\documentclass{article} \usepackage[utf8]{inputenc} \usepackage{amsfonts} \usepackage{amsthm} \usepackage{amsmath} \usepackage{enumerate} \usepackage{hyperref} \usepackage{amssymb} \usepackage{tikz} % diagram \begin{filecontents}[overwrite]{galois-theory-notes.bib} @misc{ianstewart, author = {Ian Stewart}, title = {{Galois Theory, Third Edition}}, year = {2004} } @misc{milneFT, author={Milne, James S.}, title={Fields and Galois Theory (v5.10)}, year={2022}, note={Available at \url{https://jmilne.org/math/} }, pages={144} } @misc{berlekamp, author={Elmyn Berlekamp}, title={Algebraic Coding Theory}, year={1984}, note={Revised Edition from 1984} } @misc{dihedral, author = {Gaurab Bardhan and Palash Nath and Himangshu Chakraborty}, title = {Subgroups and normal subgroups of dihedral group up to isomorphism}, year = {2010}, note = {\url{https://scipp.ucsc.edu/~haber/ph251/Dn_subgroups.pdf}}, url = {https://scipp.ucsc.edu/~haber/ph251/Dn_subgroups.pdf} } @misc{judson, author={Thomas W. Judson}, title={Abstract Algebra: theory and applications}, year={1994}, note={Available at \url{http://abstract.ups.edu/download.html} }, pages={438} } @misc{dummitfoote, author={David S. Dummit and Richard M. Foote}, title={Abstract Algebra (Third Edition)}, year={2004}, pages={945} } \end{filecontents} \nocite{*} \theoremstyle{definition} \newtheorem{innerdefn}{Definition} \newenvironment{defn}[1] {\renewcommand\theinnerdefn{#1}\innerdefn} {\endinnerdefn} \newtheorem{innerthm}{Theorem} \newenvironment{thm}[1] {\renewcommand\theinnerthm{#1}\innerthm} {\endinnerthm} \newtheorem{innerlemma}{Lemma} \newenvironment{lemma}[1] {\renewcommand\theinnerlemma{#1}\innerlemma} {\endinnerlemma} \newtheorem{innerprop}{Proposition} \newenvironment{prop}[1] {\renewcommand\theinnerprop{#1}\innerprop} {\endinnerprop} \newtheorem{innercor}{Corollary} \newenvironment{cor}[1] {\renewcommand\theinnercor{#1}\innercor} {\endinnercor} \newtheorem{innereg}{Example} \newenvironment{eg}[1] {\renewcommand\theinnereg{#1}\innereg} {\endinnereg} \newtheorem{innerex}{Exercise} \newenvironment{ex}[1] {\renewcommand\theinnerex{#1}\innerex} {\endinnerex} \title{Galois Theory notes} \author{arnaucube} \date{2025} \begin{document} \maketitle \begin{abstract} Notes taken while studying Galois Theory, mostly from Ian Stewart's book "Galois Theory" \cite{ianstewart}. Usually while reading books and papers I take handwritten notes in a notebook, this document contains some of them re-written to $LaTeX$. The notes are not complete, don't include all the steps neither all the proofs. \end{abstract} \tableofcontents \section{Galois Theory notes} \subsection{Chapters 4-6} (Definitions, theorems, lemmas, corollaries and examples enumeration follows from Ian Stewart's book \cite{ianstewart}). \begin{defn}{4.10} A \emph{simple extension} is $L:K$ such that $L=K(\alpha)$ for some $\alpha \in L$. \end{defn} \begin{eg}{4.11} Beware, $L=\mathbb{Q}(i, -i, \sqrt{5}, -\sqrt{5}) = \mathbb{Q}(i, \sqrt{5}) = \mathbb{Q}(i+\sqrt{5})$. \end{eg} \begin{defn}{5.5} Let $L:K$, suppose $\alpha \in L$ is algebraic over $K$. Then, the \emph{minimal polynomial} of $\alpha$ over $K$ is the unique monic polynomial $m$ over $K$, $m(t) \in K[t]$, of smallest degree such that $m(\alpha)=0$. \\ eg.: $i \in \mathbb{C}$ is algebraic over $\mathbb{R}$. The minimal polynomial of $i$ over $\mathbb{R}$ is $m(t)=t^2 +1$, so that $m(i)=0$. \end{defn} \begin{lemma}{5.9} Every polynomial $a \in K[t]$ is congruent modulo $m$ to a unique polynomial of degree $< \delta m$. \end{lemma} \begin{proof} Divide $a / m$ with remainder, $a= qm +r$, with $q,r \in K[t]$ and $\delta r < \delta m$. Then, $a-r=qm$, so $a \equiv r \pmod{m}$. It remains to prove uniqueness. Suppose $\exists~ r \equiv s \pmod{m}$, with $\delta r, \delta s < \delta m$. Then, $r-s$ is divisible by $m$, but has smaller degree than $m$. Therefore, $r-s=0$, so $r=s$, proving uniqueness. \end{proof} \begin{thm}{5.10} $\forall 0 \neq f \in \frac{K[t]}{},~~ \exists f^{-1}$ iff $m$ is irreducible in $K[t]$.\\ Then $\frac{K[t]}{}$ is a field. \end{thm} \begin{thm}{5.12} \label{5.12} Let $K(\alpha):K$ simple algebraic extension, let $m$ minimal polynomial of $\alpha$ over $K$.\\ $K(\alpha):K$ is isomorphic to $\frac{K[t]}{}$.\\ The isomorphism $\frac{K[t]}{} \longrightarrow K(\alpha)$ can be chosen to map $t$ to $\alpha$. \end{thm} \begin{cor}{5.13} \label{5.13} Let $K(\alpha):K$ and $K(\beta):K$ be simple algebraic extensions.\\ If $\alpha,~ \beta$ have same minimal polynomial $m$ over $K$, then the two extensions are isomorphic, and the isomorphism of the larger fields map $\alpha$ to $\beta$. \end{cor} \begin{proof} By \ref{5.12}, both extensions are isomorphic to $\frac{K[t]}{}$. \end{proof} \begin{lemma}{5.14} Let $K(\alpha):K$ be a simple algebraic extension, let $m$ be the minimal polynomial of $\alpha$ over $K$, let $\delta m =n$. Then $\{1, \alpha, \alpha^2, \ldots, \alpha^{n-1}\}$ is a basis for $K(\alpha)$ over $K$. In particular, $[K(\alpha):K]=n$. \end{lemma} \begin{defn}{6.2} The degree $[L:K]$ of a field extension $L:K$ is the dimension of L considered as a vector space over $K$. Equivalently, the dimension of $L$ as a vector space over $K$ is the number of terms in the expression for a general element of $L$ using coefficients from $K$. \end{defn} \begin{eg}{6.3} \begin{enumerate} \item $\mathbb{C}$ elements are 2-dimensional over $\mathbb{R}$ ($p+qi \in \mathbb{C}$, with $p,q \in \mathbb{R}$), because a basis is $\{1, i\}$, hence $[\mathbb{C}:\mathbb{R}]=2$. \item $[ \mathbb{Q}(i, \sqrt{5}) : \mathbb{Q}]=4$, since the elements $\{1, \sqrt{5}, i, i\sqrt{5}\}$ form a basis for $\mathbb{Q}(i, \sqrt{5})$ over $\mathbb{Q}$. \end{enumerate} \end{eg} \begin{thm}{6.4}\emph{(Short Tower Law)} \label{shorttowerlaw} If $K, L, M \subseteq \mathbb{C}$, and $K \subseteq L \subseteq M$, then $[M:K]=[M:L]\cdot [L:K]$. \end{thm} \begin{proof} Let $(x_i)_{i \in I}$ be a basis for $L$ over $K$, let $(y_j)_{j \in J}$ be a basis for $M$ over $L$.\\ $\forall i \in I, j \in J$, we have $x_i \in L, u_j \in M$. \\ Want to show that $(x_i y_j)_{i\in I, j\in J}$ is a basis for $M$ over $K$. \begin{enumerate}[i.] \item prove linear independence:\\ Suppose that $$\sum_{ij} k_{ij} x_i y_j = 0 ~(k_{ij} \in K)$$ rearrange $$\sum_j (\underbrace{\sum_i k_{ij} x_i}_{\in L}) y_j = 0 ~(k_{ij} \in K)$$ Since $\sum_i k_{ij} x_i \in L$, and the $y_j \in M$ are linearly independent over $L$, then $\sum_i k_{ij} x_i = 0$. \\ Repeating the argument inside $L$ $\longrightarrow$ $k_{ij}=0 ~~\forall i\in I, j\in J$. \\ So the elements $x_i y_j$ are linearly independent over $K$. \item prove that $x_i y_j$ span $M$ over $K$:\\ Any $x \in M$ can be written $$x=\sum_j \lambda_j y_j$$ for $\lambda_j \in L$, because $y_j$ spans $M$ over $L$. Similarly, $$\forall j\in J,~ \lambda_j = \sum_i \lambda_{ij} x_i y_j$$ for $\lambda_{ij} \in K$.\\ Putting the pieces together, $$x=\sum_{ij} \lambda_{ij} x_i y_j$$ as required. \end{enumerate} \end{proof} \begin{cor}{6.6}\emph{(Tower Law)}\\ \label{towerlaw} If $K_0 \subseteq K_1 \subseteq \ldots \subseteq K_n$ are subfields of $\mathbb{C}$, then $$[K_n:K_0] = [K_n:K_{n-1}] \cdot [K_{n-1}:K_{n-2}] \cdot \ldots \cdot [K_1: K_0]$$ \end{cor} \begin{proof} From \ref{shorttowerlaw}. \end{proof} \begin{thm}{6.7} if $K(\alpha):K$ \begin{itemize} \item transcendental $\Longrightarrow~~[K(\alpha):K] = \inf$ \item algebraic $\Longrightarrow~~[K(\alpha):K] = \delta m$ \end{itemize} (where $m$ is the minimal polynomial of $\alpha$ over $K$). \end{thm} \begin{defn}{8.1} $L:K$, a \emph{$K$-automorphism} of $L$ is an automorphism $\alpha$ of $L$ such that $\alpha(k)=k ~~ \forall k \in K$.\\ ie. $\alpha$ \emph{fixes} $k$. \end{defn} \begin{thm}{8.2, 8.3} The set of all $K$-automorphisms of $L$ forms a group, $\Gamma(L:K)$, the Galois group of $L:K$. \end{thm} \begin{defn}{8.12}(Radical Extension) \label{8.12} $L:K$ is radical if $L=K(\alpha_1, \ldots, \alpha_m)$ where for each $j=1, \ldots, m$, $\exists~ n_j$ such that $\alpha_j^{n_j} \in K(\alpha_1, \ldots, \alpha_{j-1})~~(j\geq 1)$ \end{defn} \begin{lemma}{8.18} Let $q \in L$. The minimal polynomial of $q$ over $K$ \emph{splits} into linear factors over L. \end{lemma} \begin{ex}{E.8.7} TODO \end{ex} \begin{defn}{9.1} For $K \subseteq \mathbb{C}$, and $f \in K[t]$, $f$ \emph{splits} over $K$ if it can be expressed as a product of linear factors $$f(t) = k \cdot (t- \alpha_1) \cdot \ldots \cdot (t - \alpha_n)$$ where $k, \alpha_i \in K$. $\Longrightarrow$ (Thm 9.3) if $f$ splits over $\Sigma$, $\Sigma$ is the \emph{splitting field}.\\ If $K \subseteq \Sigma' \subseteq \Sigma$ and $f$ splits over $\Sigma'$, then $\Sigma' = \Sigma$. \end{defn} \begin{thm}{9.6} \label{9.6} TODO \end{thm} \begin{defn}{9.8} $L:K$ is \emph{normal} if every irreducible polynomial $f \in K[t]$ that has at least one zero in $L$, splits in $L$. \end{defn} \begin{thm}{9.9} \label{9.9} TODO \end{thm} \begin{thm}{9.10} An irreducible polynomial $f \in K[t]$ ($K \subseteq \mathbb{C}$) is \emph{separable over} $K$ if it has simple zeros in $\mathbb{C}$, or equivelently, simple zeros in its splitting field. \end{thm} \begin{lemma}{9.13} $f \in K[t]$ with splitting field $\Sigma$. $f$ has multiple zeros (in $\Sigma$ or $\mathbb{C}$) iff $f$ and $Df$ have a common factor of degree $\geq 1$ in $\Sigma[t]$.\\ More details at Rolle's theorem (\ref{rolle}) section. \end{lemma} \begin{thm}{10.5} \label{10.5} $|\Gamma(K:K_0)| = [K:K_0]$, where $K_0$ is the fixed field of $\Gamma(K:K_0)$. \end{thm} \begin{defn}{11.1} $K \subseteq L$, $K \subseteq L$. A $K$-monomorphism of $M$ into $L$ is a field monomorphism $$\phi: M \longrightarrow L$$ such that $\phi(k)=k ~~ \forall k \in K$. \end{defn} \begin{thm}{11.3} \label{11.3} $L:K$ normal, $K \subseteq M \subseteq L$. Let $\tau$ any $K$-monomorphism $\tau: M \longrightarrow L$.\\ Then, $\exists$ a $K$-automorphism $\sigma$ of $L$ such that $\sigma\biggr\vert_M=\tau$. \end{thm} \begin{proof} $L:K$ normal $\Longrightarrow$ by Thm \ref{9.9}, $L$ splitting field for some poly $f \in K[t]$. Hence, $L$ is splitting field over $M$ for $f$ and over $\tau(M)$ for $\tau(f)$. Since $\tau \biggr\vert_K$ is the identity, $\tau(f)=f$. \vspace{0.5cm} We have \begin{tikzpicture}[node distance=1.5cm, auto] \node (M) {$M$}; \node (L) [right of=M] {$L$}; \node (t) [below of=M] {$\tau(M)$}; \node (L2) [below of=L] {$L$}; \draw[->] (M) to node {$ $} (L); \draw[->] (M) to node {$\tau$} (t); \draw[->] (t) to node {$ $} (L2); \draw[->] (L) to node {$ $} (L2); \end{tikzpicture} with $\sigma$ yet to be formed. By Theorem \ref{9.6}, $\exists$ isomorphism $\sigma: L \longrightarrow L$ such that $\sigma \biggr\vert_M = \tau$.\\ Therefore, $\sigma$ is an automorphism of $L$, and since $\sigma\biggr\vert_K = \tau\biggr\vert_K=id$, $\sigma$ is a $K$-automorphism of $L$. \end{proof} \begin{prop}{11.4} \label{11.4} $L:K$ finite normal, $\alpha,~\beta$ are zeros in $L$ of the irreducible polynomial $p \in K[t]$. Then, $\exists$ a $K$-automorphism $\sigma$ of $L$ such that $\sigma(\alpha)=\beta$. \end{prop} \begin{proof} By Corollary \ref{5.13}, $\exists$ isomorphism $\tau: K(\alpha) \longrightarrow K(\beta)$ such that $\tau \biggr\vert_K$ is the identity, and $\tau(\alpha)=\beta$. By Theorem \ref{11.3}, $\tau$ extends to a $K$-automorphism $\sigma$ of $L$. \end{proof} \begin{lemma}{11.8} \label{11.8} $K \subseteq L \subseteq N \subseteq M$, $L:K$ finite, $N$ normal closure of $L:K$.\\ Let $\tau$ any $K$-monomorphism $\tau: L \longrightarrow M$.\\ Then $\tau(L) \subseteq N$. \end{lemma} \begin{proof} $\alpha \in L$, $m$ minimal polynomial of $\alpha$ over $K$.\\ $\Longrightarrow ~~ m(\alpha)=0$, so $\tau(m(\alpha))=0$ (since $\tau$ is a $K$-automorphism, ie. maps the zeros of $m(t)$).\\ Since $\tau$ is a $K$-monomorphism, $\tau(m(\alpha))=m(\tau(\alpha))=0$ $\Longrightarrow~~ \tau(\alpha)$ is a zero of $m$.\\ Therefore, $\tau(\alpha)$ lies in $N$, since $N:K$ is normal.\\ Henceforth, $\tau(L) \subseteq N$. \end{proof} \begin{thm}{11.9} The following are equivalent: \begin{enumerate} \item $L:K$ normal \item $\exists$ finite normal extension $N$ of $K$ containing $L$,\\ such that every $K$-monomorphism $\tau: L \longrightarrow N$ is a $K$-automorphism of $L$. \item for every finite extension $M$ of $K$ containing $L$,\\ every $K$-monomorphism $\tau: L \longrightarrow M$ is a $K$-automorphism of $L$. \end{enumerate} \end{thm} \begin{thm}{11.10} $[L:N]=1,~ N$ normal closure of $L:K$. Then, $\exists~ n~ K$-monomorphisms $L \longrightarrow N$.\\ (the ones proven by Lemma \ref{11.8}). \end{thm} \begin{cor}{11.11} \label{11.11} $|\Gamma(L:K)| = [L:K]$ (if $L:K$ is normal). ie. there are precisely $[L:K]$ distinct $K$-automorphisms of $L$. \end{cor} \begin{thm}{11.12} $\Gamma(L:K) = G$. If $L:K$ normal, then $K$ is the fixed field of $G$. \end{thm} \begin{proof} let $K_0$ be the fixed field of $G$. Let $[L:K]=n$.\\ By \ref{11.11}, $|G| = [L:K] = n$.\\ By \ref{10.5}, $[L:K_0]=n$ ($K_0$ fixed field).\\ Since $K \subseteq K_0$, we must have $K=K_0$. $\Longrightarrow$ thus $K$ is the fixed field of $G$. \end{proof} \begin{thm}{11.14} if $L$ any field, $G$ any finite group of automorphisms of $L$, and $K$ its fixed field, then $L:K$ is \emph{finite} and \emph{normal}, with Galois group $G$. \end{thm} \begin{thm}{12.2}(Fundamental Theorem of Galois Theory) if $L:K$ finite and normal inside $\mathbb{C}$, with $\Gamma(L:K)=G$, then: \begin{enumerate} \item $|\Gamma(L:K)| = [L:K]$ (by Corollary \ref{11.11}) \item the maps * and $\dagger$ are mutual inverses, and setup an order-reversing one-to-one correspondence between $\mathcal{F}$ and $\mathcal{G}$. \item if $M$ an intermediate field, then $$[L:M] = |M^*|~~~~~~~ [M:K]=\frac{|G|}{|M^*|}$$ \item for $M$ an intermediate field, $M:K$ normal iff $$\underbrace{\Gamma(M:K)}_{=M^*} \lhd \underbrace{\Gamma(L:K)}_{=G}$$ \item for $M$ intermediate, if $M:K$ normal, then $$\Gamma(M:K) \cong \frac{G}{M^*}$$ ie. $$\Gamma(M:K) \cong \frac{\Gamma(L:K)}{\Gamma(L:M)}$$ \end{enumerate} \end{thm} \begin{proof} TODO \end{proof} [Chapter 13 is basically a full example. More examples can be found at section \ref{ex:galoisgroups}] \subsection{Detour: Isomorphism Theorems} \begin{thm}{i.1}(\emph{First Isomorphism Theorem}) \label{1stisothm} \begin{minipage}{0.75\textwidth} If $\psi: G \longrightarrow H$ a group homomorphism, then $ker(\psi) \triangleleft G$.\\ Let $\phi: G \longrightarrow G/ker(\psi)$ be the canonical homomorphism.\\ Then $\exists$ unique isomorphism $\eta: G/ker(\psi) \longrightarrow \psi(G)$ such that $\psi = \eta \phi$.\\ $\Longleftrightarrow$ ie. $G/ker(\psi) \cong \psi(G)$. \end{minipage} \hfill \begin{minipage}{0.2\textwidth} \begin{tikzpicture}[node distance=2.5cm, auto] \node (G) {$G$}; \node (H) [right of=G] {$H$}; \node (GmodK) [below of=G, xshift=1.25cm] {$G/\ker(\psi)$}; \draw[->] (G) to node {$\psi$} (H); \draw[->] (G) to node [swap] {$\phi$} (GmodK); \draw[->] (GmodK) to node [swap] {$\eta$} (H); \end{tikzpicture} \end{minipage} \end{thm} \begin{proof} \emph{(proof from Thomas W. Judson book "Abstract Algebra" \cite{judson})}\\ Let $K=ker(\psi)$. Since $$\eta: G/K \longrightarrow \psi(G)$$ let $$\eta: gK \longrightarrow \psi(g)$$ ie. $\eta(gK)=\psi(g)$. \begin{enumerate}[i.] \item show that $\eta$ is a \emph{well defined} map: if $g_1 K=g_2 K$, then for some $k \in K$, $g_1 k =g_2$, so $$\eta(g_1K)=\psi(g_1) = \psi(g_1)\psi(k) = \psi(g_1 k) = \psi(g_2) = \eta(g_2 k)$$ Thus, $\eta$ does not depend on the choice of coset representatives, and the map $\eta: G/ker(\psi) \longrightarrow \psi(G)$ is uniquely defined since $\psi=\eta\phi$. \item show that $\eta$ is a homomorphism: Observe: $$\eta(g_1 K g_2 K) = \eta(g_1 g_2 K) = \psi(g_1 g_2) = \psi(g_1) \psi(g_2) = \eta(g_1 K) \eta(g_2 K)$$ $\Longrightarrow$ so $\eta$ is a homomorphism. \item show that $\eta$ is an isomorphism: Since each element of $H=\psi(G)$ has at least a preimage, then $\eta$ is \emph{surjective} (onto $\psi(G)$). Show that it is also \emph{injective} (onet-to-one): Suppose 2 different preimatges lead to the same image in $\psi(G)$, ie. $\eta(g_1 K) = \eta(g_2 K)$ then, $$\psi(g_1) = \psi(g_2)$$ which implies $\psi(g_1^{-1} g_2) = e$, ie. $g_1^{-1} g_2 \in ker(\psi)$, hence $$g_1^{-1} g_2 K = K$$ $$g_1 K = g_2 K$$ so $\eta$ is injective. \end{enumerate} Since $\eta$ is injective and surjective $\Longrightarrow$ $\eta$ is a bijective homomorphism,\\ ie. $\eta$ is an \emph{isomorphism}. \end{proof} \begin{thm}{i.2}(\emph{Second Isomorphism Theorem}) \label{2ndisothm} Let $H \subseteq G$, $N \triangleleft G$. Then \begin{enumerate}[i.] \item $HN \subseteq G$ \item $H \cap N \triangleleft H$ \item $\frac{H}{H \cap N} \cong \frac{HN}{N}$ \end{enumerate} \end{thm} \begin{proof} \emph{(proof from Thomas W. Judson book "Abstract Algebra" \cite{judson})}\\ \begin{enumerate}[i.] \item show $HN \subseteq G$:\\ Note that $HN = \{ hn : h\in H, n\in N \}$. Let $h_1 n_1, h_2 n_2 \in HN$. Since $N$ normal $\Longrightarrow~ h_2^{-1} n_1 h_2 \in N$, so $$(h_1 n_1)(h_2 n_2) = h_1 h_2 (h_2^{-1} n_1 h_2) \in HN$$ [Recall: since $N \triangleleft G$, $gN=Ng ~\forall g \in G$ $\Longrightarrow gn=n'g$ for some $n' \in N$.] To see that $(hn)^{-1} \in HN$:\\ since $(hn)^{-1} = n^{-1} h^{-1} = h^{-1} (h n^{-1} h^{-1})$, thus $(hn)^{-1} \in HN$. Thus $HN \subseteq G$. In fact, $$HN = \bigcup_{h \in H} hN$$ (TODO: diagram) \item show that $H \cap N \triangleleft H$:\\ Let $h \in H,~ n \in H \cap N$ (recall: $H \cap N \subseteq H$).\\ Then $h^{-1}nh \in H$ $\longleftarrow$ since $h^{-1}, n, h \in H$.\\ Since $N \triangleleft G$, $h^{-1} n h \in N$.\\ Therefore, $h^{-1}nh \in H \cap N$ $\Longrightarrow~ H \cap N \triangleleft H$ \item show that $\frac{H}{H \cap N} \cong \frac{HN}{N}$:\\ Define a map \begin{align*} \phi: &H \longrightarrow \frac{HN}{N}\\ \text{by}~ \phi: &h \longmapsto hN \end{align*} $\phi$ is surjective (onto), since any coset $hnN=hN$ is the image of $h \in H$, ie. $\phi(h)$ $\phi$ is a homomorphism, since $$\phi(h h') = h h' N = hN h'N = \phi(h)\phi(h')$$ By the First Isomorphism Theorem \ref{1stisothm}, $$\frac{HN}{N} \cong \frac{H}{ker(\phi)}$$ and since \begin{align*} &ker(\phi) = \{ h \in H : h \in N\}\\ &\text{then}~~ker(\phi) = H \cap N \end{align*} so then, $$\frac{HN}{N} = \phi(H) \cong \frac{H}{ker(\phi)} = \frac{H}{H \cap N}$$ thus $$\frac{HN}{N} \cong \frac{H}{H \cap N}$$ \end{enumerate} \end{proof} \begin{thm}{i.3}(\emph{Third Isomorphism Theorem}) \label{2ndisothm}\\ Let $H \subseteq K$ and $K \triangleleft G,~ H \triangleleft G$.\\ Then $\frac{K}{H} \triangleleft \frac{G}{H}$ and $$\frac{ G/H }{ K/H } \cong \frac{G}{K}$$ \end{thm} \begin{proof} \emph{(proof from Dummit and Foote book ``Abstract Algebra" \cite{dummitfoote})}\\ Easy to see that $\frac{K}{H} \triangleleft \frac{G}{H}$. Define \begin{align*} \psi: &\frac{G}{H} \longrightarrow \frac{G}{K}\\ \text{by}~ \psi: &gH \longmapsto gK \end{align*} To show that $\psi$ is \emph{well defined}:\\ suppose $g_1 H = g_2 H$, then $g_1 = g_2 h$ for some $h \in H$.\\ Since $H \subseteq K \Longrightarrow~ h \in K$, hence $g_1 K = g_2 K$,\\ ie. $\psi(g_1 H) = \psi(g_2 H)$, which shows that $\psi$ is well defined. Since $g \in G$ may be chosen arbitrarily in $G$, $\psi$ is a surjective homomorphism. Finally, \begin{align*} ker(\psi) &= \{ gH \in \frac{G}{H} \mid \psi(gH)=1K \}\\ &= \{ gH \in \frac{G}{H} \mid gK =1K \}\\ &= \{ gH \in \frac{G}{H} \mid g \in K \}\\ &= \frac{K}{H} \end{align*} By the First Isomorphism Theorem (\ref{1stisothm}), \begin{tikzpicture}[node distance=2.5cm, auto] \node (GmodH) {$\frac{G}{H}$}; \node (GmodK) [right of=GmodH] {$\frac{G}{K}$}; \node (GmodHmodKer) [below of=G, xshift=1.25cm] {$\frac{G/H}{\ker(\psi)} = \frac{G/H}{K/H}$}; \draw[->] (GmodH) to node {$\psi$} (GmodK); \draw[->] (GmodH) to node [swap] {$\phi$} (GmodHmodKer); \draw[->] (GmodHmodKer) to node [swap] {$\eta$} (GmodK); \end{tikzpicture} So, by $$\eta: \frac{G/H}{K/H} \longrightarrow \frac{G}{K}$$ since $\eta$ is bijective (we know it by the First Isomorphism Theorem), $\eta$ it is the isomorphism: $$\frac{ G/H }{ K/H } \cong \frac{G}{K}$$ \end{proof} \subsection{Chapter 14} \begin{defn}{14.1} \label{14.1} a group $G$ is soluble if it has a finite series of subgroups $$1=G_0 \subseteq G_1 \subseteq \ldots \subseteq G_n = G$$ such that \begin{enumerate}[i.] \item $G_i \lhd G_{i+1}$ for $i=0,\ldots,n-1$ \item $\frac{G_{i+1}}{G_{i+1}}$ is Abelian for for $i=0,\ldots,n-1$ \end{enumerate} (Note: $G_i \lhd G_{i+1} \lhd G_{i+2}$ does not imply $G_i \lhd G_{i+2}$) \end{defn} \begin{thm}{14.4} $H \subseteq G,~~ N \triangleleft G$, then \begin{enumerate} \item if $G$ soluble $\Longrightarrow H$ soluble \item if $G$ soluble $\Longrightarrow G/N$ soluble \item if $N$ and $G/N$ soluble $\Longrightarrow G$ soluble \end{enumerate} \end{thm} \begin{proof} \begin{enumerate} \item Since $G$ soluble, by definition: $\exists~~ 1=G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_r = G$ with Abelian quotients $\frac{G_{i+1}}{G_i}$. Let $H_i = G_i \cap H$, then $H$ has a series $1=H_0 \triangleleft H_1 \triangleleft \ldots \triangleleft H_r = H$, next we show that the quotients $\frac{H_{i+1}}{H_i}$ are Abelian (so that H is soluble): $$\frac{H_{i+1}}{H_i} = \frac{G_{i+1} \cap H}{G_i \cap H} \stackrel{(*)}{=} \frac{G_{i+1} \cap H}{G_i \cap (G_{i+1}\cap H)} \stackrel{(**)}{\cong} \frac{G_i(G_{i+1} \cap H)}{G_i} \subseteq \frac{G_{i+1}}{G_i} $$ (*): to see why, $H_i = G_i \cap H = G_i \cap H_i = G_i \cap H_{i+1} = G_i \cap (G_{i+1} \cap H)$. (**): by the 2nd Isomorphism Theorem (\ref{2ndisothm}). [TODO: diagram of subgroups] % TODO % Notice that $\frac{G_{i+1}}{G_i}$ is Abelian, thus the left-hand-side of the congruence is also Abelian. Therefore, $\frac{H_{i+1}}{H_i}$ is Abelian, thus $H$ is soluble. \item For $G/N$ to be soluble, (by definition) it would have the series $\frac{N}{N} = G_0 \frac{N}{N} \triangleleft G_1 \frac{N}{N} \triangleleft \ldots \triangleleft G_r \frac{N}{N} = \frac{G}{N}$, and any quotient being $\frac{G_{i+1}\frac{N}{N}}{G_i \frac{N}{N}}$. The series clearly exists, so now we show that the quotients are Abelian, so that $G/N$ is soluble: $$ \frac{G_{i+1} N}{G_i N} = \frac{G_{i+1}(G_i N)}{G_i N} \stackrel{(*)}{\cong} \frac{G_{i+1}}{G_{i+1} \cap (G_i N)} \cong \frac{G_{i+1}/G_i}{(G_{i+1} \cap (G_i N))/G_i} $$ (*): by the 2nd Isomorphism Theorem (\ref{2ndisothm}). The last quotient is a quotient of the Abelian group $G_{i+1}/G_i$, so it is Abelian. Hence, $\frac{G_{i+1}N}{G_i N}$ is also Abelian; so $\frac{G}{N}$ is soluble. \item By the definition of $N$ and $G/N$ being soluble, \begin{align*} N \text{soluble} \Longrightarrow~~ 1 &= N_0 \triangleleft N_1 \triangleleft \ldots \triangleleft N_r = N\\ G/N \text{soluble} \Longrightarrow~~ 1= \frac{N}{N} &= \frac{G_0}{N} \triangleleft \frac{G_1}{N} \triangleleft \ldots \triangleleft \frac{G_r}{N} = \frac{G}{N} \end{align*} both with Abelian quotients. Consider the series of $G$ given by combining the two previous series: $$ 1 = N_0 \triangleleft N_1 \triangleleft \ldots \triangleleft N_r = N = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_r = G $$ the quotients are either \begin{itemize} \item $\frac{N_{i+1}}{N_i}$, Abelian \item $\frac{G_{i+1}}{G_i}$, isomorphic to $\frac{G_{i+1}/N}{G_i/N}$, which is Abelian. \end{itemize} \end{enumerate} Therefore, the quotients are always Abelian; hence $G$ is soluble. \end{proof} \begin{defn}{14.5} $G$ is \emph{simple} if it's nontrivial and it's only normal subgroups are $1$ and $G$. \end{defn} \begin{thm}{14.6} \label{14.6} A \emph{soluble} group is \emph{simple} iff it is cyclic of prime order. \end{thm} \begin{thm}{14.7} \label{14.7} if $n \geq 5$, then $\mathbb{A}_n$ is simple. \end{thm} \begin{cor}{14.8} $\mathbb{S}_n$ is not soluble if $n \geq 5$. \end{cor} \begin{proof} if $\mathbb{S}_n$ were soluble, then $\mathbb{A}_n$ would be soluble by Theorem \ref{14.1}(i), and simple by Theorem \ref{14.7}, hence of prime order by Theorem \ref{14.6}. But observe: $|\mathbb{A}_n|=\frac{1}{2}(n!)$ is not prime if $n \geq 5$.\\ Thus $\mathbb{S}_n$ is not soluble if $n \geq 5$. \end{proof} \begin{lemma}{14.14} \label{14.14} if $A$ finite and abelian group with $p \biggr\vert |A|$ ($p$ prime), then $A$ has an element of order $p$. \end{lemma} \begin{proof} \begin{enumerate}[i.] \item if $|A|$ prime and Abelian $\Longrightarrow$ then $A$ is cyclic. Since $p \vert |A| ~~ \Longrightarrow ~~ \exists! ~ B \subseteq A$ such that $|B|=p$, where $B = $ with $ord(b)=p$. So the lemma is proven. \item if $|A|$ non-prime: take $M \subseteq A$ with $|M|=m$, $m$ maximal. Then \begin{enumerate}[a.] \item if $p|m ~~ \Longrightarrow ~~ \exists! ~ B'=,~ b' \in A$ with $|B'|=p$ and $ord(b')=p$. \item if $p \nmid m$: Let $b \in A \not M$ and $B=$.\\ Then $MB \supseteq M$, and by maximility must be $MB=A$. By the 1st Isomorphism Theorem (\ref{1stisothm}), $$|A| = |MB| = \frac{|M| \cdot |B|}{|M \cap B|}$$ both $|A|$ and $|B|$ are divisible by $p$ (but recall that $p \nmid m=|M|$), since $B$ is cyclic and $p \vert |B|$ $\Longrightarrow$ thus, $B$ has an element of order $p$. So, if $|B|=r$, and $p|r ~~ \Longrightarrow~~ ord(b^{r/p}) = p$.\\ Hence, in all cases i, ii.a, ii.b, $A$ contains an element of order $p$. \end{enumerate} \end{enumerate} \end{proof} \begin{thm}{14.15}(Cauchy's Theorem) if $p \biggr\vert |G|$ ($p$ prime), then $\exists ~ x \in G$ such that $ord(x)=p$. \end{thm} \begin{proof} (induction on $|G|$) For $|G|=1,2,3$, trivial. Induction step: class equation $$|G|=1+|C_2|+ \ldots + |C_r|$$ since $p \biggr\vert |G|$, must have $p \nmid |C_j|$ for some $j \geq 2$. If $x \in C_j ~~\Longrightarrow p \biggr\vert |C_G(x)|$ (since $|C_j|=|G|/|C_G(x)|$, recall $p\biggr\vert |G|$). \begin{enumerate}[i.] \item if $C_G(x) \neq G$:\\ (by induction) since $p \biggr\vert |C_G(x)|$, $\exists a \in C_G(x)$ with $ord(a)=p$, and $a \in G$ (since $C_G(x) \subset G$). \item otherwise, $C_G(x)=G$:\\ implies $x \in Z(G)$, by choice $x\neq 1$, so $Z(G)\neq 1$. Then either \begin{enumerate}[I.] \item $p \biggr\vert |Z(G)| ~~ \longrightarrow$ Abelian case, Lemma \ref{14.14}. \item $p \not\biggr\vert |Z(G)|$: by induction, $\exists x \in G$ such that $\hat{x} \in G/Z(G)$, with $ord(\hat{x})=p$. (where $\hat{x}$ is the image of $x$). $\Longrightarrow~~ x^p \in Z(G)$, but $x \not\in Z(G)$. Let $X=$, cyclic.\\ $XZ(G)$ is Abelian, and $p \biggr\vert |XZ(G))|$\\ $\Longrightarrow$ by Lemma \ref{14.14}, it has an element of order $p$, and this element belongs to $G$. \end{enumerate} \end{enumerate} \end{proof} \begin{defn}{15.1}(Soluble by radicals) let $f \in K[t],~ K \subseteq \mathbb{C}$, and $\Sigma$ a splitting field of $f$ over $K$. $f$ is \emph{soluble by radicals} if\\ $\exists$ a field $M$ with $\Sigma \subseteq M$ such that $M:K$ is a radical extension (\ref{8.12}). Note: not required $\Sigma:K$ to be radical. \end{defn} \begin{lemma}{15.3} $L:K$ radical extension $\mathbb{C}$, and $M$ normal enclosure of $L:K$, then $M:K$ is radical. \end{lemma} \begin{proof} let $L=K(\alpha_1, \ldots, \alpha_r)$ with $\alpha_i^{n_i} \in K(\alpha_1, \ldots, \alpha_{j-1})$ (by definition of $L:K$ being a radical extension). Let $f_i$ be the minimal polynimal of $\alpha_i$ over $K$. Then, $M \supseteq L$ is spliting field of $\Prod_{i=1}^r f_i$, since $M$ is normal enclosure of $L:K$. For every zero $\beta_{ij}$ of $f_i$ in $M$,\\ $\exists$ an isomorphism $\sigma: K(\alpha_i) \longrightarrow K(\beta_{ij})$ by Corollary \ref{5.13}. By Proposition \ref{11.4}, since $K(\alpha_i),~K(\beta_{ij}) \subset M$, $\sigma$ extends to a $K$-automorphism $$\tau: M \longrightarrow M$$ since $M$ is splitting field (ie. contains the zeros of $\Prod f_i$). Since $\alpha$ is a member of radical sequence for a subfield of $M$, so it is $\beta_{ij}$. By combining the sequences for $M$, $M:K$ is a radical extension. \end{proof} \vspace{0.5cm} The next two lemmas show that certain Galois groups are Abelian. \begin{lemma}{15.4} \end{lemma} \begin{proof} \end{proof} \newpage \section{Tools} This section contains tools that I found useful to solve Galois Theory related problems, and that don't appear in Stewart's book. \subsection{De Moivre's Theorem and Euler's formula}\label{demoivre} Useful for finding all the roots of a polynomial. Euler's formula: $$e^{i \psi} = cos \psi + i \cdot sin \psi$$ The n-th roots of a complex number $z=x + i y = r (cos \theta + i \cdot sin \theta)$ are given by $$z_k = \sqrt[n]{r} \cdot \left(cos(\frac{\theta + 2k \pi}{n}) + i \cdot sin(\frac{\theta + 2k \pi}{n}) \right)$$ for $k=0, \ldots, n-1$. So, by Euler's formula: $$z_k = \sqrt[n]{r} \cdot e^{i (\frac{\theta + 2 k \pi}{n})}$$ Usually we will set $\alpha=\sqrt[n]{r}$ and $\zeta = e^{\frac{2 \pi i}{n}}$, and find the $\mathbb{Q}$-automorphisms from there (see \ref{ex:galoisgroups} for examples). \subsection{Einsenstein's Criterion} \label{einsenstein} \emph{reference: Stewart's book} Let $f(t) = a_0 + a_1 t + \ldots + a_n t^n$, suppose there is a prime $q$ such that \begin{enumerate} \item $q \nmid a_n$ \item $q | a_i$ for $i=0, \ldots, n-1$ \item $q^2 \nmid a_0$ \end{enumerate} Then, $f$ is irreducible over $\mathbb{Q}$. \emph{TODO proof \& Gauss lemma.} \subsection{Elementary symmetric polynomials} \emph{TODO from orange notebook, page 36} \subsection{Cyclotomic polynomials} \label{cyclotomicpoly} \subsubsection{From Elmyn Berlekamp's "Algebraic Coding Theory" book} The notes in this section are from the book "Algebraic Coding Theory" by Elmyn Berlekamp \cite{berlekamp}. \vspace{0.3cm} Some times we might find polynomials that have the shape of $t^n - 1$, those are \emph{cyclotomic polynomials}, and have some properties that might be useful. Observe that in a finite field of order $q$, factoring $x^q - x$ gives $$x^q-x = x(x^{q-1} -1)$$ The factor $x^{q-1} -1$ is a special case of $x^n -1$: if we assume that the field contains an element $\alpha$ of order $n$, then the roots of $x^n-1=0$ are $$1, \alpha, \alpha^2, \alpha^3, \ldots, \alpha^{n-1}$$ and $\deg(x^n-1)=n$, thus $x^n-1$ has at most $n$ roots in any field, henceforth the powers of $\alpha$ must include all the $n$-th roots of unity. There fore, in any field which contains a primitive $n$-th root of unity we have: \begin{thm}{4.31} $$x^n -1 = \prod_{i=0}^{n-1} (x - \alpha^i) = \prod_{i=1}^n (x-\alpha^i)$$ \end{thm} If $n=k \cdot d$, then $\alpha^k, \alpha^{2k}, \alpha^{3k}, \ldots, \alpha^{dk}$ are all roots of $x^d -1 =0$ Every element with order dividing $n$, must be a power of $\alpha$, since an element of order $d$ is a $d$-th root of unity. Every power of $\alpha$ has order which divides $n$, and every field element whose order divides $n$ is a power of $\alpha$. This suggests that we partition the powers of $\alpha$ according to their orders: $$x^n -1 = \prod_{\stackrel{d,}{d|n}} \prod_{\beta} (x- \beta)$$ where at each iteration, $\beta$ is a field element of order $d$ for each $d$. The polynomial whose roots are the field elements of order $d$ is called the \emph{cyclotomic polynomial}, denoted by $Q^{(d)}(x)$. \begin{thm}{4.32} $$x^n -1 = \prod_{\stackrel{d,}{d|n}} Q^{(d)}(x)$$ \end{thm} \subsubsection{From Ian Stewart's ``Galois Theory'' book} Notes from Ian Stewart's book \cite{ianstewart}. Consider the case $n=12$, let $\zeta=e^{\pi i /6}$ be a primitive $12$-th root of unity. Classify its powers ($\zeta^j$) according to their minimal power $d$ such that $(\zeta^j)^d = 1$ (ie. when they are primitive $d$-th roots of unity). \begin{enumerate}[] \item $d=1,~~~ 1$ \item $d=2,~~~ \zeta^6$ \item $d=3,~~~ \zeta^4, \zeta^8$ \item $d=4,~~~ \zeta^3, \zeta^9$ \item $d=6,~~~ \zeta^2, \zeta^{10}$ \item $d=12,~~~ \zeta, \zeta^5, \zeta^7, \zeta^{11}$ \end{enumerate} Observe that we can factorize $t^{12} -1$ by grouping the corresponding zeros: \begin{align*} t^{12}-1 = &(t-1) \times\\ &(t-\zeta^6) \times\\ &(t-\zeta^4) (t-\zeta^8) \times\\ &(t-\zeta^3) (t-\zeta^9) \times\\ &(t-\zeta^2) (t-\zeta^{10}) \times\\ &(t-\zeta) (t-\zeta^5)(t-\zeta^7) (t-\zeta^{11}) \end{align*} which simplifies to $$t^{12}-1=(t-1)(t+1)(t^2+t+1)(t^2+1)(t^2-t+1)F(t)$$ where $F(t) = (t-\zeta) (t-\zeta^5)(t-\zeta^7) (t-\zeta^{11}) = t^4 -t^2 + 1$ (this last step can be obtained either by multiplying $(t-\zeta)(t-\zeta^5)(t-\zeta^7) (t-\zeta^{11})$ together, or by dividing $t^{12}-1$ by all the other factors). Let $\Phi_d(t)$ be the factor corresponding to primitive $d$-th roots of unity, then we have proved that $$t^{12}-1 = \Phi_1 \Phi_2 \Phi_3 \Phi_4 \Phi_6 \Phi_{12}$$ \begin{defn}{21.5} The polynomial $\Phi_d(t)$ defined by $$\Phi_n(t) = \prod_{a\in \mathbb{Z}_n,(a,n)=1} (t- \zeta^a)$$ is the $n$-th \emph{cyclotomic polynomial} over $\mathbb{C}$. \end{defn} \begin{cor}{21.6} $\forall n \in \mathbb{N}$, the polynomial $\Phi_n(t)$ lies in $\mathbb{Z}[t]$ and is monic and irreducible. \end{cor} \begin{thm}{21.9} \begin{enumerate} \item The Galois group $\Gamma(\mathbb{Q}(\zeta):\mathbb{Q})$ consists of the $\mathbb{Q}$-automorphisms $\psi_j$ defined by $$\psi_j(\zeta)=\zeta^j$$ where $0 \leq j \leq n-1$ and $j$ is prime to $n$. \item $\Gamma(\mathbb{Q}(\zeta):\mathbb{Q}) \stackrel{iso}{\cong} \mathbb{Z}_n^*$, and is an abelian group. \item its order is $\phi(n)$ \item if $n$ is prime, $\mathbb{Z}_n^*$ is cyclic \end{enumerate} \end{thm} \vspace{1cm} \subsubsection{Examples} Examples of cyclotomic polynomials: \begin{align*} \Phi_n(x) &= x^{n-1} + x^{n-2} + \ldots + x^2 + x + 1 = \sum_{i=0}^{n-1} x^i\\ \Phi_{2p}(x) &= x^{p-1} + \ldots + x^2 - x + 1 = \sum_{i=0}^{p-1} (-x)^i\\ \Phi_m(x) &= x^{m/2} + 1, ~~\text{when $m$ is a power of $2$} \end{align*} \subsection{Lemma 1.42 from J.S.Milne's book} Lemma from J.S.Milne's book \cite{milneFT}. Useful for when dealing with $x^p - 1$ with $p$ prime. Observe that $$x^p -1 = (x-1)(x^{p-1} + x^{p-2} + \ldots + 1)$$ Notice that $$\Phi_p(x) = x^{p-1} + x^{p-2} + \ldots + 1$$ is the $p$-th Cyclotomic polynomial. \begin{lemma}{1.42} If $p$ prime, then $x^{p-1} + \ldots + 1$ is irreducible; hence $\mathbb{Q}[e^{2 \pi i /p}]$ has degree $p-1$ over $\mathbb{Q}$. \end{lemma} \begin{proof} Let $f(x) = (x^p - 1)/(x-1) = x^{p-1} + \ldots + 1$ then $$ f(x+1) = \frac{(x+1)^p -1}{x+1-1} = \frac{(x+1)^p -1}{x} = x^{p-1} + \ldots + a_i x^i + \ldots + p $$ with $a_i = \left( \stackrel{p}{i+1} \right)$. We know that $p | a_i$ for $i= 1, \ldots, p-2$, therefore $f(x+1)$ is irreducibe by Einsenstein's Criterion. This implies that $f(x)$ is irreducible. \end{proof} \subsection{Dihedral groups - Groups of symmetries} \label{dihedral} Source: Wikipedia and \cite{dihedral}. Dihedral groups ($\mathbb{D}_n$) represent the symmetries of a regular $n$-gon. Properties: \begin{itemize} \item are non-abelian (for $n>2$), ie. $rs \neq sr$ \item order $2n$ \item generated by a rotation $r$ and a reflection $s$ \item $r^n = s^2 = id,~~~(rs)^2=id$ \end{itemize} Subgroups of $\mathbb{D}_n$: \begin{itemize} \item rotation form a cyclic subgroup of order $n$, denoted as $$ \item for each $d$ such that $d|n$, $\exists~ \mathbb{D}_d$ with order $2d$ \item normal subgroups \begin{itemize} \item for $n$ odd: $\mathbb{D}_n$ and $$ for every $d|n$ \item for $n$ even: $2$ additional normal subgroups \end{itemize} \item Klein four-groups: $\mathbb{Z}_2 \times \mathbb{Z}_2$, of order 4 \end{itemize} \vspace{0.3cm} Total number of subgroups in $\mathbb{D}_n$: $d(n) + s(n)$, where $d(n)$ is the number of positive disivors of $n$, and $s(n)$ is the sum of those divisors. \begin{eg}{} For $\mathbb{D}_6$, we have $\{1,2,3,6\} | 6$, so $d(n) = d(6) = 4$, and $s(6) = 1+2+3+6 = 12$; henceforth, the total amount of subgroups is $d(n)+s(n) = 4+12 = 16$. \end{eg} \vspace{0.3cm} For $n \geq 3, ~~\mathbb{D}_n \subseteq \mathbb{S}_n$ (subgroup of the Symmetry group). \subsection{Rolle's theorem} \label{rolle} TODO \newpage \section{Exercises} \subsection{Galois groups}\label{ex:galoisgroups} \subsubsection[t6-7]{$t^6-7 \in \mathbb{Q}$} This exercise comes from a combination of exercises 12.4 and 13.7 from \cite{ianstewart}. First let's find the roots. By De Moivre's Theorem (\ref{demoivre}), $t_k = \sqrt[6]{7} \cdot e^{i \frac{2 \pi k}{6}}$. From which we denote $\alpha = \sqrt[6]{7}$, and $\zeta = e^{\frac{2 \pi i}{6}}$, so that the roots of the polynomial are $\{ \alpha, \alpha \zeta, \alpha \zeta^2, \alpha \zeta^3, \alpha \zeta^4, \alpha \zeta^5\}$, ie. $\{ \alpha \zeta^k \}_0^5$. Hence the \emph{splitting field} is $\mathbb{Q}(\alpha, \zeta)$. \emph{Degree of the extension} In order to find $[\mathbb{Q}(\alpha, \zeta) : \mathbb{Q}$, we're going to split it in tow parts. By the Tower Law (\ref{towerlaw}), $$[\mathbb{Q}(\alpha, \zeta) : \mathbb{Q}] = [\mathbb{Q}(\alpha, \zeta) : \mathbb{Q}(\alpha)] \cdot [\mathbb{Q}(\alpha) : \mathbb{Q}]$$ To find each degree, we will find the minimal polynomial of the adjoined term over the base field of the extension: \begin{enumerate}[i.] \item minimal polynomial of $\alpha$ over $\mathbb{Q}$\\ By Einsenstein's Criterion (\ref{einsenstein}), with $q=7$ we have that $q \nmid 1$, $7 | {-7,0,0,\ldots}$, and $7^2 \nmid -7$, hence $f(t)$ is irreducibe over $\mathbb{Q}$, thus is the minimal polynomial $$m_i(t)= f(t) =t^6-7$$ which has roots $\{ \alpha \zeta^k \}_0^5$. \item minimal polynomial of $\zeta$ over $\mathbb{Q}(\alpha)$\\ Since $\zeta$ is the primitive $6$th root of unity, we know that the minimal polynomial will be the $6$th cyclotomic polynomial (\ref{cyclotomicpoly}): $$m_{ii}(t) = \Phi_6(t) = t^2 - t + 1$$ which has roots $\zeta, -\zeta$. Since $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$, and the roots of $\Phi_6(t)=t^2 - t +1$ are in $\mathbb{C}$, $\Phi_6(t)$ remains irreducible over $\mathbb{Q}(\alpha)$. \end{enumerate} \vspace{0.5cm} Therefore, by the tower of law, $$[\mathbb{Q}(\alpha, \zeta) : \mathbb{Q}] = \deg{\Phi_6(t)} \cdot \deg{f(t)} = 2 \cdot 6 = 12$$ and by the Fundamental Theorem of Galois Theory, we know that $$|\Gamma( \mathbb{Q}(\alpha, \zeta) : \mathbb{Q} )| = [\mathbb{Q}(\alpha, \zeta) : \mathbb{Q}] = 12$$ which tells us that there exist $12$ $\mathbb{Q}$-automorphisms of the Galois group. \vspace{0.5cm} Let's find the $12$ $\mathbb{Q}$-automorphisms. Start by defining $\sigma$ which fixes $\zeta$ and acts on $\alpha$, sending it to another of the roots of the minimal polynomial of $\alpha$ over $\mathbb{Q}$, $f(t)$, choose $\alpha \zeta$. Now define $\tau$ which fixes $\alpha$ and acts on $\zeta$, sending it into another root of the minimal polynomial of $\zeta$ over $\mathbb{Q}(\alpha)$, choose $-\zeta$. \vspace{0.3cm} \begin{tabular}{@{}l l@{}} $\begin{aligned} \sigma: \alpha &\mapsto \alpha \zeta \\ \zeta &\mapsto \zeta \end{aligned}$ & $\begin{aligned} \tau: \alpha &\mapsto \alpha\\ \zeta &\mapsto -\zeta = \zeta^{-1} \end{aligned}$ \end{tabular} In other words, we have $12$ $\mathbb{Q}$-automorphisms, which are the combination of $\sigma$ and $\tau$: $$\begin{aligned} \sigma^k \tau^j:~~&\alpha \mapsto \alpha \zeta^k\\ &\zeta \mapsto \zeta^j \end{aligned}$$ for $0 \leq k \leq 5$ and $j = \pm 1$. \vspace{0.5cm} NOTE: WIP diagram. \begin{tikzpicture}[node distance=2cm] \def \radius{2} \draw (0,0) circle (\radius); \foreach \k in {0,...,5} { % \node (a\k) at ({360/6 * \k}:\radius) {$\alpha \zeta^{\k}$}; \node (a\k) at ({360/6 * \k}:\radius+0.5) {$\alpha \zeta^{\k}$}; \fill ({360/6 * \k}:\radius) circle (2pt); } % real & im axis \draw[->] (-2.5,0) -- (2.5,0) node[right] {}; \draw[->] (0,-2.5) -- (0,2.5) node[above] {}; % tau: \draw[<->] (3,1) -- (3,-1) node[right] {$\tau$}; % sigma: % \foreach \k [evaluate=\k as \next using int(mod(\k+1,6))] in {0,...,5} { % \coordinate (p\k) at ({360/6 * \k}:\radius); % \coordinate (p\next) at ({360/6 * \next}:\radius); % % \draw[->, bend left=30] (p\k.center) -- node[above] {$\sigma$} (p\next.center); % } \foreach \k in {0,...,5} { \coordinate (p\k) at ({360/6 * \k}:\radius); } \foreach \k [evaluate=\k as \next using int(mod(\k+1,6))] in {0,...,5} { \draw[->, bend left=30] (p\k) -- node[above] {$\sigma$} (p\next); } \end{tikzpicture} \vspace{0.5cm} Observe, that $\Gamma$ is generated by the combination of $\sigma$ and $\tau$, and it is isomorphic to the group of symmetries of order 12, the dihedral group (\ref{dihedral}) of order 12, $\mathbb{D}_6$, ie. $\Gamma \cong \mathbb{D}_6$. \vspace{0.5cm} Let's find the subgroups of $\Gamma$, and the fixed fields of $\mathbb{Q}(\alpha, \zeta)$. We know that $\Gamma \cong \mathbb{D}_6$, and we know from the properties of the dihedral group (\ref{dihedral}) that the number of subgroups of $\mathbb{D}_6$ will be $d(6) + s(6) = 4 + 12 = 16$ subgroups. \vspace{0.4cm} \hspace*{-3.5cm} \begin{tabular}{ c c c c | p{7.5cm} } \hline generators & order & group & fixed field & notes (check fixed field)\\ \hline $\langle \rangle = \langle \sigma^6 \rangle=\langle \tau^2 \rangle$ & 1 & id & $\mathbb{Q}(\alpha,\zeta)$ & \\ $\langle \sigma \rangle = \langle \sigma^5 \rangle$ & 6 & $\mathbb{Z}_6$ & $\mathbb{Q}(\zeta)$ & \\ $\langle \sigma^2 \rangle=\langle \sigma^4 \rangle$ & 3 & $\mathbb{Z}_3$ & $\mathbb{Q}(\alpha^3, \zeta)$ & $\sigma^2(\alpha^3)=\alpha^3 \zeta^{3\cdot 2}=\alpha^3 \zeta^6 = \alpha^3 \cdot 1 = \alpha^3$\\ $\langle \sigma^3 \rangle$ & 2 & $\mathbb{Z}_2$ & $\mathbb{Q}(\alpha^2,\zeta)$ & $\sigma^3(\alpha^2)=(\alpha\zeta^3)^2=\alpha^2\zeta^6=\alpha^2$\\ \hline $\langle \tau \rangle$ & 2 & $\mathbb{Z}_2$ & $\mathbb{Q}(\alpha)$ & \\ \hline $\langle \sigma\tau \rangle$ & 2 & $\mathbb{Z}_2$ & $\mathbb{Q}(\alpha+\alpha\zeta)$ & $\sigma\zeta(\alpha+\alpha\zeta)=\sigma(\alpha+\alpha\zeta^{-1}) = \alpha\zeta + \alpha\zeta^{-1}\zeta=\alpha\zeta+\alpha$\\ $\langle \sigma^2\tau \rangle$ & 2 & $\mathbb{Z}_2$ & $\mathbb{Q}(\alpha+\alpha\zeta^2), \mathbb{Q}(\alpha\zeta)$ & $\sigma^2\tau(\alpha+\alpha\zeta^2) = \sigma(\alpha+\alpha\zeta^{-2})=\alpha\zeta^2+ \alpha\zeta^{-2}\zeta^2=\alpha\zeta^2+\alpha$\\ $\langle \sigma^3\tau \rangle$ & 2 & $\mathbb{Z}_2$ & $\mathbb{Q}(\alpha+\alpha\zeta^3)$ & $\sigma^3\tau(\alpha+\alpha\zeta^3) = \sigma(\alpha+\alpha\zeta^{-3})=\alpha\zeta^3+ \alpha\zeta^{-3}\zeta^3=\alpha\zeta^3+\alpha$\\ $\langle \sigma^4\tau \rangle$ & 2 & $\mathbb{Z}_2$ & $\mathbb{Q}(\alpha+\alpha\zeta^4), \mathbb{Q}(\alpha\zeta^2)$ & $\sigma^4\tau(\alpha+\alpha\zeta^4) = \sigma(\alpha+\alpha\zeta^{-4})=\alpha\zeta^4+ \alpha\zeta^{-4}\zeta^4=\alpha\zeta^4+\alpha$\\ $\langle \sigma^5\tau \rangle$ & 2 & $\mathbb{Z}_2$ & $\mathbb{Q}(\alpha+\alpha\zeta^5)$ & $\sigma^5\tau(\alpha+\alpha\zeta^5) = \sigma(\alpha+\alpha\zeta^{-5})=\alpha\zeta^5+ \alpha\zeta^{-5}\zeta^5=\alpha\zeta^5+\alpha$\\ \hline $\langle \sigma, \tau \rangle = \langle \sigma^5,\tau \rangle$ & $6\cdot2=12$ & $\mathbb{D}_6$ & $\mathbb{Q}$ & \\ $\langle \sigma^2, \tau \rangle = \langle \sigma^4,\tau \rangle$ & $3\cdot2=6$ & $\mathbb{D}_3$ & $\mathbb{Q}(\alpha^3)$ & $\sigma^2(\alpha^3)=\alpha^3\zeta^{3\cdot 2}=\alpha^3$ and $\tau(\alpha^3)=\alpha^3$\\ $\langle \sigma^3, \tau \rangle$ & $2\cdot2=4$ & $\mathbb{D}_2$ & $\mathbb{Q}(\alpha^2)$ & $\sigma^3(\alpha^2)=\alpha^2\zeta^{2\cdot 2}=\alpha^2$ and $\tau(\alpha^2)=\alpha^2$\\ \hline $\langle \sigma^2, \sigma\tau \rangle$ & $3\cdot 2=6$ & $\mathbb{D}_3$ & $\mathbb{Q}(\alpha^3+\alpha^3\zeta^3)$ & $\sigma^2(\alpha^3 + \alpha^3 \zeta^3) = \alpha^3\zeta^3 + \alpha^3 \zeta^3\zeta^3 = \alpha^3\zeta^3 + \alpha^3\zeta^6 = \alpha^3\zeta^3+\alpha^3$\\ $\langle \sigma^3, \sigma\tau \rangle$ & $2\cdot2=4$ & $\mathbb{Z}_2 \times \mathbb{Z}_2$ & $\mathbb{Q}(\alpha^2\zeta^2),\mathbb{Q}(\alpha^2+\alpha^2\zeta^2)$ & $\sigma^3(\alpha^2+\alpha^2\zeta^2)=\alpha^2\zeta^{2\cdot3}+\alpha^2\zeta^{2\cdot3}\zeta^2=\alpha^2+\alpha^2\zeta^2$ and $\sigma\tau(\alpha^2+\alpha^2\zeta^2)=\alpha^2\zeta^2+\alpha^2\zeta^{-2}\zeta^2 = \alpha^2\zeta^2+\alpha^2$\\ $\langle \sigma^3, \sigma^2\tau\rangle$ & $2\cdot2=4$ & $\mathbb{Z}_2 \times \mathbb{Z}_2$ & $\mathbb{Q}(\alpha^2\zeta^4),\mathbb{Q}(\alpha^2+\alpha^2\zeta^4)$ & $\sigma^2\zeta(\alpha^2\zeta^4)=\alpha^2\zeta^2\zeta^{-4}=\alpha^2\zeta^{-2}=\alpha^2\zeta^4$ and $\sigma^3(\alpha^2\zeta^4)=\alpha^2\zeta^{2\cdot3}\zeta^4=\alpha^2\zeta^4$ \end{tabular} \bibliographystyle{unsrt} \bibliography{galois-theory-notes.bib} \end{document}