\documentclass{article} \usepackage[utf8]{inputenc} \usepackage{amsfonts} \usepackage{amsthm} \usepackage{amsmath} \usepackage{amssymb} \usepackage{enumerate} \usepackage{hyperref} \hypersetup{ colorlinks, citecolor=black, filecolor=black, linkcolor=black, urlcolor=blue } \theoremstyle{definition} \newtheorem{definition}{Def}[section] \newtheorem{theorem}[definition]{Thm} \newtheorem{innersolution}{} \newenvironment{solution}[1] {\renewcommand\theinnersolution{#1}\innersolution} {\endinnersolution} \title{FFT: Fast Fourier Transform} \author{arnaucube} \date{August 2022} \begin{document} \maketitle \begin{abstract} Usually while reading papers and books I take handwritten notes, this document contains some of them re-written to $LaTeX$. The notes are not complete, don't include all the steps neither all the proofs. I use these notes to revisit the concepts after some time of reading the topic. This document are notes done while reading about the topic from \cite{gstrang}, \cite{tpornin}, \cite{rfateman}. \end{abstract} \tableofcontents \section{Discrete \& Fast Fourier Transform} \subsection{Discrete Fourier Transform (DFT)} Continuous: $$ x(f) = \int_{-\infty}^{\infty} x(t) e^{-2 \pi f t} dt $$ Discrete: The $k^{th}$ frequency, evaluating at $n$ of $N$ samples. $$ \hat{f_k} = \sum_{n=0}^{n-1} f_n e^{\frac{-j \pi kn}{N}} $$ where we can group under $b_n = \frac{\pi kn}{N}$. The previous expression can be expanded into: $$ x_k = x_0 e^{-b_0 j} + x_1 e^{-b_1 j} + ... + x_n e^{-b_n j} $$ By the \emph{Euler's formula} we have $e^{jx} = cos(x) + j\cdot sin(x)$, and using it in the previous $x_k$, we obtain $$ x_k = x_0 [cos(-b_0) + j \cdot sin(-b_0)] + \ldots $$ Using $\hat{f_k}$ we obtained $$ \{f_0, f_1, \ldots, f_N\} \xrightarrow{DFT} \{ \hat{f_0}, \hat{f_1}, \ldots, \hat{f_N} \} $$ To reverse the $\hat{f_k}$ back to $f_k$: $$ f_k = \left( \sum_{n=0}^{n-1} \hat{f_n} e^{\frac{-j \pi kn}{N}} \right) \cdot \frac{1}{N} $$ $$ DFT = \begin{pmatrix} \hat{f_0}\\ \hat{f_1}\\ \hat{f_2}\\ \vdots\\ \hat{f_n}\\ \end{pmatrix}= \begin{pmatrix} 1 & 1 & 1 & \ldots & 1 \\ 1 & w_n & w_n^2 & \ldots & w_n^{N-1} \\ 1 & w_n^2 & w_n^4 & \ldots & w_n^{2(N-1)} \\ \vdots & \vdots & \vdots & & \vdots\\ 1 & w_n^{n-1} & w_n^{2(n-1)} & \ldots & w_n^{(N-1)^2} \\ \end{pmatrix} \begin{pmatrix} f_0 \\ f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix} $$ \subsection{Fast Fourier Transform (FFT)} While DFT is $O(n)$, FFT is $O(n \space log(n))$ Here you can find a simple implementation of the these concepts in Rust: \href{https://github.com/arnaucube/fft-rs}{arnaucube/fft-rs} \cite{fftrs} \section{FFT over finite fields, roots of unity, and polynomial multiplication} FFT is very useful when working with polynomials. [TODO poly multiplication] An implementation of the FFT over finite fields using the Vandermonde matrix approach can be found at \cite{fftsage}. \subsection{Intro} Let $A(x)$ be a polynomial of degree $n-1$, $$ A(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \cdots + a_{n-1} \cdot x^{n-1} = \sum_{i=0}^{n-1} a_i \cdot x^i $$ We can represent $A(x)$ in its evaluation form, $$ (x_0, A(x_0)), (x_1, A(x_1)), \cdots, (x_{n-1}, A(x_{n-1})) = (x_i, A(x_i)) $$ We can evaluate A(x) at n given points $(x_0, x_1, ..., x_{n-1}$): $$ \begin{pmatrix} A(x_0)\\ A(x_1)\\ A(x_2)\\ \vdots\\ A(x_{n-1}) \end{pmatrix}= \begin{pmatrix} x_0^0 & x_0^1 & x_0^2 & \ldots & x_0^{n-1} \\ x_1^0 & x_1^1 & x_1^2 & \ldots & x_1^{n-1} \\ x_2^0 & x_2^1 & x_2^2 & \ldots & x_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots\\ x_{n-1}^0 & x_{n-1}^1 & x_{n-1}^2 & \ldots & x_{n-1}^{n-1} \\ \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{pmatrix} $$ This is known by the Vandermonde matrix. But this will not be too efficient. Instead of random $x_i$ values, we use \emph{roots of unity}, where $\omega_n^n = 1$. We denote $\omega$ as a primitive $n^{th}$ root of unity: $$ \begin{pmatrix} A(1)\\ A(\omega)\\ A(\omega^2)\\ \vdots\\ A(\omega^{n-1}) \end{pmatrix}= \begin{pmatrix} 1 & 1 & 1 & \ldots & 1 \\ 1 & \omega & \omega^2 & \ldots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \ldots & \omega^{2(n-1)} \\ \vdots & \vdots & \vdots & & \vdots\\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \ldots & \omega^{(n-1)^2} \\ \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{pmatrix} $$ Which we can see as $$ \hat{A} = F_n \cdot A $$ This matches our system of equations: \begin{itemize} \item at $x=0$, $a_0 + a_1 + \cdots + a_{n-1} = A_0 = A(1)$ \item at $x=1$, $a_0 \cdot 1 + a_1 \cdot \omega + a_2 \cdot \omega^2 + \cdots + a_{n-1} \cdot \omega^{n-1} = A_1 = A(\omega)$ \item at $x=2$, $a_0 \cdot 1 + a_1 \cdot \omega^2 + a_2 \cdot \omega^4 + \cdots + a_{n-1} \cdot \omega^{2(n-1)} = A_2 = A(\omega^2)$ \item $\cdots$ \item at $x=n-1$, $a_0 \cdot 1 + a_1 \cdot \omega^{n-1} + a_2 \cdot \omega^{2(n-1)} + \cdots + a_{n-1} \cdot \omega^{(n-1)(n-1)} = A_2 = A(\omega^{n-1})$ \end{itemize} We denote the $F_n$ as the Fourier matrix, with $j$ rows and $k$ columns, where each entry can be expressed as $F_{jk} = \omega^{jk}$. To find the $a_i$ values, we use the inverted $F_n = F_n^{-1}$ \subsection{Roots of unity} todo \subsection{FFT over finite fields} todo \subsection{Polynomial multiplication with FFT} todo \bibliography{fft-notes.bib} \bibliographystyle{unsrt} \end{document}