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Abstract

Notes on ”A book of Abstract Algebra - by Charles C. Pinter”, is a
LaTeX version of handmade notes taken while reading the book. It con-
tains only some definitions and theorems (without proofs), so it is highly
recommended to read the actual book instead of the current notes.
This is an unfinished and ’work in progress’ document.
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1 Groups

Def 1.1 (Group). A set G with an operation ∗ which satisfies the axioms:

i. ∗ is associative

ii. (identity element) there is an element e ∈ G s.t. a ∗ e = a and e ∗ a = a
∀a ∈ G

iii. (inverse) ∀a ∈ G, there is an element a−1 ∈ G s.t. a∗a−1 = e and a−1∗a = e

Def 1.2 (Abelian Group). A group G is said to be commutative if ∀a, b ∈ G,
ab = ba. A commutative group is also called Abelian.

Def 1.3 (Order of an element). In a group G, the order of an element a ∈ G
is the least positive integer n such that a · a · · · a = an = e. It is represented by
ord(a).

Def 1.4 (Order of a group). Order of a group G, is the number of elements in
G. It is represented by |G|.

Def 1.5 (Cyclic group). Let G be a group, and a ∈ G. If G consists of all the
powers of a and nothing else:

G = {an : n ∈ Z}

then, G is called a cyclic group, and a is called its generator.
The group G generated by a is defined by G = ⟨a⟩.

Thm 1.6. The order of a cyclic group is the same as the order of it’s generator.
In other words, for a cyclic group, |⟨a⟩| = ord(a).

⟨a⟩ defines a cyclic group generated by a. ⟨a⟩ = {e, a, a2, ..., an−1}

|⟨a⟩| defines the order of the cyclic group generated by a.

Thm 1.7. Every subgroup of a cyclic group is cyclic.

2 Subgroups

Def 2.1 (Subgroup). Let G be a group, and H a non-empty subset of G. If

i. the idenity e of G is in H.

ii. H is closed with respect to the operation. Which is for a, b ∈ H, ab ∈ H.

iii. H is closed with respect to inverses. Which is for a ∈ H, a−1 ∈ H.

we call H a subgroup of G. The operation of H is the same as the operation of
G.

Thm 2.2. Every subgroup of a cyclic group is cyclic.
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3 Functions

Def 3.1 (Function). If A and B are sets, then a function from A to B is a rule
which to every element x in A assigns a unique element y in B.
Functions are represented by f : A → B, where ∀a ∈ A ⇒ f(a) ∈ B.

Def 3.2 (Injective (monomorphism)). A function f : A → B is called injective
if each element of B is the image of no more than one element of A.

Def 3.3 (Surjective (epimorphism)). A function f : A → B is called surjective
if each element of B is the image of at least one element of A.
In other words, does not repeat outputs.

Def 3.4 (Bijective (isomorphism)). A function f : A → B is called bijective if
it is both injective and surjective.
A function f : A → B has an inverse iff it is bijective. In that case, the inverse
f−1 is a bijective function from B to A.

In finite sets, if f : A → B is injective then |A| ≤ |B|, and if f is surjective
then |B| ≤ |A|. And if f is bijective, then |A| = |B|.

Def 3.5 (Composite function). A function f : A → B and g : B → C be
functions. The composite function denoted by g ◦ f is a function from A to C
defined as follows:

[g ◦ f ](x) = g(f(x)),∀x ∈ A

Def 3.6 (Permutation). By a permutation of a set A we mean a bijective func-
tion from A to A, that is, a one-to-one correspondence between A and itself.
The set of all the permutations of A, with the operation ◦ of composition, is a
group.
For any positive integer n, the symmetric group on the set 1, 2, 3, ..., n is called
the symmetric group on n elements, and is denoted by Sn.

4 Isomorphism

Def 4.1 (Isomorphism). Let G1 and G2 be groups. A bijective function f :
G1 → G2 with the property that for any two elements a, b ∈ G1,

f(ab) = f(a)f(b)

is called an isomorphism from G1 to G2.
If there exists an isomorphism from G1 to G2, we say that G1 is isomorphic to
G2, symbolized by G1

∼= G2.

Thm 4.2 (Cayley’s Theorem). Every group is isomorphic to a group of permu-
tations.

Thm 4.3. (Isomorphism of cyclic groups)
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i. For every positive integer n, every cyclic group of order n is isomorphic to
Zn. Thus, any two cyclic groups of order n are isomorphic to each other.

ii. Every cyclic group of order infinity is isomorphic to Z, and therefore any
two cyclic groups of order infinity are isomorphic to each other.

5 Cosets

Def 5.1 (Coset). Let G be a group, and H a subgroup of G. For any element
a in G, the symbol aH denotes the set of all products ah, as a remains fixed
and h ranges over H. aH is caled a left coset of H in G.
In similar fashion, Ha denotes the set of all products ha, as a remains fixed an
h ranges over H. Ha is called a right coset of H in G.

Thm 5.2. If Ha is any coset of H, there is a one-to-one correspondence from
H to Ha (there is a bijection between H and Ha).
If a ∈ G, then |H| = |Ha|.

Thm 5.3 (Lagrange’s theorem). Let G be a finite group, and H any subgroup
of G. The order of G is a multiple of the order of H. |H| divides |G|.

Lagrange’s theorem can be easily seen by the facts that:

i. cosets partition the group G

ii. |Ha| = |H| (each coset has the same order as H).

By consequence,

Thm 5.4. If G is a group with a prime number p of elements, then G is a cyclic
group. Furthermore, any element a ̸= e in G is a generator of G.

Thus,

Thm 5.5. The order of any element of a finite group divides the order of the
group.

Def 5.6 (Index of H in G). Number of cosets of H in G. Represented by (G : H).
Combined with Lagrange Theorem, we know that |G| = |H| · |G : H|, so,

(G : H) =
|G|
|H|

6 Homomorphisms

Def 6.1 (Homomorhism). If G and G are groups, a homomorphism from G to
H is a function f : G → H s.t. for any two elements a, b ∈ G,

f(ab) = f(a)f(b)

If there exists a homomorphism from G onto H, we say thatH is a homomorphic
image of G.
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Note: an isomorphism is a bijective homomorphism.
Example of an homomorphism: f : Z6 → Z3.

Thm 6.2. Let G and G be groups, and f : G → H a homomorphism. Then

i. f(e) = e

ii. f(a−1) = [f(a)]−1, ∀a ∈ G

Def 6.3 (Conjugate). A conjugate of a is any element of the form xax−1, where
x ∈ G.

Def 6.4 (Normal subgroup). Let H be a subgroup of a group G. H is called a
normal subgroup of G if it is closed with respect to conjugates, that is, if
for any a ∈ H and x ∈ G, xax−1 ∈ H.
Alternatively, we can see that H is a normal subgroup iff ∀a ∈ G, aH = Ha.
In an abelian group, every subgroup is normal.

Def 6.5 (Kernel). Let f : G → H be a homomorphism. The kernel of f is the
set K of all the elements of G which are carried by f onto the neutral element
of H. That is,

K = x ∈ G : f(x) = e

Kernel in the context of Extension fields: 11.1

For every homomorphism, the e ∈ G maps to e ∈ H, so the kernel is never
empty, it always contains the identity eG, and if the kernel only contains the
identity, then f is one-to-one (injective).

7 Quotient Groups

Quotient group construction is useful as a way of actually manufacturing all the
homomorphic images of any group G. Additionally, we can often choose H so as
to ”factor out” unwanted properties of G, and prserve in G/H only ”desirable”
traits.

Def 7.1 (Coset multiplication). The coset of a, multiplied by the coset of b, is
defined to be the coset of ab. In symbols, Ha ·Hb = H(ab).

Thm 7.2. Let H be a normal subgroup of G. If Ha = Hc and Hb = Hd, then
H(ab) = H(cd).

Def 7.3. G/H denotes the set which consists of all the cosets of H.
Thus, if Ha,Hb,Hc, . . . are cosets of H, then G/H = {Ha,Hb,Hc, ...}.
Thm 7.4 (Quotient group). G/H with coset multiplication is a group.

Thm 7.5. G/H is a homomorphic image of G.
Conversely, every homomorphic image of G is a quotient group of G.

Thm 7.6. Let G be a group and H a subgroup of G. Then

i. Ha = Hb iff ab−1 ∈ H

ii. Ha = H iff a ∈ H
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8 Rings and Fields

Def 8.1 (Ring). A set A with operations called addition and multiplication
which satisfy the following axioms:

i. A with addition alone is an abelian group.

ii. Multiplication is associative.

iii. Multiplication is distributive over addition. That is, ∀a, b, c ∈ A,

a(b+ c) = ab+ ac

(b+ c)a = ba+ ca

Def 8.2 (Commutative ring). By definition, addition is commutative in every
ring but multiplication is not. When multiplication also is commutative in a
ring, we call that ring a commutative ring.

Def 8.3 (Unity). A ring does not necessarily have a neutral element for mul-
tiplication. If there is in A a neutral element for mulitplication, it is called the
unity of A, and is denoted by the symbol 1.
If A has a unity, we call A a ring with unity.

Def 8.4 (Field). If A is a commutative ring with unity in which every nonzero
element is invertible, A is called a field.

Thm 8.5 (Finite Field must be over p prime (Fp)). Proof from Matan Prasma
seminars:
One of the axioms of a field is ∃ multiplicative inverse.
If Zn with n no prime, then n = k · l for some 1 ≤ k, l ≤ n− 1.
Then in Zn, k · l = 0, but if k · l = 0 means that either k = 0 or l = 0 (otherwise,
we could multiply by (eg) k−1 and get k−1 ·k ·l = k−1 ·0, which leads to 1·l = 0).
which is a contradiction here (since 1 ≤ k, l ≤ n− 1).
Thus Zn with n not prime can not be a field.
Conversely, if n = p prime,
for 0 ̸= x ∈ Zp, gcd(x, p) = 1, so Extended Euclidean Algorithm gives u, v ∈ Z
such that ux+ vp = 1.
Then, ux = 1 (mod p), so u = x−1, so inverses exist.
Thus Zp is a field.

Def 8.6 (Divisor of zero). In any ring, a nonzero element a is called a divisor
of zero if there is a nonzero element b in the ring such that the product ab or
ba is equal to zero.

Def 8.7 (Cancellation property). A ring is said to have the cancellation prop-
erty if ab = ac or ba = ca implies b = c for any elements a, b, and c in the ring
if a ̸= 0.

Thm 8.8. A ring has the cancellation property iff it has no divisors of zero.
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Def 8.9 (Ideal). A nonempty subset B of a ring A is called an ideal of A if B
is closed with respect to addition and negatives, and B absorbs products in A.
(Absorbs product : ∀b ∈ B and x ∈ A, then xb, bx ∈ B).

Def 8.10 (Principal ideal). A principal ideal is an ideal I in a ring R that is
generated by a single element a ∈ R through multiplication by every element of
R. In other words I = aR = {ar : r ∈ R}.
(eg. Every ideal of Z is principal).

Def 8.11 (Integral domain). An integral domain is defined to be a commutative
ring with unity having the cancellation property.

Every field is an integral domain, but the converse is not true (eg. Z is an
integral domain but not a field).

Def 8.12 (Characteristic n). Let A be a ring with unity, the characteristic of
A is the least positive integer n such that

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n−times

= 0

If there is no such positive integer n, A has characteristic 0.

9 Elements of number theory

Def 9.1 (Euclid’s lemma). Let m and n be integers, and let p be a prime. If
p|(mn), then either p|m or p|n.

Thm 9.2 (Factorization into primes). Ever integer n > 1 can be expressed as
a product of positive primes. That is, there are one or more primes p1, . . . , pr
such that n = p1p2 · · · pr.

Thm 9.3 (Unique factorization). Suppose n can be factored into positive primes
in two ways, namely,

n = p1 · · · pr = q1 · · · qt
Then r = t, and the pi are the same numbers as the qj except, possibly, for the
order in which they appear.

From the last two theorems: every integer m can be factored into primes,
and the prime factors of m are unique (except for the order).

Thm 9.4 (Little theorem of Fermat). Let p be a prime. Then,

ap−1 ≡ 1 (mod p),∀a ̸≡ 0 (mod p)

So, by taking ap−2 · a ≡ 1 (mod p), where ap−2 ≡ a−1 (mod p) (the inverse
modulo p), we see that ap ≡ a (mod p),∀a ∈ Z, so ap − a is a multiple of p.
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Relation to Lagrange’s theorem:
Let G = Zp, and let H be the multiplicative subgroup of G generated by a
(ie. H = {1, a, a2, . . .}). The order of H (h = |H|), is also the order of a (ie.
smallest n > 1 s.t. an = 1 mod p).

By Lagrange’s theorem, h | |G| = p− 1, so p− 1 = h ·m, thus

ap−1 = (ah)m ≡ 1m ≡ 1 mod p

Another perspective:
We have ap ≡ a (mod p), by dividing by a on both sides, we obtain ap−1 ≡ 1
(mod p).

Thm 9.5 (Euler’s ϕ function). Euler’s ϕ function describes the number of
integers in Z/nZ which are relatively prime (coprime) to n.

Thm 9.6 (Euler’s theorem). If a and n are relatively prime,

aϕ(n) ≡ 1 (mod n)

10 Polynomials

Def 10.1. Let A be a commutative ring with unity, and x an arbitrary symbol.
Every expression of the form

a0 + a1x+ a2x
2 + · · ·+ anx

n

is called a polynomial in x with coefficients in A, or more simply, a polynomial
in x over A.

The expressions akx
k, for k ∈ {1, . . . , n}, are called the terms of the poly-

nomial, being anx
n the leading term, and a0 the constant term. The ak are

called the coefficients of xk, being an the leading coefficient. And the degree of
a polynomial a(x) is the greatest n such that the coefficient of xn is not zero.
The polynomial whose leading coefficient is equal to 1 is called monic.

Thm 10.2 (Division algorithm for polynomials). If a(x) and b(x) are polyno-
mials over a field F , and b(x) ̸= 0, there exist polynomials q(x) and r(x) over
F such that a(x) = b(x)q(x) + r(x) and [r(x) = 0 or deg r(x) < deg b(x)].

Thm 10.3. Any two nonzero polynomials a(x), b(x) ∈ F [x] have a gcd d(x).
Furthermore, d(x) can be expressed as a linear combination

d(x) = r(x)a(x) + s(x)b(x)

where r(x), s(x) ∈ F [x].
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Thm 10.4 (Factorization into irreducible polynomials). Every polynomial a(x)
of positive degree in F [x] can be written as a product

a(x) = kp1(x)p2(x) · · · pr(x)

where k is a constant in F and p1(x), . . . , pr(x) are monic irreducible polynomials
of F [x].

Thm 10.5 (Unique factorization). If a(x) can be written in two ways as a
product of monic irreducibles, say

a(x) = kp1(x) · · · pr(x) = lq1(x) · · · qs(x)

then k = l, r = s, and pi(x) = qj(x).

Thm 10.6. c is a root of a(x) iff x− c is a factor of a(x).

Thm 10.7. If a(x) has distinct roots c1, . . . , cm in F , then (x−c1)(x−c2) · · · (x−
cm) is a factor of a(x).

Thm 10.8. If a(x) has degree n, it has at most n roots.

In finite F , polynomial ̸= polynomial function. If F is infinite, polynomial
= polynomial function.

For every polynomial with rational coefficients, there is a polynomial with
integer coefficients having the same roots. See:

a(x) =
k0
l0

+
k1
l1
x+ · · ·+ kn

ln
xn

=
1

l0 · · · ln
· (k0l1 · · · ln + k1l0l2 · · · lnx+ · · ·+ knl0 · · · ln−1x

n)︸ ︷︷ ︸
b(x)

a(x) has rational coefficients, b(x) has integer coefficients. b(x) differs from a(x)
only by a constant factor ( 1

l0···ln ), so a(x) and b(x) have the same roots.
=⇒ ∀ p(x) ∈ Q[x], there is a f(x) ∈ R with the same roots (for every poly-

nomial with rational coefficients, there is a polynomial with integer coefficients
having the same roots).

Thm 10.9. If s/t is a root of a(x), then s|a0 and t|an.

Thm 10.10. Suppose a(x) can be factored as a(x) = b(x)c(x), where b(x), c(x)
have rational coefficients. Then there are polynomials B(x), C(x) with integer
coefficients, which are constant multiples of b(x) and c(x) respectively, such that
a(x) = B(x)C(x).

Thm 10.11 (Eisenstein’s irreducibility criterion). Let a(x) = a0 + a1x+ · · ·+
anx

n be a polynomial with integer coefficients.
If there is a prime p such that p|ai, ∀i ∈ {0, n − 1}, and p̸ | an and p2̸ | a0,

then a(x) is irreducible over Q.
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11 Extensions of fields

Def 11.1 (Kernel). The kernel of σc consists of all polynomials a(x) ∈ F [x]
such that c is a root of a(x).

Kernel in the context of Homomorphisms: 6.5

Def 11.2 (Algebraic). c ∈ E is called algebraic over F if it is the root of some
nonzero polynomial a(x) ∈ F [x].

Otherwise, c is called transcendental over F .

E/K denotes the (field) extension of E over K.

Thm 11.3 (Basic theorem of field extensions). Let F be a field and a(x) ∈ F [x]
a nonconstant polynomial. There exists an extension field E/F and an element
c ∈ E such that c is a root of a(x).

Let a(x) ∈ F [x] be a polynomial of degree n. There is an extension field
E/F which contains all n roots of a(x).

12 Vector spaces

Def 12.1 (Vector space). A vector space over a field F is a set V , with two
operations +, ·, called vector addition and scalar multiplication, such that

� V with vector addition is an abelian group

� ∀k ∈ F and −→a ∈ V , the scalar product k−→a is an element of V , subject to
the following conditions: ∀k, l ∈ F, −→a ,

−→
b ∈ V

i. k(−→a +
−→
b ) = k−→a + k

−→
b

ii. (k + l)−→a = k−→a + k
−→
b

iii. k(l−→a ) = (kl)−→a
iv. 1−→a = −→a

Def 12.2 (Linear combination). If −→a1,−→a2, . . . ,−→an ∈ V , and k1, k2, . . . , kn are
scalars, then the vector

k1−→a1 + k2−→a2 + · · ·+ kn−→an

is called a linear combination of −→a1,−→a2, . . . ,−→an.
The set of all the linear combinations of −→a1,−→a2, . . . ,−→an is a subspace of V .

Def 12.3 (Linear dependancy). Let S = {−→a1, −→a2, . . . , −→an} be a set of distinct
vectors in a vector space V . S is said to be linearly dependent if there are
scalars k1, . . . , kn, not all zero, such that k1−→a1+k2−→a2+ · · ·+kn−→an = 0. Which is
equivalent to saying that at least one of the vectors in S is a linear combination
of the others.
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If S is not linearly dependent, then it is linearly independent. S is linearly
independent iff k1−→a1 + k2−→a2 + · · · + kn−→an = 0 implies k1 = k2 = · · · = kn = 0.
Which is equivalent to saying thatno vector in S is equal to a linear combination
of the other vectors in S.

If {−→a1,−→a2, . . . ,−→an} is linearly dependent, then some ai is a linear combination
of the preceding ones.

If {−→a1,−→a2, . . . ,−→an} spans V , and ai is a linear combination of the preceding
vectors, then {−→a1, . . . , ̸−→ai , . . . ,−→an} still spans V .

Thm 12.4. Any two bases of a vector space V have the same number of ele-
ments.

(This comes from the fact that all bases of Rn contain exactly n vectors)

If the set (−→a1,−→a2, . . . ,−→an) spans V , it contains a basis of V .

WIP: covered until chapter 28, work in progress.
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