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Abstract

Notes taken while studying Commutative Algebra, mostly from Atiyah
& MacDonald book [I] and Reid’s book [2]. For the exercises, I follow the
assignments listed at [3].

Usually while reading books and papers I take handwritten notes in a
notebook, this document contains some of them re-written to LaTeX.

The proofs may slightly differ from the ones from the books, since I
try to extend them for a deeper understanding.
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1 Ideals

1.1 Definitions

Definition . ideal I C R (Rring) suchthat0 € TandVz € I, r € R, zr,rz € I.
ie. I absorbs products in R.



Definition . prime ideal if a,b € R with ab € P and P # R (P a prime ideal),
implies ainP or b € P.

Definition . principal ideal generated by a single element, (a).
(a): principal ideal, the set of all multiples za with x € R.

Definition . maximal ideal m C A (A ring) with m # A and there is no ideal
I strictly between m and A. ie. if m maximal and m C I C A, either m = I or
I=A

Definition . unit x € A such that zy = 1 for some y € A. ie. element which
divides 1.

Definition . zerodivisor x € A such that 30 # y € A such that zy = 0 € A.
ie. x divides 0..
If a ring does not have zerodivisors is an integral domain.

Definition . prime spectrum - Spec(A) set of prime ideals of A. ie.

Spec(A) = {P | P C Ais a prime ideal}

Definition . integral domain Ring in which the product of any two nonzero
elements is nonzero.

ie. no zerodivisors.

ie. VO#a, 0£be A, ab#0 € A.

Every field is an integral domain, not the converse.

Definition . principal ideal domain - PID integral domain in which every ideal
is principal. ie. ie. VI C R, 3 a € I such that I = (a) = {ra | r € R}.

Definition . nilpotent a € A such that a™ = 0 for some n > 0.

Definition . nilrad A set of all nilpotent elements of A; is an ideal of A.
if nilradA =0 = A has no nonzero nilpotents.

nilradA = ﬂ P
PeSpec(A)
Definition . idempotent e € A such that e? = e.

Definition . radical of an ideal
radl = {f € A|f™ € I for somen}

radl is an ideal.
nilradA = rad0

radl = ﬂPESpeC(A) P
PDI

Definition . local ring A local ring has a unique maximal ideal.
Notation: local ring A, its maximal ideal m, residue field K = A/m:

ADmor (A,m)or (4,m, K)



1.2 7Z and K[X], two Principal Ideal Domains
Lemma . Z is a PID.

Proof. Let I a nonzero ideal of Z.

Since I # {0}, there is at least one nonzero integer in I. Choose the smallest
element of I, namely d.

Observe that (d) C I, since d € I. Then, every multiple nd € I, since [ is
an ideal.

Take a € I. By the Euclidean division algorithm in Z, a = qd 4 r, with
q,r€Zand 0 <r <d.

Then r = a — qd € I, but d was chosen to be the smallest positive element
of I, so the only possibility is r = 0.

Hence, a = qd, so a € (d), giving I C (d).

Since we had (d) C I and now we got I C (d), we have I = (d), so every
ideal of Z is principal. Thus Z is a Principal Ideal Domain(PID). O

Lemma . K[X] is a PID.

Proof. This proof follows very similarly to the previous proof.

Let K be a field, K[X] a polynomial ring.

Take {0} # I C K[X].

Since I # {0}, there is at least one non-zero polynomial in I.

Let p(X) € I be of minimal degree among nonzero elements of I.

Observe that (p(X)) C I, because p(X) € I and I is an ideal.

Let f(X) € I. By Euclidean division algorithm in K[X], 3¢,r € K[X] such
that f(X) = q(X) - p(X) + r(X) with eithr r(X) = 0 or deg(r) < deg(p).

Since f,p € I, then r(X) = f(X) —q¢(X) -p(X) € I

If r(X) # 0, then deg(r) < deg(p), which contradicts the minimality of
deg(p) in I.

Therefore, r(X) = 0, thus f(X) = ¢(X) - p(X), hence f(X) € (p(X)).
Henceforth, I C (p(X)).

Then, since (p(X)) C I and I C (p(X)), we have that I = (p(X)).

So every ideal of K[X] is principal; thus K[X] is a PID.

1.3 Zorn’s lemma and Jacobson radicals

Let ¥ be a partially orddered set. Given subset S C X, an upper bound of S is
an element u € ¥ such that s < uVs € S.

A mazimal element of 3, is m € ¥ such that m < s does not hold for any
s €.

A subset S C X is totally ordered if for every pair s1,s5 € S, either 57 < s9
or s9 < Sq.



Lemma R.1.7. Zorn’s lemma. Suppose ¥ a nonempty partially ordered set
(ie. we are given a relation z < y on X), and that any totally ordered subset
S C ¥ has an upper bound in X.

Then ¥ has a maximal element.

Theorem AM.1.3. Every ring A # 0 has at least one maximal ideal.
Proof. By Zorn’s lemma [R.1.7} O

Corollary AM.1.4. if I # (1) an ideal of A, 3 a maximal ideal of A containing
I

Corollary AM.1.5. Every non-unit of A is contained in a maximal ideal.

Definition . Jacobson radical The Jacobson radical of a ring A is the intersec-
tion of all the maximal ideals of A.

Denoted Jac(A).

Jac(A) is an ideal of A.

Proposition AM.1.9. z € Jac(A) iff (1 — zy) is a unit in A4, Yy € A.

Proof. Suppose 1 — xy not a unit.

By 1 — zy € m for m some maximal ideal.

But « € Jac(A) C m, since Jac(A) is the intersection of all maximal ideals
of A.

Hence zy € m, and therefore 1 € m, which is absurd, thus 1 — zy is a unit.

Conversely:
Suppose = € m for some maximal ideal m.

Then m and x generate the unit ideal (1), so that we have u + xy = 1 for
some u € m and some y € A.

Hence 1 — xy € m, and is therefore not a unit. O

2 Modules

2.1 Modules concepts

Let A be a ring. An A-module is an Abelian group M with a multiplication
map

Ax M —M
(fym) — fm

satisfying V f,g € A, m,n € M.
i. f(m=+n)=fm=+ fn

i (f£g)m=fm+£gm

iii. (fg)m = f(gm)



iv. 1am=m
Let ¢ : M — M an A-linear endomorphism of M.
Al] C EndM is the subring geneerated by A and the action of .

e since ¢ is A-linear, A[] is a commutative ring.

e M is a module over A[i)], so ¢ beomes multiplication by a ring element.

2.2 Cayley-Hamilton theorem, Nakayama lemma, and corol-
laries

Proposition AM.2.4. (Cayley-Hamilton Theorem) Let M a fingen A-module.
Let a an ideal of A, let 1 an A-module endomorphism of M such that ¥(M) C

aM.
Then 1 satisfies

P+ " 4 a1 4 a, =0
with a; € a.
Proof. Since M fingen, let {z1,...,z,} be generators of M.
By hypothesis, ¢(M) C aM; so for any generator z;, it’s image ¢ (z;) € aM.
Any element in aM is a linear combination of the generators with coefficients
in the ideal a, thus

D) =Y ai
j=1

with ai; € a.
Thus, for a module with n generators, we have n different ¢ (x;) equations:

Y(x1) = a1 + a1 02 + ...+ a1 Ty

n elements ¥ (z;) € aM which
P(x2) = ag101 + 2202 + ...+ a2 Ty

are linear combinations of the

n generators of M
Y(@n) = an1T1 + an2T2 + ...+ AppTn

Next step: rearrange in order to use matrix algebra.
Observe that each row equals 0, and rearranging the elements at each row

we get

1/}(1‘1) — (a171$1 +a10T0 + ...+ almzn) =0
w(.’L‘g) — (ag,lxl +agoxo + ...+ a27nl‘n) =0

q/)(3777,) - (an,lxl + Un 222 +...+ an,nxn) =0

Then, group the x; terms together; as example, take the row i = 1:

(¢ — a171)x1 — 1272 — ... — A1 pnTp = 0



(Y —ai1)r1 — a1 — ... — a1 Ty =0

—a2121 + (¥ —ag2)xe — ... — G2.nTy =0

— G111 —A12%2 — ...+ (’(/J — al,n)xn =0

So, Vi € [n], as a matrix:

Y—ay1  —a12 ... —ain x1 0
—a21 w — a2 . —a2.n T2 0
—anp,1 —Qp2 o Y —apg Tn 0
Denote the previous matrix by ®. Let m denote the vector (z1,z2,...,2,)T
(ie. the vector of generators of the A-module M).
Then we can write the previous equality as
d-m=0 (1)
We know that
adj(®)® = det(P)I (2)
(aka. fundamental identity for the adjugate matriz).
So if at ([I) we multiply both sides by adj(®),
adj(®) - P-m =0
(recall from ([2)): adj(®)® = det(®) - I )
=det(®)-I'm =0
Thus,
det(®) - I-m=0:
det(P) 0 e 0 T 0
0 det(®) ... 0 T 0
0 0 .. det(®) T 0
=
det(®) - x; =0 Vi€ [n] (3)

ie. det(®) is an annihilator of the generators x; of M, thus is an annihilator
of the entire module M.

So, we're interested into calculating the det(®).

By the Leibniz formula,

det(A) = > sgn(o) [ aioq)
=1

cES,



thus,
det(®) = (Y —an)(P —azn)...(Y —apm) —...

diagonal of @, leading term of the determinant

The determinant trick is that the terms that go after the ”leading term of
the determinant”, will belong to a and their combinations with ¥ will not be
bigger than ™. Furthermore, when expanding it

e highest power is 1 - 9™

e coefficient of Y"1 is —(a11 + age + ... + ann),

ay
where, since each a;; €a, a1 €a

e the rest of coefficients of 1/* are also elements in a

Therefore we have
det(®) =Y + a1 " P+ a"F 4+ F a1+ ap

with a; € a.

Now, notice that we had det(®) -x; =0V i € [n].
The matrix ® is the characteristic matriz, xI — A, viewed as an operator.
Then,
det(®) = det(xl — A) = p(x)

where p(x) is the characteristic polynomial.

If a linear transformation turns every basis vector (x;) into zero, then that
transformation is the zero transformation. So in our case, det(®) is the zero
transformation, thus det(®) = 0. Therefore,

P+ ap" a4+t ap_ 1+ a, =0

Corollary AM.2.5. Let M a fingen A-module, let a an ideal of A such that
aM = M.
Then, 3z =1 (mod a) such that M = 0.

Proof. take 1) = identity. Then in Cayley-Hamilton (AM.2.4)):
P+ a1+ aoy" P Lt a1+ an =0
= idpy + aridpy + agidpy + ...+ ap—1tdy +an, =0
= (14+a1+...+ay)idyy =0

apply it to m € M, where since idp;(m) = m (by definition of the identity), we
then have
lI4+a1+...+ay,) -m=0

with a; € a.



part i. M = 0:
Thus the scalar = (1 + a1 + ... + a,) annihilates every m € M, ie.
the entire module M.

part ii. z =1 (mod a):
=1 (moda) < (z—1)€a
then fromz = (1+a1+...4a,) €a,setb=a; + ...+ an,
—_————

b
so that z = (1+0) € a.

Thenz—1=(1+b)—1=b€a
sox—1€a, thus z =1 (mod a) as stated.

O

Proposition AM.2.6. Nakayama’s lemma. Let M a fingen A-module, let a
an ideal of A such that a C Jac(A).
Then aM = M implies M = 0.

Proof. By AM.2.5F since aM = M, we have M = 0 for some z = 1 (mod Jac(A)).

(notice that at JAM.2.5|is (mod a) but here we use (mod Jac(A)), since we
have a C Jac(A)).

(recall x € Jac(A) iff (1 —zy) is a unit in A4, Vy € A).
By x is a unit in A (thus 2712 = 1).

Hence M =z~ 1 - x - M =0.
—
=0 (by [AM.2.5)
Thus, if aM = M then M = 0. O

Corollary AM.2.7. Let M a fingen A-module, let N C M a submodule of M,
let a C Jac(A) an ideal.

implies

Then M =aM + N =— M = N.

Proof. The idea is to apply Nakayama (AM.2.6]) to M/N.
Since M fingen = M/N is fingen and an A-module.

Since a C Jac(A) = Nakayama applies to M/N too.
By definition,

aM:{Zalmz ‘ alan,miGM}
where m,; are the generators of M.
Then, for M/N,

a(%)z {Zai~(mi+N) | a; € a,m; EM}

observe that a;(m; + N) = a;m; + N, thus

Zai'(mi—f—N):(Zai~mi)+N€aM+N

K3

————
caM



Hence,

M
G(W)Z{I+N | reaM}=aM+ N (4)
By definition, if we take “MA}"N, then
M+ N
%z{y—#N | yeaM +N}=aM + N

thus every y € aM + N can be written as
y=x+n, withxeaM, ne N

which comes from .

Thus, y+ N = (x+n)+ N =z + N, since n € N is zero in the quotient.
Hence, every element of W has the form

M+ N
MEN (o4 N | zeal)
N
asin.
Thus M M+ N
a
My NN
(M) = ans 4 v = 2 )

By the Collorary assumption, M = aM + N; quotient it by N:
M oM+ N

NTON ©)
So, from and @:
M aM+N M
a( N) aM + N N
thus, a(¥) = &£ o
By Nakayama’s lemma [AM.2.6] if (%) = 4% 4 =0
Note that
M
~ = {m+ N |me M}

(the zero element in % is the coset N =0+ N)

Then, % = 0 means that the quotient has exactly one element, the zero
coset N.

Thus, every coset m+ N equals the zero coset N;som—0€ N = m € N.

Hence every m € M lies in N, ie. Vm € M, m € N.

So M C N. But notice that by the Corollary, we had N C M, therefore
M = N.

Thus, if M =aM + N

implies

M = N. O



Proposition AM.2.8. Let z; Vi € [n] be elements of M whose images -

mM
from a basis of this vector space. Then the z; generate M.

Proof. Let N submodule M, generated by the z;.
Then the composite map N — M — m% maps N onto %, hence
N + aM = M, which by [AM.2.7] implies N = M. O

2.3 Sequences

Definition R.2.9.a. Exact Sequence Let a sequence of homomorphisms
LML N

It is exact at M if im(a) = ker(B).
ie. foa =0 and a maps surjectively to ker(f).

Definition R.2.9.b. Short Exact Sequence (s.e.s.)

0—L-5M-2N—0

is exact <= L C M and N = M/L.
Properties:

e (« injective

e [3 surjective

e a: L= kerp

e induces M/a(L) — N

Proposition R.2.10. Split exact sequence For the previous s.e.s., 3 equivalent
conditions:

i. Jisomorphism M = L & N, with
a:m— (m,0)
B:(m,n)—n
ii. 3 a section of 8, that is, a map s : N — M such that S o s = idy
iii. 3 a retraction of a, that is, a map r : M — L such that r o a = id,
If all i, ii, iii are satisfied, it is a split exact sequence.

Proof. Intuitively, when a s.e.s. splits it means that the middle module M is
the direct sum of the other (outer) two modules, ie. M = L& N.

10



(i toii, iil) if M =2 L & N such that « : m — (m,0), 8: s(m,n) — n, we can
define the maps

for ii:
s: N—L&N
s(n) — (0,n)
Then B(s(n)) = B(0,n), so fos=1idy.
for iii:
r: LON — L
r(m,n) — m
Then r(a(m)) = r(m,0), so ro«a = idy.

(ii to i) assume s : N — M such that o s =idy,
Want to show M = im(a) @ im(s).
VYm € M, consider m — s(3(m)), apply 8 to it:
B(m — s(B(m))) = B(m) — (Bos)(B(m)) = B(m) — f(m) =0
Since ker(B) = im(a), 3! € L such that a(l) =m — s(8(m)).
Thus m = «a(l) 4+ s(B(m)).

Now, suppose z € im(a) Nim(s), then z = «(l) = s(n), apply B to it:
Bla(l)) = B(s(n)) = 0=n.
If n = 0, then s(n) = 0, so the intersection is {0}.

Define

¢:L&N — M
o(l,n) — a(l) + s(n)

This isomorphism satisfies the required conditions.

(iii to i) similar to the previous one.
Overview:

oy M A
0— L‘T%L@N‘?N —0

11



a:l—(1,0)
r:(m,n) —m
aor =1idy
B:(,n)—mn
s:n+— (0,n)
Bos=1idy

3 Noetherian rings (and modules)

Definition . Ascending Chain Condition A partially orddered set ¥ has the
ascending chain condition (a.c.c.) if every chain

81 <83 <

eventually breaks off, that is, s = sg41 = ... for some k.

= Y has the a.c.c. iff every non-empty subset S C ¥ has a maximal
element.
if #S5 C ¥ does not have a maximal element, choose s; € S, and for each
Sk, an element sk41 with s; < sk41, thus contradicting the a.c.c.

Definition R.3.2. Noetherian ring Let A a ring; 3 equivalent conditions:

i. the set ¥ of ideals of A has the a.c.c.; in other words, every increasing chain
of ideals
Lchhc...CclyC...

eventually stops, that is Iy = Ix41 = ... for some k.
ii. every nonempty set S of ideals has a maximal element
iii. every ideal I C A is finitely generated
If these conditions hold, then A is Noetherian.
Proof. TODO O

Definition R.3.4.D. Noetherian modules An A-module M is Noetherian if
the submoles of M have the a.c.c.,
that is, ay increasing chain

My CMyC...CMgC...

of submodules eventually stops.

As in with rings, it is equivalent to say that

12



i. any nonempty set of modulesof M has a maximal element

ii. every submodule of M is finite

Proposition R.3.4.P. Let 0 — L *» M PN 5 0be ases. (split

exact sequence, [R.2.10)).

Then, M is Noetherian <= L and N are Noetherian.

Proof. =: trivial, since ascending chains of submodules in L and N correspond
one-to-one to certain chains in M.

<=: suppose M; C My C ... C M}, C ... is an increasing chain of submod-
ules of M.

Then identifying «(L) with L and taking intersection gives a chain

LNM,CLNMyC...CLNMyC...
of submodules of L, and applying 3 gives a chain
B(My) C B(Mz) C ... (M) C ...

of submodules of N.
Fach of these two chains eventually stop, by the assumption on L and N, so
that we only need to prove the following lemma which completes the proof. [

Lemma R.3.4.L. for submodules M; € M, C M,
LNM =LnNMsyand ﬂ(Ml) = B(MQ) — My = M,

Proof. if m € Ms, then f(m) € (M) = B(Mz), so that there is an n € M;
such that 8(m) = B(n).
Then S(m —n) =0, so that

m—n € MyNker(8) = My Nker(5)
Hence m € My, thus My = M. O
Corollary R.3.5. Properties of Noetherian modules.
i. if Vi € [r], M, are Noetherian modules, then @;_, M; is Noetherian.

ii. if A a Noetherian ring, then an A-module M is Noetherian iff it is finite
over A.

iii. if A a Noetherian ring, M a finite module, then any submodule N C M is
again finite.

iv. if A a Noetherian ring, and ¥ : A — B a ring homomorphism such that
B is a finite A-module, then B is a Noetherian ring.

Proof. 1. a direct sum M; @ Ms is a particular case of an exact sequence.

Then, Proposition proves this statement when » = 2. The case
r > 2 follows by induction.

13



ii. if M finite, then 3 surjective homomorphism
A" — M — 0
for some 7, so that M is a quotient
M= A"/N

for some submodule N C A".

A" is a Noetherian module by i., so M is Noetherian due Proposition

R34P
Conversely, M Noetherian implies M finite.

item as in previous implications:

M finite and A Noetherian = M is Noetherian,
= since N C M, then N is Noetherian too

= which implies that N is a finite A-module.

iii. B is Noetherian as an A-module; but ideals of B are submodules of B as
an A-submodule, so that B is a Noetherian ring.
O

Theorem R.3.6. Hilbert basis theorem if A a Noetherian ring, then so is the
polynomial ring A[z].

Proof. Prove that any ideal I C A[x] is fingen.
Define auxiliary sets J, C A by

Jo={a€A|3If €Isth f=azx"+b, 12"  +...by}

ie. J, is the set of leading coefficients of I of degree n.
J, is an ideal, since I is an ideal.
Jn C Jpy1, since for f € I also xf € I.
Therefore J; C Jo C ... C Jx C ... is an increasing chain of ideals.
Using the assumption that A is Noetherian, deduce that J,, = J,,1 for some n.
For each m <n, J, C A is fingen, ie.

Jm - (am,h e anb,rm)

By definition of J,,, for each a,, ; with 1 < j <1y,
a polynomial f,, ; € I of degree m having the leading coefficient a,,, ;.

= {fm,j}m<n;1§j§rm

the set of elements of I.
Claim: this finite set ({fm,;}) generates I.
Vf € I, if deg f = m, then its leading coefficient is a € J,y,

14



hence if m > n, then a € J,,, = J,, so that
a = Z biam with b; € A
and
F=D X fi
has degree < m.
Similarly, if m < n, then a € J,,, so that
a = Zbiamﬂ' with b; € A

and
F= bifni

has degree < m.

By induction on m, f can be written as a linear combination of finitely many
elements.
Thus, any ideal of Alz] is finitely generated. O

Corollary R.3.6.C. if A a Noetherian ring, and ¢ : A — B a ring homomor-
phism such that B is a fingen extension ring of ¥)(A), then B is Noetherian.
In particular, any fingen algebra over Z or over a field K is Noetherian.

Proof. the assumption is that B is a quotient of a polynomial ring,
B Alxy,...,x,)/1

for some ideal I.
By the Hilbert basis theorem and induction,
A being Noetherian implies that A[zq,...,x,] is Noetherian.

And by Corollary iv),

Alxy,...,x,] being Noetherian implies that A[zy,...,x,]/I is Noetherian. O

4 Finite ring extensions and Noether normali-
sation

Definition . A-algebra. An A-algebra is a ring B with a ring homomorphism
v:A— B.
B is an A-module with multiplication defined by ¥ (a)-b (a € A,b € B).
When A C B, B is an extenaion ring of A; denoted ¢(A) = A’ C B.

Definition R.4.1. Let B be an A-algebra.

15



i. Bisa finite A-algebra (finite over A) if it is finite as an A-module.
ii. y € B is integral over A if 3 a monic polynomial
fY)=Y"+a, Y"1+ ... 4ay € A]Y]
such that f(y) =0:

f(y):yn"i_anflyn_l‘f‘...—l-aozo

The algebra B is integral over A if V b € B is integral.

Proposition R.4.2. Let ¢y : A — B be an A-algebra, and y € B. Three
equivalent conditions:

i. y is integral over A
ii. subring A’[y] C B generated by A’ = 1)(A) and y is finite over A
iii. 3 an A-subalgebra C' C B such that A’[y] C C and C is finite over A

Notes: A’ is the image of A in B, ie. A’ = (A).
A'[y] is the smallest subring of B containing both coefficients from A and the
element y.

Proof. .

(i to ii): since y integral over A == by (ii), y satisfies
f) =y +an1y" ' +...+a =0
So any power y* (k > n) can be expressed in terms of {1,y,%2,...,y" " 1}.
Thus the set {1,y,y?,...,y" '} spans A’[y] as an A-module.
(ili to i): since A'lyjc C = yeC

since C finite over A, C has finite generators {cy,...,c,} such that C =
A-ci+Aco+...+A ¢,

Thus y-¢; € C,
n
Y- G = Z Qi;Cj
j=1

with a;; € A.
By the Cayley-Hamilton theorem (AM.2.4]),

V't a1y ay+ag =0

Therefore, y is integral (by (ii)).

16



Proposition R.4.3. Tower Laws Let B be an A-algebra.

a.

Transitivity of finiteness: if A C B C C are extension rings such that C' is a
finite B-algebra and B a finite A-algebra,
then C is finite over A.

b. Finiteness of generated algebras: if y1,...,y.n € B are integral over A, then
Aly1, ..., Ym] is finite over A.
In particular, every f € Aly,...,ym] is integral over A.
c. Transitivity of integrality: if A C B C C with C integral over B, and B
integral over A,
then C is integral over A.
d. Integral closure as a subring: the subset
A= {y € B |y is integral over A} C B
is a subring of B.
Moreover, if y € B is integral over A then y € A, so that A = A.
Proof. .
a. if {B1,...,0n} generate B as an A-module and {7v1,...,7,} generate C as
an B-module,
then the set of products {;7;} generates C' as an A-module.
Since there are n x m generators (ie. finite), C' is finite over A.
b. proof by induction:

base case: if y; integral over A = it satisfies a monic polynomial.

Thus A[y,] is generated as an A-module by {1,y1,¥,...,y!" '}, making it a
finite A-algebra.

inductive step: let Ry = Aly1,...,yx]. Assume Ry is finite over A.
Since yg+1 is integral over A = it is also integral over Rj.
Thus Ri4+1 = Ri[yg+1] is finite over Ry.

Applying part (a) (transitivity of finiteness), if Ry is finite over Ry and Ry
finite over A, then Ry is finite over A.

Consequence: since any f € Alyy,...,ym] belongs to a finite A-algebra, f
must be integral over A (since an element is integral iff it is contained in a
finite extension).
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c. let x € C, since x integral over B, it satisfies:

"+ by 12" P 4 bz+by=0, b €B

Let B"” = Albo,b1,...,b,_1]. Since each b; € B and B is integral over A
= each b; is integral over A.

Since all b; are integral over B’ = B’[z] is a finite B’-algebra.
By part (a) (transitivity of finiteness), B’[z] is a finite A-algebra.

Therefore, x is integral over A.

d. L subring: R
let z,y € A. Want to show = + y,zy € A:

by part (b), the algebra A[z,y] is finite over A.

Since z + y, zy € Alz,y], they are integral over A.

Thus = +y,zy € A, since A = {b € B | b integral over A}.
II. idempotence ~

let z € B be integral over A

we have a chain A C A C Az].

By definition, A is integral over A, and z is integral over A

thus by part (c), z is integral over A.

Therefore, z € A.

O

Definition 4.4. Integral closure. Given the ring A from (d), ie. A=
{y € B | y integral over A} C B, A is the integral closure of A in B.
If A=A, then A is integrally closed in B.
An integral domain A is normal if it is integrally closed in its field of frac-
tions, that is if
A=AcC K = Frac(A)

For any integral domain A, the integral closure of A in its field of fractions
K = Frac(A) is also called the normalization of A.
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5 Exercises

For the exercises, I follow the assignments listed at [3].
The exercises that start with R are the ones from the book [2], and the ones
starting with AM are the ones from the book [I].

5.1 Exercises Chapter 1

Exercise R.1.1. Ring A and ideals I, J such that IUJ is not an ideal. What’s
the smallest ideal containing I and J7

Proof. Take ring A =7. Set I =27, J = 3Z.
I, J are ideals of A (=Z). And TU J =27 U 3Z.

Observe that for2 € I, 3e€J = 2,3€lUJ,but2+3=5¢1UJ.
Thus I U J is not closed under addition; thus is not an ideal.
Smallest ideal of Z (= A) containing I and J is their sum:

I+J={a+blael,be J}
gced(2,3) =1,80 I +J =Z.
Therefore, smallest ideal containing I and J is the whole ring Z. O

Exercise R.1.5. let ¢ : A — B a ring homomorphism. Prove that 1~ takes
prime ideals of B to prime ideals of A.

In particular if A C B and P a prime ideal of B, then AN P is a prime ideal of
A.

Proof. (Recall: prime ideal is if a,b € R and a-b € P (with R # P), implies
a€ PorbeP).
Let
v I (P)={ac Ap(a) e Py =ANP

The claim is that ¢»~1(P) is prime ideal of A.
i. show that ¢)~1(P) is an ideal of A:
04 € Y 1(P), since ¥(04) = 0p € P (since every ideal contains 0).
If a,b € =1 (P), then v (a),¥(b) € P, so

Pla—b) =9(a) —¢(b) € P

hence a — b € »~1(P).

If a € p~1(P) and r € A, then ¢(ra) = 1 (r)y(a) € P, since P is an ideal.
Thus ra € Yp~1(P).

= 50 ¢~ ! is an ideal of A.

ii. show that ¢»~1(P) is prime:
p~1(P) # A, since if ~1(P) = A, then 14 € ¥~ }(P), so ¢(14) = 15 € P,
which would mean that P = B, a contradiction since P is prime ideal of B.
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Take a,b € A with ab € ¢»~1(P); then ¥(ab) € P, and since 1 is a ring
homomorphism, ¢(ab) = ¥ (a)p(b).

Since P prime ideal, then ¢(a)y(b) € P implies either ¢)(a) € P or ¢(b) € P.
Thus a € »~1(P) or b € = 1(P).

Hence 1~ 1(P) (= AN P) is a prime ideal of A.

Exercise R.1.6. prove or give a counter example:

a.
b.

C.

the intersection of two prime ideals is prime
the ideal P; + P» generated by 2 prime ideals Py, P is prime

if ¢ : A — B ring homomorphism, then ~! takes maximal ideals of B to
maximal ideals of A

. the map ¥~! of Proposition 1.2 takes maximal ideals of A/I to maximal

ideals of A

Proof. a. let I =27 = (2), J = 3Z = (3) be ideals of Z, both prime.

Then INJ =(2)N(3) = (6).
The ideal (6) is not prime in Z, since 2 - 3 € (6), but 2 # (6) and 3 # (6).
Thus the intersection of two primes can not be prime.
P, =(2), P, = (3), both prime.
Then,
Pl+P,=(2)+3)={a+blac P,be P}
— in a principal ideal domain (like Z), the sum of two principal ideals is
again principal, and given by (m) + (n) = (ged(m, n)).
(recall: principal= generated by a single element)
So, Pi + P> = (2) + (3) = (9cd(2,3)) = (1) = Z.

The whole ring is not a prime ideal (by the definition of the prime ideal), so
P, + P, is not a prime ideal.

Henceforth, the sum of two prime ideals is not necessarily prime.
let A=7Z, B=Q, v: A— B.

Since Q is a field, its only maximal ideal is (0).

Then

v7H(0) = (0) CzZ
ie. ¢~ (mp) = (mp) C A

But (0) is not maximal in Z, because Z/(0) = Z is not a field.

Thus the preimages of maximal ideals under arbitrary ring homomorphisms
need not be maximal.
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d. ¢ : A — A/I quotient homomorphism, I C A an ideal.
Let M a maximal ideal of A/I, then % is a field (Proposition 1.3).

By the isomorphism theorems,

wn ., A
Mo T H(M)

Since % is a field, the quotient w*%(M) is a field, so 9 ~1(M) is a maximal

ideal of A.

—> under 1, preimages of maximal ideals are maximal.

Exercise R.1.12.a. if I, J ideals and P prime ideal, prove that
IJCP <= INJCP <= ITorJCP

Proof. assume I C P (for J C P will be the same, symmetric), take x € IJ,

then
n
xr = Z akbk
k=1

with ap € I, b, € J.
Each a € I C P. Since P an ideal,

i apby € P
k=1

thus z € P, hence I.J C P.
SolICPorJCP —1JCP.

Conversely,
assume P prime and IJ C P.
Suppose by contradiction that I € P and J € P.

- since I Z P, Ja € I witha & P
- since J L P, 3be J withb g P

Sincea € I, be J, abe IJ C P, but P is prime, so ab € P implies that a € P
or b € P. This contradicts a, b being taken outside of P.
Thus I € P and J € P are false.

So both directions are proven, hence

IJCP = ICPorJCP
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Exercise R.1.18. Use Zorn’s lemma to prove that any prime ideal P contains
a minimal prime ideal.

Proof. Let P prime ideal of R.

S =1{Q C R| Q aprime ideal AND Q C P}

Goal: show that S has a minimal element, the minimal ideal contained in

P C S, so S is nonempty.
Let C C S be a chain (= totally ordered subset) with respect to inclusion.
Define

Q=)@

QeC

Clearly Q¢ C P, since each Q € C'is Q C P.
Since C' is ordered by inclusion, it is a decreasing chain of prime ideals.
Intersection of a decreasing chain of prime ideals is again a prime ideal:

- if ab € Q¢, then ab € Q VQ € C
- since @ prime, V@ € C either a € Q or b € @

If there were some @1, Q2 € C with a € @1 and b € 2, then by total
ordering, either Q1 C Q2 or Q2 C Q1.

In either case: contradiction, since the smaller one would have to contain
the element that was assumed to be excluded.

Thus VQ € C the same element a,b must lie in all Q. = lies in the
intersection of them, Q¢.

Henceforth, Q¢ is a prime ideal and lies in S, and its a lower bound of C' in
S.

Now, S is nonempty, and every chain in S has a lower bound in S (its
intersection).
Therefore, S has a minimal element P,,;,,.

By construction, P,,;, is a prime ideal P,,;, C P, and by minimality there
are no strictly smaller prime ideals inside P.

So P,,i, is a minimal prime ideal, contained in P. O

Exercise R.1.10.

Proof. O
Exercise R.1.11.

Proof. O
Exercise R.1.4.

Proof. O
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5.2 Exercises Chapter 2

Exercise R.2.9. 0 — L — M SN 0 is a s.e.s. of A-modules. Prove
that if N, L are finite over A, then M is finite over A.

Proof. Denote the generators of L and IV respectively as

(h,....L,} CL
{’I’Lh...,’l’Lp}gN

By s.e.s. definition,
- « is injective (one-to-one), so

Vi, € L, 3x; € M s.th. a(l;) = z;

- [ is surjective (onto), so

Vn; € N, 3 y; € M s.th. ﬂ(yj) =n;

We will show that {x1,..., 2k, ¥1,...,yp} generate M, and thus M is finite:
Let m € M, then 8(m) € N, and

P
B(m) = Zajnj with a; € A
j=1
Take m' € M, with m’ =" a;y;, then
Bm) =D _a;Bly;) = D agng = B(m)
Then, since S(m) = g(m’) = B(m —m’') =0, thus
(m—m') € ker(B)

By ezactness property, since o : L — ker(3), we have ker(8) = im(«).
Therefore, 3 [ € L such that «(l) =m —m/’.

Since {l;}1, generate L,
k
1= bil;

m — m' = a(l) = a(z blll) = Z bz Oé(lz) = Z bl,TZ
\T_/ D

thus

—~—

i

Rearrange,

p k
m:m’—l—Zbixi:Zajyj—i—Zbixi Ym e M
j=1 i—1

So, L provides k generators for the kernel part of M, N provides p ”lifts”
for the quotient part of M; thus M is generated by k + p elements.
Thus M is finitely generated over A. O
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5.3 Exercises Chapter 3

Exercise R.3.2. K a field, A D K a ring which is finite dimensional as a
K-vector space. Prove that A is Noetherian and Artinian.

Proof. dim(A) =n < oo, so every ideal a of A is a K-subspace of A, because if
r€aandce€ K, thenc-x € a.

1. Noetherian:
let I; C I, C ... be an ascending chain of ideals in A.

Since each I; is a subspace, we have
dimg (1) <dimg(l2) <...<n

where at some i = m we have dimg(I;,) = dimg(Iny1); then since
I, C I41, we have I,, = I,,11. So A is Noetherian.

2. Artinian:
Similarly, if I O Iy O ... a descending chain of ideals in A.
then
n > dimg(l1) > dimg(lz) > ... >0

where at some ¢ = m we have dimg (I,) = dimg(l,41); then since
I, C I,,41, we have I,, = I;,11. So A is Artinian.

O

Exercise R.3.5. Let 0 — L —— M i> N — 0 an exact sequence. Let
My, My C M be submodules of M.
Prove if the following holds or not:

B(My) = B(Mz) and o' (My) = o' (M) = My = M,

Proof. Counterexample showing that it does not hold:
Let Kafield M=K®&K ,L=K, N=K.
Set, for I € L, (my,ma) € M,

a:l—(1,0)
B (mi,ma) — ma
So we have
0— K- K> 2 K50
Then,

My ={(z,z) |z € K}  ~ (diagonal line)
My, ={(0,z) |z € K} ~ (y-axis)

(Geometric interpretation: My, Ms are the diagonal line and y-axis respec-
tively; and «, B capture information about the wvertical components (x-axis,

24



y-axis respectively), but not about the diagonal way a submodule is embedded
in M).
Then,
B(M)={z|ze K} =K
B(My) = {o |z € K} = K
thus, B(M1) = B(M2).
For My, (1,0) € M iff I =0, thus a~1(M;) = {0},
for My, (1,0) € M iff | =0, thus o~ (Ms) = {0},

thus a1 (M;) = a1 (My).
So we've seen that

B(My) = B(Ma)
Oéil(Ml) = ail(Mz)

while having M7 # M. O

Exercise R.3.3. Let A aring, I1,..., I} ideals such that each A/I; is a Noethe-
rian ring. Prove that @ A/I; is a Noetherian A-module, and deduce that if
() I; = 0 then A is also Noetherian.

Proof. i. by Corollary (i), if M; Noetherian modules, then € M; is
Noetherian. = thus € A/I; is Noetherian.

ii. Take the canonical homomorphism

n
¢: A— @A/
i=1
by ¢(a) =(a+ I,a+ Is,...,a+ I,).
¢ is injective: ker(¢) = {a € Ala € I,Vi}.
Since we'’re given NI; = 0, then ker(¢) = NI;, and ¢ is injective.
Thus, ¢ is the isomorphism A 2 im(¢), where im(¢) is an A-submodule of
P A/IL.
We know that any submodule of a Noetherian module is Noetherian, thus,
since

e A/I; is Noetherian by hypothesis of the exercise
o« A= im()
e im(¢) is an A-submodule of P A/I;

then, A is Noetherian.
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Exercise R.3.4. Prove that if A is a Noetherian ring and M a finite A-module,

then there exists an exact sequence A7 —— AP Lo — 0. That is, M has a
presentation as an A-module in terms of finitely many generators and relations.

Proof. since M fingen = generators {my,...,ma} C M span M.
Let 8 be a surjective A-linear map, which forms a free A-module of rank p
onto M:

B: AP — M
P

(a1,...,ap) »—>Zaimi
i=1

Let K = ker(B). By the 1st Isomorphism Theorem,
M= AP/K

Since A is a Noetherian ring, then every free A-module of finite rank (eg.
AP) is a Noetherian module.

Every submodule of a Noetherian module is fingen.

= since K C A?, = K (= ker(B)) is fingen.

Since K fingen, let {k1,...,l,} be generators of K.

Define ¢ : A7 — K.

Compose it with the inclusion map i : K — AP,

a=iot: A1 — AP

So we have the whole sequence A9 —=5 AP Lo — 0, where
e [ is surjective
o im(a) = ker(p)

so that it is a exact sequence, thus, M has a finite presentation. O
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