subgroups of Dg will be d(6)+s(6) = 44+12 =16
subgroups.

14



generators order group fixed field notes (check fixed field)
() = (%) = (%) 1 id Q(a,¢)
(o) = (o) 6 Zg Q(¢)
(0?) = (%) 3 Zs Q(a?,¢) o2(0%) = 33?2 = a3 = a? 1= a?
(0%) 2 Zs Q(e?,¢) o’(a?) = (a®)? = a?¢® = a®
(1) 2 Zs Q(a)
(o7) 2 Zey Qe + () o¢(atac) =olataC!) = aC+a( ¢ = al+a
(o7) 2 Lo Qo+ ac?),Q(aC) | o*r(a+a?) =o(a+a(™?) =a® +a(?(* =
al?+a
(o%7) 2 Z, Qo+ ac?) r(a+ac®) = o(a+al?) = al® + a¢ =3¢ =
al3® + o
(o%T) 2 Z Qe+ ac*),Q(a¢?) | o'r(a+al!) =c(a+a¢™) =a¢! +a("(! =
al* + «
(o0°7) 2 Zo Q(ar + a¢?) 052(@+@C5) =o(at+a¢®) =al®+a(¢C =
al’ + «
(o,7) = (6°,7) 6-2=12 Dg Q
(0%, 1) = (o', 7) 3-2= D3 Q(a?) o2(a?) = a3¢3? = o® and 7(a?) = o3
(o3, 7) 2-2=4 Do Q(a?) o3(a?) = a?¢*? = a? and 7(a?) = o?
<(727O'T> 3.2=6 Dg Q(OZ3+OZ3C3) 02(a3+a3<3) :a343+a3<3g3:a3<3+a3c6:
043(:3 +
<O’3,0'7'> 2.2 =4 ZQ X Z2 Q(O&QCQ),Q(OZQ + OZQCQ) 0.3(a2 + a2<2) — O[2<2~3 + a2<2<3<2 — 012 + a2<2
and O’T(OL2+052§2) — 0424'24*042(72(2 — 012§2+012
(03, 0%T) 2:2=4 ZoyxZy Q(a%C*),Q(a?+a%C*) | 02¢(a?¢*) = a?C*¢* = a?C? = a%¢* and
0'3(04244) — a2c2»3<4 — a2<4
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