
Motivation Recap on folding IVC Decider Sonobe

Sonobe, a modular folding schemes library

2024-10-08
0xPARC & PSE

1/31

Motivation Recap on folding IVC Decider Sonobe

Polynomials and SNARKs

◦ define the ’program’ that we want to be able to prove as a set
of constraints

◦ encode the constraints as polynomials
eg. R1CS: Az ◦Bz − Cz == 0

A(X) ·B(X)− C(X) == 0

◦ and then use some scheme to prove that those polynomials
satisfy the relation. eg. Groth16, Spartan, etc

TL;DR: want to prove polynomial relations

2/31

Motivation Recap on folding IVC Decider Sonobe

Why folding

◦ Repetitive computations take big circuits −→ large proving
time

◦ in some cases takes too much memory and can not be even
computed

◦ eg. prove a chain of 10k sha256 hashes (¿600M R1CS
constraints, not feasible with most traditional SNARK proving
systems)

◦ eg. zkVM opcodes

◦ Traditional recursion: verify (in-circuit) a proof of the correct
execution of the same circuit for the previous input

◦ issue: in-circuit proof verification is expensive (constraints)

◦ ie. verify a Groth16 proof inside a R1CS circuit

3/31

Motivation Recap on folding IVC Decider Sonobe

Why folding

◦ Repetitive computations take big circuits −→ large proving
time

◦ in some cases takes too much memory and can not be even
computed

◦ eg. prove a chain of 10k sha256 hashes (¿600M R1CS
constraints, not feasible with most traditional SNARK proving
systems)

◦ eg. zkVM opcodes

◦ Traditional recursion: verify (in-circuit) a proof of the correct
execution of the same circuit for the previous input

◦ issue: in-circuit proof verification is expensive (constraints)

◦ ie. verify a Groth16 proof inside a R1CS circuit

3/31

Motivation Recap on folding IVC Decider Sonobe

IVC - Incremental Verifiable Computation
Valiant’08

Prove that applying n times the F function (the circuit being
folded) to the initial state (z0) results in the final state (zn).

In other words, it allows to prove efficiently that

zn = F (... F (F (F (F (z0, w0), w1), w2), ...), wn−1)

4/31

Motivation Recap on folding IVC Decider Sonobe

Folding scheme pipeline

The IVC folds the AugmentedFCircuit, which ensures that the NIFS.Verify checks out.

5/31

Motivation Recap on folding IVC Decider Sonobe

RLC of homomorphic commitments

In the initial folding schemes, we rely on homomorphic commitments, eg.
Pedersen commitments
Let g ∈ Gn, v ∈ Fn

r ,

Com(v) = ⟨g, v⟩ = g1 · v1 + g2 · v2 + . . .+ gn · vn ∈ G

RLC:
Let v, w ∈ Fn

r ,
set cmv = Com(v), cmw = Com(w) ∈ G.
then,

y = v + r · w
cmy = cmv + r · cmw

so that
cmy = Com(y)

6/31

Motivation Recap on folding IVC Decider Sonobe

Random linearly combining 2 R1CS instances

R1CS instance: ({A,B,C} ∈ Fn×n, n, l), such that for
z = (1, io ∈ Fl, w ∈ Fn−l−1) ∈ Fn,

Az ◦Bz = Cz

If we try to do a RLC with two instances (z = z1 + rż2):

Az ◦Bz = A(z1 + rz2) ◦B(z1 + rz2)

= (Az1 ◦Bz1) + r · (Az1 ◦Bz2 +Az2 ◦Bz1) + r2 · (Az2 ◦Bz2)

̸= Cz = C(z1 + rz2) = Cz1 + rCz2 = (Az1 ◦Bz1) + r · (Az2 ◦Bz2)

we end up with some inequality.

Nova’s solution, Relaxed R1CS:

Az ◦Bz = uCz + E

for u ∈ F, E ∈ Fn.

Witness of the instance: WI = (E,W)
Committed Relaxed R1CS instance: CI = (E, u,W, x)

Full details at Nova’s paper, pages 13-15 (”first attempt, second attempt, third attempt”)

7/31

Motivation Recap on folding IVC Decider Sonobe

Random linearly combining 2 R1CS instances

R1CS instance: ({A,B,C} ∈ Fn×n, n, l), such that for
z = (1, io ∈ Fl, w ∈ Fn−l−1) ∈ Fn,

Az ◦Bz = Cz

If we try to do a RLC with two instances (z = z1 + rż2):

Az ◦Bz = A(z1 + rz2) ◦B(z1 + rz2)

= (Az1 ◦Bz1) + r · (Az1 ◦Bz2 +Az2 ◦Bz1) + r2 · (Az2 ◦Bz2)

̸= Cz = C(z1 + rz2) = Cz1 + rCz2 = (Az1 ◦Bz1) + r · (Az2 ◦Bz2)

we end up with some inequality.
Nova’s solution, Relaxed R1CS:

Az ◦Bz = uCz + E

for u ∈ F, E ∈ Fn.

Witness of the instance: WI = (E,W)
Committed Relaxed R1CS instance: CI = (E, u,W, x)

Full details at Nova’s paper, pages 13-15 (”first attempt, second attempt, third attempt”)

7/31

Motivation Recap on folding IVC Decider Sonobe

NIFS: Non Interactive Folding Scheme (in Nova)
Main idea:

◦ protocol between P (Prover) and V (Verifier)

◦ where P and V obtain the ’folded’ committed instance that corresponds to the ’folded’ witness instance that P computes

◦ so V does not know the witness

RelaxedR1CS relation: Az ◦ Bz = uCz + E, for u ∈ F, E ∈ Fn.
Witness of the instance: WI = (E,W)

Committed Relaxed R1CS instance: CI = (E, u,W, x)

Relation check:

z = (1, x,W)
Az ◦ Bz − uCz − E

?
= 0

W
?
= Com(W)

E
?
= Com(E)

8/31

Motivation Recap on folding IVC Decider Sonobe

NIMFS

issue: the RLC with > 2 instances makes the cross-terms grow
ie. some vectors (T) would get bigger and their commitments (T)
more expensive

NIMFS in HyperNova, ProtoGalaxy, etc

◦ instead of 2 RLC between 2 instances

◦ HyperNova: run SumCheck
◦ ProtoGalaxy: protocol using Lagrange Basis (instead of

random values) for the linear combinations and then the
zero-check protocol
alternatively using MLE and SumCheck

Allowing to fold > 2 instances at each folding step.

9/31

Motivation Recap on folding IVC Decider Sonobe

NIMFS

issue: the RLC with > 2 instances makes the cross-terms grow
ie. some vectors (T) would get bigger and their commitments (T)
more expensive

NIMFS in HyperNova, ProtoGalaxy, etc

◦ instead of 2 RLC between 2 instances

◦ HyperNova: run SumCheck
◦ ProtoGalaxy: protocol using Lagrange Basis (instead of

random values) for the linear combinations and then the
zero-check protocol
alternatively using MLE and SumCheck

Allowing to fold > 2 instances at each folding step.

9/31

Motivation Recap on folding IVC Decider Sonobe

10/31

Motivation Recap on folding IVC Decider Sonobe

HyperNova NIMFS
src: https://eprint.iacr.org/2023/573.pdf (HyperNova paper)

11/31

https://eprint.iacr.org/2023/573.pdf

Motivation Recap on folding IVC Decider Sonobe

ProtoGalaxy Folding
src: https://eprint.iacr.org/2023/1106.pdf (ProtoGalaxy paper)

12/31

https://eprint.iacr.org/2023/1106.pdf

Motivation Recap on folding IVC Decider Sonobe

(Recall) Folding scheme pipeline

The IVC folds the AugmentedFCircuit, which ensures that the NIFS.Verify checks out.

13/31

Motivation Recap on folding IVC Decider Sonobe

IVC - Incrementally Verifiable Computation

◦ need to ensure that at each fold (IVC step), the NIFS is
correctly done

◦ want to have a construction where we fold the circuit that
itself contains the checks of the Folding Scheme (NIFS.Verify)

◦ we encode the NIFS.Verify inside a circuit
(AugmentedFCircuit), together with other checks that ensure
the correct relations

◦ and is this AugmentedFCircuit (F ′) the one which we actually
fold

14/31

Motivation Recap on folding IVC Decider Sonobe

Folding circuit - AugmentedFCircuit

wrapper over the circuit that we want to fold

◦ contains the circuit that we want to fold

◦ plus extra checks ensuring that the fold is being done correctly

◦ some hashing and values checks
◦ run the NIFS.Verify in-circuit

◦ Nova: RLC of F and G elements
◦ HyperNova: RLC of F and G elements + SumCheck verifier
◦ ProtoGalaxy: linear cominations of F and G elements with the

Lagrange basis and some polynomial evaluations + ...
(alternatively SumCheck)

15/31

Motivation Recap on folding IVC Decider Sonobe

Cycle of curves

NIFS.V involves G point operation, which are not native over Fr of G.
−→ delegate them into a circuit over a 2nd curve We use:

◦ G1.Fr = G2.Fq

◦ G1.Fq = G2.Fr

◦ eg. for Ethereum compatibility:
G1: BN254, G2: Grumpkin.

We ’mirror’ the main F ′ circuit into the 2nd curve
each circuit computes natively the point operations of the other curve’s circuit

16/31

Motivation Recap on folding IVC Decider Sonobe

Cycle of curves

NIFS.V involves G point operation, which are not native over Fr of G.
−→ delegate them into a circuit over a 2nd curve We use:

◦ G1.Fr = G2.Fq

◦ G1.Fq = G2.Fr

◦ eg. for Ethereum compatibility:
G1: BN254, G2: Grumpkin.

We ’mirror’ the main F ′ circuit into the 2nd curve
each circuit computes natively the point operations of the other curve’s circuit

17/31

Nova’s Folding Circuit (F’) + CycleFold circuit

src: https://privacy-scaling-explorations.github.io/sonobe-docs/design/novacyclefold-circuit.html

https://privacy-scaling-explorations.github.io/sonobe-docs/design/novacyclefold-circuit.html

Motivation Recap on folding IVC Decider Sonobe

(Recall) Folding scheme pipeline

The IVC folds the AugmentedFCircuit, which ensures that the NIFS.Verify checks out.

19/31

Motivation Recap on folding IVC Decider Sonobe

Decider (Final compressed proof)

Issue: IVC proof is not succinct.

◦ Committed Instances of the AugmentedFCircuit Un, un, where each one is

{E ∈ G1,W ∈ G1, u ∈ Fr, x ∈ F|io|
r }

◦ and their respective Witnesses Wn, wn, each one being {E ∈ Fn
r ,W ∈ Fn

r }
◦ Committed instance of the CycleFold circuit UEC,n contains:

{E ∈ G2,W ∈ G2, u ∈ Fq , x ∈ F|io|
q }

◦ and its Witnesses WEC,n, being {E ∈ Fn
r ,W ∈ Fn

r }

So the idea is to ’compress’ the IVC proof into a zkSNARK proof, minimizing the size

and the verifier computation.

20/31

Motivation Recap on folding IVC Decider Sonobe

Decider checks

1. check NIFS.V (r, Un, un, T)
?
= Un+1

2. check that un.E = 0 and un.u = 1

3. check that un.x0 = H(n, z0, zn, Un) and un.x1 = H(UEC,n)

4. correct RelaxedR1CS relation of Un+1,Wn+1 of the
AugmentedFCircuit

5. check commitments of Un+1.{E,W} with respect Wn+1

(where E,W ∈ E1)

6. check the correct RelaxedR1CS relation of UEC,n,WEC,n of
the CycleFoldCircuit

7. check commitments of UEC,n.{E,W} with respect WEC,n

(where E,W ∈ E2)

21/31

Motivation Recap on folding IVC Decider Sonobe

Decider checks

1. check NIFS.V (r, Un, un, T)
?
= Un+1

2. check that un.E = 0 and un.u = 1

3. check that un.x0 = H(n, z0, zn, Un) and un.x1 = H(UEC,n)

4. correct RelaxedR1CS relation of Un+1,Wn+1 of the
AugmentedFCircuit

5. check commitments of Un+1.{E,W} with respect Wn+1

(where E,W ∈ E1) non-native!

6. check the correct RelaxedR1CS relation of UEC,n,WEC,n of
the CycleFoldCircuit non-native!

7. check commitments of UEC,n.{E,W} with respect WEC,n

(where E,W ∈ E2)

22/31

Motivation Recap on folding IVC Decider Sonobe

Original Nova Decider

◦ Original Nova: wrapp these checks in 2 Spartan (zkSNARK)
proofs (one over each curve of the cycle of curves).
−→ 2 Spartan proofs, one on each curve

◦ In our case we were interested into verifying the proofs in
Ethereum’s EVM.

Need to do a bit of gymnastics to verify the folding proofs in
Ethereum,
EVM limitations:

◦ limited to BN254 curve

◦ constrainted by gas costs

23/31

Motivation Recap on folding IVC Decider Sonobe

Onchain Decider

1.1: check that the given NIFS challenge r is indeed well computed.
This challenge is then used outside the circuit by the Verifier to compute NIFS.V obtaining Ui+1

2: check that un.E = 0 and un.u = 1

3: check that un.x0 = H(n, z0, zn, Un) and un.x1 = H(UEC,n)

4: correct RelaxedR1CS relation of Un+1,Wn+1 of the AugmentedFCircuit

5.1: Check correct computation of the KZG challenges
cE = H(E.{x, y}), cW = H(W.{x, y})
which we do through in-circuit Transcript.

5.2: check that the KZG evaluations are correct, evalW == pW (cW), evalE == pE(cE)
where pW , pE ∈ F[X] are the interpolated polynomials from Wi+1.W, Wi+1.E respectively.

6: check the correct RelaxedR1CS relation of UEC,n,WEC,n of the CycleFoldCircuit
(this is non-native operations and with naive sparse matrix-vector product blows up the number of constraints)

7: Pedersen commitments verification of UEC,n.{E,W} with respect WEC,n
(the witness of the committed instance)

(where E,W ∈ E2, this check is native in Fr)

The following check is done non-natively (in Fr): Additionally we would have to check (outside of the circuit):

1.2: check NIFS.V (r, Un, un, T)
?
= Un+1

5.3: Commitments verification of Un+1.{E,W} with respect Wn+1 (where E,W ∈ E1)

More details in Sonobe’s docs: https://privacy-scaling-explorations.github.io/sonobe-docs/design/novacyclefold-circuit.html

24/31

https://privacy-scaling-explorations.github.io/sonobe-docs/design/novacyclefold-circuit.html

Motivation Recap on folding IVC Decider Sonobe

Onchain Decider

25/31

Motivation Recap on folding IVC Decider Sonobe

Onchain Decider

25/31

Motivation Recap on folding IVC Decider Sonobe

Sonobe

Experimental folding schemes library implemented jointly by 0xPARC and PSE.
https://github.com/privacy-scaling-explorations/sonobe
Modular library,

◦ Be able to

◦ Add and test new folding schemes
◦ Compare schemes ’apples-to-apples’
◦ Researchers can easily add their own schemes (eg. Mova

paper)

◦ Make it easy for devs to use folding

◦ minimal code to fold your circuits (’plug-and-fold’)
◦ easy to switch between folding schemes and curves
◦ support of multiple zk-circuit languages

Remark: experimental and unoptimized.

26/31

https://github.com/privacy-scaling-explorations/sonobe

Motivation Recap on folding IVC Decider Sonobe

Sonobe - Dev experience

Dev flow:

1 Define a circuit to be folded

2 Set which folding scheme to be used (eg. Nova with CycleFold)

3 Set a final decider to generate the final proof (eg. Groth16 over BN254 curve)

4 Generate the Solidity decider verifier (EVM Solidity contract)

Sonobe lib pipeline:

27/31

Motivation Recap on folding IVC Decider Sonobe

Status of Sonobe - schemes implemented

Implemented (fully implemented):

◦ Nova: Recursive Zero-Knowledge Arguments from Folding Schemes
https://eprint.iacr.org/2021/370.pdf, Abhiram Kothapalli, Srinath Setty, Ioanna
Tzialla. 2021

◦ CycleFold: Folding-scheme-based recursive arguments over a cycle of elliptic
curves
https://eprint.iacr.org/2023/1192.pdf, Abhiram Kothapalli, Srinath Setty. 2023

◦ HyperNova: Recursive arguments for customizable constraint systems
https://eprint.iacr.org/2023/573.pdf, Abhiram Kothapalli, Srinath Setty. 2023

◦ ProtoGalaxy: Efficient ProtoStar-style folding of multiple instances
https://eprint.iacr.org/2023/1106.pdf, Liam Eagen, Ariel Gabizon. 2023

Started (NIFS implemented, next: folding circuit, IVC, Decider, etc):

◦ Mova: Nova folding without committing to error terms
https://eprint.iacr.org/2024/1220.pdf, Nikolaos Dimitriou, Albert Garreta, Ignacio Manzur, Ilia Vlasov.
2024

◦ Ova: Reduce the accumulation verifier in Nova from 2 to just 1 group operation
https://eprint.iacr.org/2024/1220.pdf, Benedikt Bünz. 2024

Frontends - how can the dev define a circuit to be folded

◦ Arkworks https://github.com/arkworks-rs

◦ experimental: Circom, Noir, Noname.

28/31

https://eprint.iacr.org/2021/370.pdf
https://eprint.iacr.org/2023/1192.pdf
https://eprint.iacr.org/2023/573.pdf
https://eprint.iacr.org/2023/1106.pdf
https://eprint.iacr.org/2024/1220.pdf
https://eprint.iacr.org/2024/1220.pdf
https://github.com/arkworks-rs

Motivation Recap on folding IVC Decider Sonobe

Modularity

Big thanks to arkworks https://github.com/arkworks-rs

[Code example in the code editor]

29/31

https://github.com/arkworks-rs

Motivation Recap on folding IVC Decider Sonobe

Some numbers

(code highly unoptimized)

◦ folding step ∼ 300ms

◦ Folding circuit (Nova+CycleFold): ∼ 50k R1CS constraints
(overhead)

◦ Offchain Decider prove: < 1 min

◦ Onchain Decider Verification:

◦ DeciderEthCircuit: ∼ 10M R1CS constraints
◦ < 3 minutes in a 32GB RAM 16 core laptop

◦ gas costs (DeciderEthCircuit proof): ∼ 800k gas
◦ mostly from G16, KZG10, public inputs processing
◦ can be reduced by hashing the public inputs & batching the

pairings check
◦ expect to get it down to < 500k gas.

Recall, this proof is proving that applying n times the function F (the circuit
that we’re folding) to an initial state z0 results in the state zn.

30/31

Motivation Recap on folding IVC Decider Sonobe

Wrappup

◦ repo: https://github.com/privacy-scaling-explorations/sonobe

◦ docs: https://privacy-scaling-explorations.github.io/sonobe-docs/

2024-10-08

0xPARC & PSE.

31/31

https://github.com/privacy-scaling-explorations/sonobe
https://privacy-scaling-explorations.github.io/sonobe-docs/
https://0xparc.org
https://pse.dev/

	Motivation
	Recap on folding
	IVC
	Decider
	Sonobe

