Notes on Sonic

arnaucube

Abstract

Notes taken while reading Sonic paper [1]. Usually while reading papers I take handwritten notes, this document contains some of them rewritten to $L a T e X$.

The notes are not complete, don't include all the steps neither all the proofs.

Contents

1 Sonic
 1

1.1 Structured Reference String 1
1.2 System of constraints 1
1.2.1 The basic Sonic protocol 3
1.2.2 Polynomial Commitment Scheme 3
1.3 Succint signatures of correct computation 4

1 Sonic

1.1 Structured Reference String

$\left\{\left\{g^{x^{i}}\right\}_{i=-d}^{d},\left\{g^{\alpha x^{i}}\right\}_{i=-d, i \neq 0}^{d},\left\{h^{x^{i}}, h^{\alpha x^{i}}\right\}_{i=-d}^{d}, e\left(g, h^{\alpha}\right)\right\}$

1.2 System of constraints

Multiplication constraint: $a \cdot b=c$
Q linear constraints:

$$
a \cdot u_{q}+b \cdot v_{q}+c \cdot w_{q}=k_{q}
$$

with $u_{q}, v_{q}, w_{q} \in \mathbb{F}^{n}$, and $k_{q} \in \mathbb{F}_{p}$.
Example: $x^{2}+y^{2}=z$

$$
a=(x, y), \quad b=(x, y), \quad c=\left(x^{2}, y^{2}\right)
$$

i. $(x, y) \cdot(1,0)+(x, y) \cdot(-1,0)+\left(x^{2}, y^{2}\right) \cdot(0,0)=0 \longrightarrow x-x=0$
ii. $(x, y) \cdot(0,1)+(x, y) \cdot(0,-1)+\left(x^{2}, y^{2}\right) \cdot(0,0)=0 \longrightarrow y-y=0$
iii. $(x, y) \cdot(0,0)+(x, y) \cdot(0,0)+\left(x^{2}, y^{2}\right) \cdot(1,1)=z \longrightarrow x^{2}+y^{2}=z$

So,

$$
\begin{array}{clll}
u_{1}=(1,0) & v_{1}=(-1,0) & w_{1}=(0,0) & k_{1}=0 \\
u_{2}=(0,1) & v_{2}=(0,-1) & w_{2}=(0,0) & k_{2}=0 \\
u_{3}=(0,0) & v_{3}=(0,0) & w_{3}=(1,1) & k_{2}=z
\end{array}
$$

Compress n multiplication constraints into an equation in formal indeterminate Y :

$$
\sum_{i=1}^{n}\left(a_{i} b_{i}-c_{i}\right) \cdot Y^{i}=0
$$

encode into negative exponents of Y :

$$
\sum_{i=1}^{n}\left(a_{i} b_{i}-c_{i}\right) \cdot Y^{-} i=0
$$

Also, compress the Q linear constraints, scaling by Y^{n} to preserve linear independence:

$$
\sum_{q=1}^{Q}\left(a \cdot u_{q}+b \cdot v_{q}+c \cdot w_{q}-k_{q}\right) \cdot Y^{q+n}=0
$$

Polys:

$$
\begin{aligned}
& u_{i}(Y)=\sum_{q=1}^{Q} Y^{q+n} \cdot u_{q, i} \\
& v_{i}(Y)=\sum_{q=1}^{Q} Y^{q+n} \cdot v_{q, i} \\
& w_{i}(Y)=-Y^{i}-Y^{-1}+\sum_{q=1}^{Q} Y^{q+n} \cdot w_{q, i} \\
& k(Y)=\sum_{q=1}^{Q} Y^{q+n} \cdot k_{q}
\end{aligned}
$$

Combine the multiplicative and linear constraints to:

$$
a \cdot u(Y)+b \cdot v(Y)+c \cdot w(Y)+\sum_{i=1}^{n} a_{i} b_{i}\left(Y^{i}+Y^{-i}\right)-k(Y)=0
$$

where $a \cdot u(Y)+b \cdot v(Y)+c \cdot w(Y)$ is embeded into the constant term of the polynomial $t(X, Y)$.

Define $r(X, Y)$ s.t. $r(X, Y)=r(X Y, 1)$.

$$
\begin{gathered}
\Longrightarrow r(X, Y)=\sum_{i=1}^{n}\left(a_{i} X^{i} Y^{i}+b_{i} X^{-i} Y^{-i}+c_{i} X^{-i-n} Y^{-i-n}\right) \\
s(X, Y)=\sum_{i=1}^{n}\left(u_{i}(Y) X^{-i}+v_{i}(Y) X^{i}+w_{i}(Y) X^{i+n}\right) \\
r^{\prime}(X, Y)=r(X, Y)+s(X, Y) \\
t(X, Y)=r(X, Y)+r^{\prime}(X, Y)-k(Y)
\end{gathered}
$$

The coefficient of X^{0} in $t(X, Y)$ is the left-hand side of the equation.
Sonic demonstrates that the constant term of $t(X, Y)$ is zero, thus demonstrating that our constraint system is satisfied.

1.2.1 The basic Sonic protocol

1. Prover constructs $r(X, Y)$ using their hidden witness
2. Prover commits to $r(X, 1)$, setting the maximum degree to n
3. Verifier sends random challenge y
4. Prover commits to $t(X, y)$. The commitment scheme ensures that $t(X, y)$ has no constant term.
5. Verifier sends random challenge z
6. Prover opens commitments to $r(z, 1), r(z, y), t(z, y)$
7. Verifier calculates $r^{\prime}(z, y)$, and checks that

$$
r(z, y) \cdot r^{\prime}(z, y)-k(y)==t(z, y)
$$

Steps 3 and 5 can be made non-interactive by the Fiat-Shamir transformation.

1.2.2 Polynomial Commitment Scheme

Sonic uses an adaptation of KZG [2], want:
i. evaluation binding, i.e. given a commitment F, an adversary cannot open F to two different evaluations v_{1} and v_{2}
ii. bounded polynomial extractable, i.e. any algebraic adversary that opens a commitment F knows an opening $f(X)$ with powers $-d \leq i \leq \max , i \neq 0$.

PC scheme (adaptation of KZG):
i. Commit(info, $f(X)) \longrightarrow F$:

$$
F=g^{\alpha \cdot x^{d-\max }} \cdot f(x)
$$

ii. Open(info, $F, z, f(x)) \longrightarrow(f(z), W)$:

$$
\begin{gathered}
w(X)=\frac{f(X)-f(z)}{X-z} \\
W=g^{w(x)}
\end{gathered}
$$

iii. Verify $($ info $, F, z,(v, W)) \longrightarrow 0 / 1$:

Check:

$$
e\left(W, h^{\alpha \cdot x}\right) \cdot e\left(g^{v} W^{-z}, h^{\alpha}\right)==e\left(F, h^{x^{-d+\max }}\right)
$$

1.3 Succint signatures of correct computation

Signature of correct computation to ensure that an element $s=s(z, y)$ for a known polynomial

$$
s(X, Y)=\sum_{i, j=-d}^{d} s_{i, j} \cdot X^{i} \cdot Y^{i}
$$

Use the structure of $s(X, Y)$ to prove its correct calculation using a permutation argument \longrightarrow grand-product argument inspired by Bayer and Groth, and Bootle et al.

Restrict to constraint systems where $s(X, Y)$ can be expressed as the sum of M polynomials. Where $j-t h$ poly is of the form:

$$
\Psi_{j}(X, Y)=\sum_{i=1}^{n} \psi_{j, \sigma_{j, i}} \cdot X^{i} \cdot Y^{\sigma_{j, i}}
$$

where σ_{j} is the fixed polynomial permutation, and $\phi_{j, i} \in \mathbb{F}$ are the coefficients.

WIP

References

[1] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge snarks from linear-size universal and updateable structured reference strings. Cryptology ePrint Archive, Paper 2019/099, 2019. https : //eprint.iacr.org/2019/099.
[2] A. Kate, G. M. Zaverucha, , and I. Goldberg. Constant-size commitments to polynomials and their application, 2010. https://www.iacr.org/archive/ asiacrypt2010/6477178/6477178.pdf.

