Weil Pairing - study

arnaucube

August 2022

Abstract

Notes taken from Matan Prsma math seminars and also while reading about Bilinear Pairings. Usually while reading papers and books I take handwritten notes, this document contains some of them re-written to LaTeX.

The notes are not complete, don't include all the steps neither all the proofs. I use these notes to revisit the concepts after some time of reading the topic.

Contents

1	Divisors and rational functions	1
2	Weil reciprocity	2
3	Generic Weil Pairing	2
4	Properties	3
5	Exercises	3

1 Divisors and rational functions

Def 1.1. Divisor

$$D = \sum_{P \in E(\mathbb{K})} n_p \cdot [P]$$

Def 1.2. Degree & Sum

$$deg(D) = \sum_{P \in E(\mathbb{K})} n_p$$

$$sum(D) = \sum_{P \in E(\mathbb{K})} n_p \cdot P$$

Def 1.3. Principal divisor iff deg(D) = 0 and sum(D) = 0

 $D \sim D'$ iff D - D' is principal.

Def 1.4. Evaluation of a rational function

$$r(D) = \prod r(P)^{n_p}$$

2 Weil reciprocity

Thm 2.1. (Weil reciprocity) Let E/\mathbb{K} be an e.c. over an alg. closed field. If $r, s \in \mathbb{K} \setminus \{0\}$ are rational functions whose divisors have disjoint support, then

$$r(div(s)) = s(div(r))$$

Proof. (todo)

3 Generic Weil Pairing

Let $E(\mathbb{K})$, with \mathbb{K} of char p, n s.t. $p \nmid n$. \mathbb{K} large enough: $E(\mathbb{K})[n] = E(\overline{\mathbb{K}}) = \mathbb{Z}_n \oplus \mathbb{Z}_n$ (with n^2 elements). For $P, Q \in E[n]$,

$$D_P \sim [P] - [0]$$
$$D_Q \sim [Q] - [0]$$

We need them to have disjoint support:

$$D_P \sim [P] - [0]$$

$$D_Q' \sim [Q + T] - [T]$$

$$\Delta D = D_Q - D_Q' = [Q] - [0] - [Q + T] + [T]$$

Note that nD_P and nD_Q are principal. Proof:

$$nD_P = n[P] - n[O]$$

$$deg(nD_P) = n - n = 0$$

$$sum(nD_P) = nP - nO = 0$$

(nP = 0 bcs. P is n-torsion)

Since nD_P , nD_Q are principal, we know that f_P , f_Q exist. Take

$$f_P : div(f_P) = nD_P$$

 $f_Q : div(f_Q) = nD_Q$

We define

$$e_n(P,Q) = \frac{f_P(D_Q)}{f_Q(D_P)}$$

Remind: evaluation of a rational function over a divisor D:

$$D = \sum n_P[P]$$

$$r(D) = \prod r(P)^{n_P}$$
 If $D_P = [P+S] - [S]$, $D_Q = [Q-T] - [T]$ what is $e_n(P,Q)$?
$$f_P(D_Q) = f_P(Q+T)^1 \cdot f_P(T)^{-1}$$

$$f_Q(D_P) = f_Q(P+S)^1 \cdot f_Q(S)^{-1}$$

$$e_n(P,Q) = \frac{f_P(Q+T)}{f_P(T)} / \frac{f_Q(P+S)}{f_Q(S)}$$

with $S \neq \{O, P, -Q, P - Q\}$.

4 Properties

5 Exercises

An Introduction to Mathematical Cryptography, 2nd Edition - Section 6.8. Bilinear pairings on elliptic curves

6.29. $div(R(x) \cdot S(x)) = div(R(x)) + div(S(x))$, where R(x), S(x) are rational functions.

proof:

Norm of $f: N_f = f \cdot \overline{f}$, and we know that $N_{fg} = N_f \cdot N_g \ \forall \ \mathbb{K}[E]$, then

$$deq(f) = deq_x(N_f)$$

and

$$deg(f \cdot g) = deg(f) + deg(g)$$

Proof:

$$\begin{split} deg(f\cdot g) &= deg_x(N_{fg}) = deg_x(N_f\cdot N_g) \\ &= deg_x(N_f) + deg_x(N_g) = deg(f) + deg(g) \end{split}$$

So, $\forall P \in E(\mathbb{K}), \ ord_P(rs) = ord_P(r) + ord_P(s).$ As $div(r) = \sum_{P \in E(\mathbb{K})} ord_P(r)[P], \ div(s) = \sum ord_P(s)[P].$ So,

$$div(rs) = \sum ord_P(rs)[P]$$

$$= \sum ord_P(r)[P] + \sum ord_P(s)[P] = div(r) + div(s)$$

6.31.

$$e_m(P,Q) = e_m(Q,P)^{-1} \forall P, Q \in E[m]$$

Proof: We know that $e_m(P, P) = 1$, so:

$$1 = e_m(P + Q, P + Q) = e_m(P, P) \cdot e_m(P, Q) \cdot e_m(Q, P) \cdot e_m(Q, Q)$$

and we know that $e_m(P, P) = 1$, then we have:

$$1 = e_m(P, Q) \cdot e_m(Q, P)$$

$$\Longrightarrow e_m(P,Q) = e_m(Q,P)^{-1}$$