Commutative Algebra notes

arnaucube

Abstract

Notes taken while studying Commutative Algebra, mostly from Atiyah & MacDonald book [1] and Reid's book [2].

Usually while reading books and papers I take handwritten notes in a notebook, this document contains some of them re-written to LaTeX.

The proofs may slightly differ from the ones from the books, since I try to extend them for a deeper understanding.

Contents

1		$\begin{array}{llllllllllllllllllllllllllllllllllll$	1 1 3		
	1.3	Lemmas, propositions and corollaries	3		
2	2.1	dules Modules concepts			
3	Noetherian rings				
4	4.1	Exercises Chapter 1			

1 Ideals

1.1 Definitions

Definition ideal. $I \subset R$ (R ring) such that $0 \in I$ and $\forall x \in I$, $r \in R$, $xr, rx \in I$.

ie. I absorbs products in R.

Definition prime ideal. if $a, b \in R$ with $ab \in P$ and $P \neq R$ (P a prime ideal), implies ainP or $b \in P$.

Definition principal ideal. generated by a single element, (a).

(a): principal ideal, the set of all multiples xa with $x \in R$.

Definition maximal ideal. $\mathfrak{m} \subset A$ (A ring) with $m \neq A$ and there is no ideal I strictly between \mathfrak{m} and A. ie. if \mathfrak{m} maximal and $\mathfrak{m} \subseteq I \subseteq A$, either $\mathfrak{m} = I$ or I = A.

Definition unit. $x \in A$ such that xy = 1 for some $y \in A$. ie. element which divides 1.

Definition zerodivisor. $x \in A$ such that $\exists 0 \neq y \in A$ such that $xy = 0 \in A$. ie. x divides 0..

If a ring does not have zerodivisors is an integral domain.

Definition prime spectrum - Spec(A). set of prime ideals of A. ie.

$$Spec(A) = \{ P \mid P \subset A \text{ is a prime ideal} \}$$

Definition integral domain. Ring in which the product of any two nonzero elements is nonzero.

ie. no zerodivisors.

ie. $\forall 0 \neq a, 0 \neq b \in A, ab \neq 0 \in A.$

Every field is an integral domain, not the converse.

Definition principal ideal domain - PID. integral domain in which every ideal is principal. ie. ie. $\forall I \subset R, \ \exists \ a \in I \text{ such that } I = (a) = \{ra \mid r \in R\}.$

Definition nilpotent. $a \in A$ such that $a^n = 0$ for some n > 0.

Definition nilrad A. set of all nilpotent elements of A; is an ideal of A. if $nilradA = 0 \implies A$ has no nonzero nilpotents.

$$nilradA = \bigcap_{P \in Spec(A)} P$$

Definition idempotent. $e \in A$ such that $e^2 = e$.

Definition radical of an ideal.

$$radI = \{ f \in A | f^n \in I \text{ for some } n \}$$

 $\begin{array}{l} radI \text{ is an ideal.} \\ nilradA = rad0 \\ radI = \bigcap_{\substack{P \in \operatorname{Spec}(A) \\ P \supset I}} P \end{array}$

Definition local ring. A *local ring* has a unique maximal ideal.

Notation: local ring A, its maximal ideal \mathfrak{m} , residue field $K = A/\mathfrak{m}$:

$$A \supset \mathfrak{m} \text{ or } (A, \mathfrak{m}) \text{ or } (A, \mathfrak{m}, K)$$

1.2 \mathbb{Z} and K[X], two Principal Ideal Domains

Lemma . \mathbb{Z} is a PID.

Proof. Let I a nonzero ideal of \mathbb{Z} .

Since $I \neq \{0\}$, there is at least one nonzero integer in I. Choose the smallest element of I, namely d.

Observe that $(d) \subseteq I$, since $d \in I$. Then, every multiple $nd \in I$, since I is an ideal.

Take $a \in I$. By the Euclidean division algorithm in \mathbb{Z} , a = qd + r, with $q, r \in \mathbb{Z}$ and $0 \le r \le d$.

Then $r = a - qd \in I$, but d was chosen to be the smallest positive element of I, so the only possibility is r = 0.

Hence, a = qd, so $a \in (d)$, giving $I \subseteq (d)$.

Since we had $(d) \subseteq I$ and now we got $I \subseteq (d)$, we have I = (d), so every ideal of \mathbb{Z} is principal. Thus \mathbb{Z} is a Principal Ideal Domain(PID).

Lemma . K[X] is a PID.

Proof. This proof follows very similarly to the previous proof.

Let K be a field, K[X] a polynomial ring.

Take $\{0\} \neq I \subseteq K[X]$.

Since $I \neq \{0\}$, there is at least one non-zero polynomial in I.

Let $p(X) \in I$ be of minimal degree among nonzero elements of I.

Observe that $(p(X)) \subseteq I$, because $p(X) \in I$ and I is an ideal.

Let $f(X) \in I$. By Euclidean division algorithm in K[X], $\exists q, r \in K[X]$ such that $f(X) = q(X) \cdot p(X) + r(X)$ with eithr r(X) = 0 or deq(r) < deq(p).

Since $f, p \in I$, then $r(X) = f(X) - q(X) \cdot p(X) \in I$

If $r(X) \neq 0$, then deg(r) < deg(p), which contradicts the minimality of deg(p) in I.

Therefore, r(X)=0, thus $f(X)=q(X)\cdot p(X)$, hence $f(X)\in (p(X))$. Henceforth, $I\subseteq (p(X))$.

Then, since $(p(X)) \subseteq I$ and $I \subseteq (p(X))$, we have that I = (p(X)).

So every ideal of K[X] is principal; thus K[X] is a PID.

1.3 Lemmas, propositions and corollaries

Let Σ be a partially orddered set. Given subset $S \subset \Sigma$, an *upper bound* of S is an element $u \in \Sigma$ such that $s < u \forall s \in S$.

A maximal element of Σ , is $m \in \Sigma$ such that m < s does not hold for any $s \in \Sigma$.

A subset $S \subset \Sigma$ is totally ordered if for every pair $s_1, s_2 \in S$, either $s_1 \leq s_2$ or $s_2 \leq s_1$.

Lemma R.1.7. Zorn's lemma suppose Σ a nonempty partially ordered set (ie. we are given a relation $x \leq y$ on Σ), and that any totally ordered subset $S \subset \Sigma$ has an upper bound in Σ .

Then Σ has a maximal element.

Theorem AM.1.3. Every ring $A \neq 0$ has at least one maximal ideal.

Proof. By Zorn's lemma R.1.7.

Corollary AM.1.4. if $I \neq (1)$ an ideal of A, \exists a maximal ideal of A containing I.

Corollary AM.1.5. Every non-unit of A is contained in a maximal ideal.

Definition Jacobson radical. The *Jacobson radical* of a ring A is the intersection of all the maximal ideals of A.

Denoted Jac(A).

Jac(A) is an ideal of A.

Proposition AM.1.9. $x \in Jac(A)$ iff (1 - xy) is a unit in $A, \forall y \in A$.

Proof. Suppose 1 - xy not a unit.

By AM.1.5, $1 - xy \in \mathfrak{m}$ for \mathfrak{m} some maximal ideal.

But $x \in Jac(A) \subseteq \mathfrak{m}$, since Jac(A) is the intersection of all maximal ideals of A.

Hence $xy \in \mathfrak{m}$, and therefore $1 \in \mathfrak{m}$, which is absurd, thus 1 - xy is a unit. Conversely:

Suppose $x \notin \mathfrak{m}$ for some maximal ideal \mathfrak{m} .

Then \mathfrak{m} and x generate the unit ideal (1), so that we have u+xy=1 for some $u\in\mathfrak{m}$ and some $y\in A$.

Hence $1 - xy \in \mathfrak{m}$, and is therefore not a unit.

2 Modules

2.1 Modules concepts

Let A be a ring. An A-module is an Abelian group M with a multiplication map

$$A \times M \longrightarrow M$$

 $(f, m) \longmapsto fm$

satisfying $\forall f, g \in A, m, n \in M$.

i.
$$f(m \pm n) = fm \pm fn$$

ii.
$$(f \pm g)m = fm \pm gm$$

iii.
$$(fg)m = f(gm)$$

iv. $1_A m = m$

Let $\psi: M \longrightarrow M$ an A-linear endomorphism of M. $A[\psi] \subset EndM$ is the subring generated by A and the action of ψ .

- since ψ is A-linear, $A[\psi]$ is a commutative ring.
- M is a module over $A[\psi]$, so ψ becomes multiplication by a ring element.

2.2 Cayley-Hamilton theorem, Nakayama lemma, and corollaries

Proposition AM.2.4. (Cayley-Hamilton Theorem) Let M a fingen A-module. Let $\mathfrak a$ an ideal of A, let ψ an A-module endomorphism of M such that $\psi(M) \subseteq \mathfrak a M$.

Then ψ satisfies

$$\psi^n + a_1 \psi^{n-1} + \ldots + a_{n-1} \psi + a_n = 0$$

with $a_i \in \mathfrak{a}$.

Proof. Since M fingen, let $\{x_1, \ldots, x_n\}$ be generators of M.

By hypothesis, $\psi(M) \subseteq \mathfrak{a}M$; so for any generator x_i , it's image $\psi(x_i) \in \mathfrak{a}M$.

Any element in $\mathfrak{a}M$ is a linear combination of the generators with coefficients in the ideal \mathfrak{a} , thus

$$\psi(x_i) = \sum_{j=1}^n a_{ij} x_j$$

with $a_{ij} \in \mathfrak{a}$.

Thus, for a module with n generators, we have n different $\psi(x_i)$ equations:

$$\psi(x_1) = a_{1,1}x_1 + a_{1,2}x_2 + \ldots + a_{1,n}x_n$$

$$\psi(x_2) = a_{2,1}x_1 + a_{2,2}x_2 + \ldots + a_{2,n}x_n$$
 are linear combinations of the
$$\psi(x_n) = a_{n,1}x_1 + a_{n,2}x_2 + \ldots + a_{n,n}x_n$$
 generators of M

Next step: rearrange in order to use matrix algebra.

Observe that each row equals 0, and rearranging the elements at each row we get

$$\psi(x_1) - (a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n) = 0$$

$$\psi(x_2) - (a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n) = 0$$

$$\dots$$

$$\psi(x_n) - (a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n) = 0$$

Then, group the x_i terms together; as example, take the row i = 1:

$$(\psi - a_{1,1})x_1 - a_{1,2}x_2 - \dots - a_{1,n}x_n = 0$$

$$(\psi - a_{1,1})x_1 - a_{1,2}x_2 - \dots - a_{1,n}x_n = 0$$

$$- a_{2,1}x_1 + (\psi - a_{2,2})x_2 - \dots - a_{2,n}x_n = 0$$

$$\dots$$

$$- a_{1,1}x_1 - a_{1,2}x_2 - \dots + (\psi - a_{1,n})x_n = 0$$

So, $\forall i \in [n]$, as a matrix:

$$\begin{pmatrix} \psi - a_{1,1} & -a_{1,2} & \dots & -a_{1,n} \\ -a_{2,1} & \psi - a_{2,2} & \dots & -a_{2,n} \\ \vdots & & & & \\ -a_{n,1} & -a_{n,2} & \dots & \psi - a_{n,n} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Denote the previous matrix by Φ . Let m denote the vector $(x_1, x_2, \dots, x_n)^T$ (ie. the vector of generators of the A-module M).

Then we can write the previous equality as

$$\Phi \cdot m = 0 \tag{1}$$

We know that

$$adj(\Phi)\Phi = det(\Phi)I \tag{2}$$

(aka. fundamental identity for the adjugate matrix).

So if at (1) we multiply both sides by $adj(\Phi)$,

$$\begin{aligned} adj(\Phi) \cdot \Phi \cdot m &= 0 \\ \text{(recall from (2): } adj(\Phi)\Phi &= det(\Phi) \cdot I \text{)} \\ &= det(\Phi) \cdot I \cdot m = 0 \end{aligned}$$

Thus,

$$det(\Phi) \cdot I \cdot m = 0$$
:

$$\begin{pmatrix} \det(\Phi) & 0 & \dots & 0 \\ 0 & \det(\Phi) & \dots & 0 \\ \vdots & & & & \\ 0 & 0 & \dots & \det(\Phi) \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

 \Longrightarrow

$$det(\Phi) \cdot x_i = 0 \quad \forall i \in [n] \tag{3}$$

ie. $det(\Phi)$ is an annihilator of the generators x_i of M, thus is an annihilator of the entire module M.

So, we're interested into calculating the $det(\Phi)$.

By the Leibniz formula,

$$\det(A) = \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$

thus,

$$det(\Phi) = \underbrace{(\psi - a_{11})(\psi - a_{22})\dots(\psi - a_{nn})}_{\text{diagonal of }\Phi, \text{ leading term of the determinant}} - \dots$$

The determinant trick is that the terms that go after the "leading term of the determinant", will belong to $\mathfrak a$ and their combinations with ψ will not be bigger than ψ^n . Furthermore, when expanding it

- highest power is $1 \cdot \psi^n$
- coefficient of ψ^{n-1} is $-(\underbrace{a_{11} + a_{22} + \ldots + a_{nn}}_{a_1})$, where, since each $a_{ii} \in \mathfrak{a}$, $a_1 \in \mathfrak{a}$
- the rest of coefficients of ψ^k are also elements in \mathfrak{a}

Therefore we have

$$det(\Phi) = \psi^{n} + a_1 \psi^{n-1} + a_2 \psi^{n-2} + \dots + a_{n-1} \psi + a_n$$

with $a_i \in \mathfrak{a}$.

Now, notice that we had $det(\Phi) \cdot x_i = 0 \ \forall \ i \in [n]$.

The matrix Φ is the *characteristic matrix*, xI - A, viewed as an operator. Then,

$$det(\Phi) = det(xI - A) = p(x)$$

where p(x) is the characteristic polynomial.

If a linear transformation turns every basis vector (x_i) into zero, then that transformation is the zero transformation. So in our case, $det(\Phi)$ is the zero transformation, thus $det(\Phi) = 0$. Therefore,

$$\psi^n + a_1 \psi^{n-1} + a_2 \psi^{n-2} + \ldots + a_{n-1} \psi + a_n = 0$$

Corollary AM.2.5. Let M a fingen A-module, let $\mathfrak a$ an ideal of A such that $\mathfrak{a}M=M.$

Then, $\exists x \equiv 1 \pmod{\mathfrak{a}}$ such that xM = 0.

Proof. take $\psi = \text{identity}$. Then in Cayley-Hamilton (AM.2.4):

$$\psi^{n} + a_{1}\psi^{n-1} + a_{2}\psi^{n-2} + \dots + a_{n-1}\psi + a_{n} = 0$$

$$\implies id_{M} + a_{1}id_{M} + a_{2}id_{M} + \dots + a_{n-1}id_{M} + a_{n} = 0$$

$$\implies (1 + a_{1} + \dots + a_{n})id_{M} = 0$$

apply it to $m \in M$, where since $id_M(m) = m$ (by definition of the identity), we then have

$$(1+a_1+\ldots+a_n)\cdot m=0$$

with $a_i \in \mathfrak{a}$.

part i. xM = 0:

Thus the scalar $x = (1 + a_1 + \ldots + a_n)$ annihilates every $m \in M$, ie. the entire module M.

part ii. $x \equiv 1 \pmod{\mathfrak{a}}$:

$$x \equiv 1 \pmod{\mathfrak{a}} \iff (x-1) \in \mathfrak{a}$$

then from $x = (1 + \underbrace{a_1 + \ldots + a_n}_{b}) \in \mathfrak{a}$, set $b = a_1 + \ldots + a_n$,

so that $x = (1 + b) \in \mathfrak{a}$.

Then
$$x - 1 = (1 + b) - 1 = b \in \mathfrak{a}$$

so $x - 1 \in \mathfrak{a}$, thus $x \equiv 1 \pmod{\mathfrak{a}}$ as stated.

Proposition AM.2.6. Nakayama's lemma Let M a fingen A-module, let $\mathfrak a$ an ideal of A such that $\mathfrak{a} \subseteq Jac(A)$.

Then $\mathfrak{a}M = M$ implies M = 0.

Proof. By AM.2.5: since $\mathfrak{a}M = M$, we have xM = 0 for some $x \equiv 1 \pmod{Jac(A)}$. (notice that at AM.2.5 is (mod \mathfrak{a}) but here we use (mod Jac(A)), since we have $\mathfrak{a} \subseteq Jac(A)$).

(recall AM.1.9: $x \in Jac(A)$ iff (1 - xy) is a unit in $A, \forall y \in A$).

By AM.1.9, x is a unit in A (thus $x^{-1} \cdot x = 1$). Hence $M = x^{-1} \cdot \underbrace{x \cdot M}_{=0 \text{ (by AM.2.5)}} = 0$.

Hence
$$M = x^{-1} \cdot \underbrace{x \cdot M} = 0$$

Thus, if $\mathfrak{a}M = M$ then M = 0.

Corollary AM.2.7. Let M a fingen A-module, let $N \subseteq M$ a submodule of M, let $\mathfrak{a} \subseteq Jac(A)$ an ideal.

Then
$$M = \mathfrak{a}M + N \stackrel{\text{implies}}{\Longrightarrow} M = N$$
.

Proof. The idea is to apply Nakayama (AM.2.6) to M/N.

Since M fingen $\implies M/N$ is fingen and an A-module.

Since $\mathfrak{a} \subseteq Jac(A) \implies$ Nakayama applies to M/N too.

By definition,

$$\mathfrak{a}M = \left\{ \sum a_i \cdot m_i \mid a_i \in \mathfrak{a}, m_i \in M \right\}$$

where m_i are the generators of M.

Then, for M/N,

$$\mathfrak{a}(\frac{M}{N}) = \left\{ \sum a_i \cdot (m_i + N) \mid a_i \in \mathfrak{a}, m_i \in M \right\}$$

observe that $a_i(m_i + N) = a_i m_i + N$, thus

$$\sum_{i} a_{i} \cdot (m_{i} + N) = \underbrace{(\sum_{i} a_{i} \cdot m_{i})}_{\in \mathfrak{a}M} + N \in \mathfrak{a}M + N$$

Hence,

$$\mathfrak{a}(\frac{M}{N}) = \{x + N \mid x \in \mathfrak{a}M\} = \mathfrak{a}M + N \tag{4}$$

By definition, if we take $\frac{\mathfrak{a}M+N}{N}$, then

$$\frac{\mathfrak{a}M+N}{N}=\{y+N \mid y\in \mathfrak{a}M+N\}=\mathfrak{a}M+N$$

thus every $y \in \mathfrak{a}M + N$ can be written as

$$y = x + n$$
, with $x \in \mathfrak{a}M$, $n \in N$

which comes from (4).

Thus, y+N=(x+n)+N=x+N, since $n\in N$ is zero in the quotient. Hence, every element of $\frac{aM+N}{N}$ has the form

$$\frac{\mathfrak{a}M+N}{N}=\{x+N\ |\ x\in\mathfrak{a}M\}$$

as in (4).

Thus

$$\mathfrak{a}(\frac{M}{N}) = \mathfrak{a}M + N = \frac{\mathfrak{a}M + N}{N} \tag{5}$$

By the Collorary assumption, $M = \mathfrak{a}M + N$; quotient it by N:

$$\frac{M}{N} = \frac{\mathfrak{a}M + N}{N} \tag{6}$$

So, from (5) and (6):

$$\mathfrak{a}(\frac{M}{N})=\mathfrak{a}M+N=\frac{\mathfrak{a}M+N}{N}=\frac{M}{N}$$

thus, $\mathfrak{a}(\frac{M}{N}) = \frac{M}{N}$.

By Nakayama's lemma AM.2.6, if $\mathfrak{a}(\frac{M}{N}) = \frac{M}{N} \stackrel{implies}{\Longrightarrow} \frac{M}{N} = 0$

Note that

$$\frac{M}{N} = \{m + N \mid m \in M\}$$

(the zero element in $\frac{M}{N}$ is the coset N = 0 + N)

Then, $\frac{M}{N}=0$ means that the quotient has exactly one element, the zero coset N.

Thus, every coset m+N equals the zero coset N, so $m-0 \in N \implies m \in N$. Hence every $m \in M$ lies in N, ie. $\forall m \in M, \ m \in N$.

So $M \subseteq N$. But notice that by the Corollary, we had $N \subseteq M$, therefore M = N.

Thus, if
$$M = \mathfrak{a}M + N \stackrel{implies}{\Longrightarrow} M = N$$
.

Proposition AM.2.8. Let $x_i \forall i \in [n]$ be elements of M whose images $\frac{M}{mM}$ from a basis of this vector space. Then the x_i generate M.

Proof. Let N submodule M, generated by the x_i . Then the composite map $N \longrightarrow M \longrightarrow \frac{M}{mM}$ maps N onto $\frac{M}{mM}$, hence $N + \mathfrak{a}M = M$, which by AM.2.7 implies N = M.

Proposition AM.2.10. Split exact sequence. TODO

3 Noetherian rings

Definition . Ascending Chain Condition A partially ordered set Σ has the ascending chain condition (a.c.c.) if every chain

$$s_1 \leq s_2 \leq \ldots \leq s_k \leq \ldots$$

eventually breaks off, that is, $s_k = s_{k+1} = \dots$ for some k.

 Σ has the a.c.c. iff every non-empty subset $S \subset \Sigma$ has a maximal element.

if $\neq S \subset \Sigma$ does not have a maximal element, choose $s_1 \in S$, and for each s_k , an element s_{k+1} with $s_k < s_{k+1}$, thus contradicting the a.c.c.

Definition R.3.2. Noetherian ring Let A a ring; 3 equivalent conditions:

i. the set Σ of ideals of A has the a.c.c.; in other words, every increasing chain of ideals

$$I_1 \subset I_2 \subset \ldots \subset I_k \subset \ldots$$

eventually stops, that is $I_k = I_{k+1} = \dots$ for some k.

- ii. every nonempty set S of iddeals has a maximal element
- iii. every iddeal $I \subset A$ is finitely generated

If these conditions hold, then A is Noetherian.

Definition R.3.4.D. Noetherian modules An A-module M is Noetherian if the submoles of M have the a.c.c., that is, ay increasing chain

$$M_1 \subset M_2 \subset \ldots \subset M_k \subset \ldots$$

of submodules eventually stops.

As in with rings, it is equivalent to say that

i. any nonempty set of modules of M has a maximal element

ii. every submodule of M is finite

Proposition R.3.4.P. Let $0 \longrightarrow L \xrightarrow{\alpha} M \xrightarrow{\beta} N \longrightarrow 0$ be a s.e.s. (split exact sequence, AM.2.10).

Then, M is Noetherian $\iff L$ and N are Noetherian.

Proof. \Longrightarrow : trivial, since ascending chains of submodules in L and N correspond one-to-one to certain chains in M.

 \Leftarrow : suppose $M_1 \subset M_2 \subset \ldots \subset M_k \subset \ldots$ is an increasing chain of submodules of M.

Then identifying $\alpha(L)$ with L and taking intersection gives a chain

$$L \cap M_1 \subset L \cap M_2 \subset \ldots \subset L \cap M_k \subset \ldots$$

of submodules of L, and applying β gives a chain

$$\beta(M_1) \subset \beta(M_2) \subset \dots \beta(M_k) \subset \dots$$

of submodules of N.

Each of these two chains eventually stop, by the assumption on L and N, so that we only need to prove the following lemma which completes the proof. \square

Lemma R.3.4.L. for submodules $M_1 \subset M_2 \subset M$,

$$L \cap M_1 = L \cap M_2$$
 and $\beta(M_1) = \beta(M_2) \implies M_1 = M_2$

Proof. if $m \in M_2$, then $\beta(m) \in \beta(M_1) = \beta(M_2)$, so that there is an $n \in M_1$ such that $\beta(m) = \beta(m)$.

Then $\beta(m-n)=0$, so that

$$m-n \in M_2 \cap ker(\beta) = M_1 \cap ker(\beta)$$

Hence $m \in M_1$, thus $M_1 = M_2$.

4 Exercises

For the exercises, I follow the assignments listed at [3].

The exercises that start with \mathbf{R} are the ones from the book [2], and the ones starting with \mathbf{AM} are the ones from the book [1].

4.1 Exercises Chapter 1

Exercise R.1.1. Ring A and ideals I, J such that $I \cup J$ is not an ideal. What's the smallest ideal containing I and J?

Proof. Take ring $A = \mathbb{Z}$. Set $I = 2\mathbb{Z}$, $J = 3\mathbb{Z}$.

I, J are ideals of $A (= \mathbb{Z})$. And $I \cup J = 2\mathbb{Z} \cup 3\mathbb{Z}$.

Observe that for $2 \in I$, $3 \in J \implies 2, 3 \in I \cup J$, but $2 + 3 = 5 \notin I \cup J$.

Thus $I \cup J$ is not closed under addition; thus is not an ideal.

Smallest ideal of \mathbb{Z} (= A) containing I and J is their sum:

$$I + J = \{a + b | a \in I, b \in J\}$$

gcd(2,3) = 1, so $I + J = \mathbb{Z}$.

Therefore, smallest ideal containing I and J is the whole ring \mathbb{Z} .

Exercise R.1.5. let $\psi: A \longrightarrow B$ a ring homomorphism. Prove that ψ^{-1} takes prime ideals of B to prime ideals of A.

In particular if $A \subset B$ and P a prime ideal of B, then $A \cap P$ is a prime ideal of A

Proof. (Recall: prime ideal is if $a, b \in R$ and $a \cdot b \in P$ (with $R \neq P$), implies $a \in P$ or $b \in P$).

Let

$$\psi^{-1}(P) = \{ a \in A | \psi(a) \in P \} = A \cap P$$

The claim is that $\psi^{-1}(P)$ is prime iddeal of A.

i. show that $\psi^{-1}(P)$ is an ideal of A:

 $0_A \in \psi^{-1}(P)$, since $\psi(0_A) = 0_B \in P$ (since every ideal contains 0).

If $a, b \in \psi^{-1}(P)$, then $\psi(a), \psi(b) \in P$, so

$$\psi(a-b) = \psi(a) - \psi(b) \in P$$

hence $a - b \in \psi^{-1}(P)$.

If $a \in \psi^{-1}(P)$ and $r \in A$, then $\psi(ra) = \psi(r)\psi(a) \in P$, since P is an ideal. Thus $ra \in \psi^{-1}(P)$.

 \implies so ψ^{-1} is an ideal of A.

ii. show that $\psi^{-1}(P)$ is prime:

 $\psi^{-1}(P) \neq A$, since if $\psi^{-1}(P) = A$, then $1_A \in \psi^{-1}(P)$, so $\psi(1_A) = 1_B \in P$, which would mean that P = B, a contradiction since P is prime ideal of B.

Take $a, b \in A$ with $ab \in \psi^{-1}(P)$; then $\psi(ab) \in P$, and since ψ is a ring homomorphism, $\psi(ab) = \psi(a)\psi(b)$.

Since P prime ideal, then $\psi(a)\psi(b) \in P$ implies either $\psi(a) \in P$ or $\psi(b) \in P$. Thus $a \in \psi^{-1}(P)$ or $b \in \psi^{-1}(P)$.

Hence $\psi^{-1}(P)$ (= $A \cap P$) is a prime ideal of A.

Exercise R.1.6. prove or give a counter example:

- a. the intersection of two prime ideals is prime
- b. the ideal $P_1 + P_2$ generated by 2 prime ideals P_1, P_2 is prime
- c. if $\psi:A\longrightarrow B$ ring homomorphism, then ψ^{-1} takes maximal ideals of B to maximal ideals of A
- d. the map ψ^{-1} of Proposition 1.2 takes maximal ideals of A/I to maximal ideals of A

Proof. a. let $I = 2\mathbb{Z} = (2)$, $J = 3\mathbb{Z} = (3)$ be ideals of \mathbb{Z} , both prime.

Then
$$I \cap J = (2) \cap (3) = (6)$$
.

The ideal (6) is not prime in \mathbb{Z} , since $2 \cdot 3 \in (6)$, but $2 \neq (6)$ and $3 \neq (6)$.

Thus the intersection of two primes can not be prime.

b. $P_1 = (2), P_2 = (3), \text{ both prime.}$

Then,

$$P_1 + P_2 = (2) + (3) = \{a + b | a \in P_1, b \in P_2\}$$

 \longrightarrow in a principal ideal domain (like \mathbb{Z}), the sum of two principal ideals is again principal, and given by (m) + (n) = (gcd(m, n)).

(recall: principal= generated by a single element)

So,
$$P_1 + P_2 = (2) + (3) = (gcd(2,3)) = (1) = \mathbb{Z}$$
.

The whole ring is not a prime ideal (by the definition of the prime ideal), so $P_1 + P_2$ is not a prime ideal.

Henceforth, the sum of two prime ideals is not necessarily prime.

c. let $A = \mathbb{Z}, B = \mathbb{Q}, \psi : A \longrightarrow B$.

Since \mathbb{Q} is a field, its only maximal ideal is (0).

Then

$$\psi^{-1}((0)) = (0) \subset \mathbb{Z}$$
 ie. $\psi^{-1}(m_B) = (m_B) \subset A$

But (0) is not maximal in \mathbb{Z} , because $\mathbb{Z}/(0) \cong \mathbb{Z}$ is not a field.

Thus the preimages of maximal ideals under arbitrary ring homomorphisms need not be maximal.

d. $\psi: A \longrightarrow A/I$ quotient homomorphism, $I \subseteq A$ an ideal.

Let M a maximal ideal of A/I, then $\frac{(A/I)}{M}$ is a field (Proposition 1.3).

By the isomorphism theorems,

$$\frac{(A/I)}{M} \cong \frac{A}{\psi^{-1}(M)}$$

Since $\frac{(A/I)}{M}$ is a field, the quotient $\frac{A}{\psi^{-1}(M)}$ is a field, so $\psi^{-1}(M)$ is a maximal ideal of A.

 \implies under ψ , preimages of maximal ideals are maximal.

Exercise R.1.12.a. if I, J ideals and P prime ideal, prove that

$$IJ \subset P \iff I \cap J \subset P \iff I \text{ or } J \subset P$$

Proof. assume $I \subseteq P$ (for $J \subseteq P$ will be the same, symmetric), take $x \in IJ$, then

$$x = \sum_{k=1}^{n} a_k b_k$$

with $a_k \in I$, $b_k \in J$.

Each $a_k \in I \subseteq P$. Since P an ideal,

$$\sum_{k=1}^{n} a_k b_k \in P$$

thus $x \in P$, hence $IJ \subseteq P$. So $I \subseteq P$ or $J \subseteq P \Longrightarrow IJ \subseteq P$.

Conversely,

assume P prime and $IJ \subseteq P$.

Suppose by contradiction that $I \not\subseteq P$ and $J \not\subseteq P$.

- since $I \not\subseteq P$, $\exists a \in I$ with $a \notin P$
- since $J \not\subseteq P$, $\exists b \in J$ with $b \notin P$

Since $a \in I$, $b \in J$, $ab \in IJ \subseteq P$, but P is prime, so $ab \in P$ implies that $a \in P$ or $b \in P$. This contradicts a, b being taken outside of P.

Thus $I \not\subseteq P$ and $J \not\subseteq P$ are false.

So both directions are proven, hence

$$IJ \subseteq P \implies I \subseteq P \text{ or } J \subseteq P$$

Exercise R.1.18. Use Zorn's lemma to prove that any prime ideal P contains a minimal prime ideal.

Proof. Let P prime ideal of R.

$$S = \{ Q \subseteq R \mid Q \text{ a prime ideal AND } Q \subseteq P \}$$

Goal: show that S has a minimal element, the minimal ideal contained in P.

 $P \subset S$, so S is nonempty.

Let $C \subseteq S$ be a chain (= totally ordered subset) with respect to inclusion. Define

$$Q_C = \bigcap_{Q \in C} Q$$

Clearly $Q_C \subseteq P$, since each $Q \in C$ is $Q \subseteq P$.

Since C is ordered by inclusion, it is a decreasing chain of prime ideals. Intersection of a decreasing chain of prime ideals is again a prime ideal:

- if $ab \in Q_C$, then $ab \in Q \ \forall Q \in C$
- since Q prime, $\forall Q \in C$ either $a \in Q$ or $b \in Q$

If there were some Q_1 , $Q_2 \in C$ with $a \in Q_1$ and $b \notin Q_2$, then by total ordering, either $Q_1 \subseteq Q_2$ or $Q_2 \subseteq Q_1$.

In either case: contradiction, since the smaller one would have to contain the element that was assumed to be excluded.

Thus $\forall Q \in C$ the same element a,b must lie in all $Q. \Longrightarrow$ lies in the intersection of them, Q_C .

Henceforth, Q_C is a prime ideal and lies in S, and its a lower bound of C in S.

Now, S is nonempty, and every chain in S has a lower bound in S (its intersection).

Therefore, S has a minimal element P_{min} .

By construction, P_{min} is a prime ideal $P_{min} \subseteq P$, and by minimality there are no strictly smaller prime ideals inside P.

So P_{min} is a minimal prime ideal, contained in P.

Exercise R.1.10.		
Proof.		

Exercise R.1.11.

 \square Proof.

Exercise R.1.4.

Proof. \Box

4.2 Exercises Chapter 2

References

- [1] M. F. Atiyah and I. G. MacDonald. Introduction to Commutative Algebra, 1969
- [2] Miles Reid. Undergraduate Commutative Algebra, 1995.
- [3] Steven Kleiman. Commutative Algebra MIT Open-CourseWare, 2008. https://ocw.mit.edu/courses/18-705-commutative-algebra-fall-2008/.