
Motivation IVC Decider (Final compressed proof) Sonobe

An overview on folding schemes,
and an introduction to Sonobe

2024-08-08

San Francisco 0xPARC Summer

1/27



Motivation IVC Decider (Final compressed proof) Sonobe

Polynomials and SNARKs

◦ define the ’program’ that we want to be able to prove as a set
of constraints

◦ encode the constraints as polynomials
eg. R1CS: Az ◦Bz − Cz == 0

A(X) ·B(X)− C(X) == 0

◦ and then use some scheme to prove that those polynomials
satisfy the relation. eg. Groth16, Spartan, etc

tl;dr: want to prove polynomial relations

2/27



Motivation IVC Decider (Final compressed proof) Sonobe

Why folding

◦ Repetitive computations take big circuits −→ large proving
time

◦ and in some cases takes too much memory and can not be
even computed

◦ eg. prove a chain of 10k sha256 hashes (¿600M R1CS
constraints, not feasible with most traditional SNARK proving
systems)

◦ Traditional recursion: verify (in-circuit) a proof of the correct
execution of the same circuit for the previous input

◦ issue: in-circuit proof verification is expensive (constraints)

◦ ie. verify a Groth16 proof inside a R1CS circuit

3/27



Motivation IVC Decider (Final compressed proof) Sonobe

IVC - Incremental Verifiable Computation
Valiant’08

Folding schemes efficitently achieve IVC, where the prover
recursively proves the correct execution of the incremental
computations.

Prove that applying n times the F function (the circuit being
folded) to the initial state (z0) results in the final state (zn).

In other words, it allows to prove efficiently that
zn = F (... F (F (F (F (z0, w0), w1), w2), ...), wn−1).

4/27



Motivation IVC Decider (Final compressed proof) Sonobe

Folding idea

5/27



Motivation IVC Decider (Final compressed proof) Sonobe

Random linear combination of homomorphic commitments

We rely on homomorphic commitments, eg. Pedersen commitments
Let g ∈ Gn, v ∈ Fn

r ,

Com(v) = ⟨g, v⟩ = g1 · v1 + g2 · v2 + . . .+ gn · vn ∈ G

RLC:
Let v, w ∈ Fn

r ,
set cmv = Com(v), cmw = Com(w) ∈ G.
then,

y = v + r · w
cmy = cmv + r · cmw

so that
cmy = Com(y)

6/27



Motivation IVC Decider (Final compressed proof) Sonobe

Relaxed R1CS

R1CS instance: ({A,B,C} ∈ Fn×n, n, l), such that for
z = (1, io ∈ Fl, w ∈ Fn−l−1) ∈ Fn,

Az ◦Bz = Cz

Relaxed R1CS:

Az ◦Bz = uCz + E

for u ∈ F, E ∈ Fn.

Committed Relaxed R1CS instance: CI = (E, u,W, x)
Witness of the instance: WI = (E,W )

7/27



Motivation IVC Decider (Final compressed proof) Sonobe

Relaxed R1CS

u = u1 + ru2, z = z1 + rz2, x = x1 + rx2

E = E1 + r(Az1 ◦Bz2 +Az2 ◦Bz1 − u1Cz2 − u2Cz1) + r2E2

Relaxed R1CS: Az ◦Bz = uCz + E, with z = (u, x, W )

Az ◦Bz = A(z1 + r · z2) ◦B(z1 + r · z2)
= Az1 ◦Bz1 + r(Az1 ◦Bz2 +Az2 ◦Bz1) + r2(Az2 ◦Bz2)

= (u1Cz1 + E1) + r(Az1 ◦Bz2 +Az2 ◦Bz1) + r2(u2Cz2 + E2)

= u1Cz1 + E1 + r(Az1 ◦Bz2 +Az2 ◦Bz1) + r2E2| {z }
E

+r2u2Cz2

= u1Cz1 + r2u2Cz2 + E

= (u1 + ru2) · C · (z1 + rz2) + E

= uCz + E

For R1CS matrices (A, B, C), the folded witness W is a satisfying witness for the
folded instance (E, u, x), following the Relaxed R1CS relation:
Az ◦Bz − uCz − E == 0.
Since we don’t want that the Verifier learning about the witness, we commit to it, and
the Verifier will run the RLC on the commitment (not on the witness), obtaining the
’folded’ commitment.
Full details at Nova’s paper, pages 13-15 (”first attempt, second attempt, third attempt”)

8/27



Motivation IVC Decider (Final compressed proof) Sonobe

NIFS - Non Interactive Folding Scheme (in Nova)

Main idea:
◦ interactive protocol between P and V
◦ where V obtains the ’folded’ commitment that corresponds to the ’folded’

witness that P computes
◦ so V does not know the witness

We make it non-interactive with Fiat-Shamir.

Relation check:

z = (1, x,W )




Az ◦Bz − uCz − E
?
= 0

W
?
= Com(W )

E
?
= Com(E) 9/27



Motivation IVC Decider (Final compressed proof) Sonobe

HyperNova NIMFS

10/27



Motivation IVC Decider (Final compressed proof) Sonobe

ProtoGalaxy Folding

11/27



Motivation IVC Decider (Final compressed proof) Sonobe

IVC

◦ We have our folding protocol, in which P & V ’fold’ the
instances (witness & commitments)

◦ Will use it in the IVC setting

◦ at each IVC step, need to ensure that the ’folding’ of the
previous step was done correctly

◦ we ’augment’ the circuit with extra checks that compute the
folding Verifier

12/27



Motivation IVC Decider (Final compressed proof) Sonobe

IVC - Nova example

Ui (running instance): committed instance for the correct execution of
invocations 1, . . . , i− 1 of F ′

ui (incoming instance): committed instance for the correct execution of
invocation i of F ′

F’:
i) execute a step of the incremental computation, zi+1 = F (zi)
ii) invoke the NIFS.V to fold Ui, ui into Ui+1

iii) other checks to ensure that the IVC is done properly
13/27



Motivation IVC Decider (Final compressed proof) Sonobe

Cycle of curves

NIFS.V involves G point operation, which are not native over Fr of G.
−→ delegate them into a circuit over a 2nd curve We use:

◦ G1.Fr = G2.Fq

◦ G1.Fq = G2.Fr

◦ eg. for Ethereum compatibility:
G1: BN254, G2: Grumpkin.

We ’mirror’ the main F ′ circuit into the 2nd curve
each circuit computes natively the point operations of the other curve

14/27



Motivation IVC Decider (Final compressed proof) Sonobe

Augmented F Circuit + CycleFold Circuit

explain: circuit overhead

15/27



Motivation IVC Decider (Final compressed proof) Sonobe

Adding zk to the IVC

◦ fold the original witness with a randomized instance

◦ then we can delegate the rest of the computation to a third
party server

16/27



Motivation IVC Decider (Final compressed proof) Sonobe

Decider (Final compressed proof)

With Prover knowing the respective witnesses for Un, un, UEC,n

Issue: IVC proof is not succinct

17/27



Motivation IVC Decider (Final compressed proof) Sonobe

Decider

Original Nova: generate a zkSNARK proof with Spartan for
Un, un, UEC,n

−→ 2 Spartan proofs, one on each curve
(not EVM-friendly)

18/27



Motivation IVC Decider (Final compressed proof) Sonobe

Decider

checks (simplified)

1 (Un+1,Wn+1) satisfy Relaxed R1CS relation of
AugmentedFCircuit

2 verify commitments of Un+1.{E,W} w.r.t. Wn+1.{E,W}
3 (UEC,n,WEC,n) satisfy Relaxed R1CS relation of

CycleFoldCircuit

4 verify commitments of UEC,n.{E,W} w.r.t. WEC,n.{E,W}
5 un.E == 0, un.u == 1, ie. un is a fresh not-relaxed instance

6 un.x0 == H(n, z0, zn, Un)
un.x1 == H(UEC,n)

7 NIFS.V (Un, un) == Un+1

19/27



Motivation IVC Decider (Final compressed proof) Sonobe

Decider

20/27



Motivation IVC Decider (Final compressed proof) Sonobe

Sonobe

Experimental folding schemes library implemented jointly by 0xPARC and PSE.
https://github.com/privacy-scaling-explorations/sonobe
Modular library,

◦ Be able to

◦ Add and test new folding schemes
◦ Compare schemes ’apples-to-apples’
◦ Researchers can easily add their own schemes (eg. Mova

paper)

◦ Make it easy for devs to use folding

◦ minimal code to fold your circuits (’plug-and-fold’)
◦ easy to switch between folding schemes and curves
◦ support of multiple zk-circuit languages

21/27



Motivation IVC Decider (Final compressed proof) Sonobe

Sonobe - Dev experience

Dev flow:

1 Define a circuit to be folded

2 Set which folding scheme to be used (eg. Nova with CycleFold)

3 Set a final decider to generate the final proof (eg. Groth16 over BN254
curve)

4 Generate the the decider verifier (EVM Solidity contract)

22/27



Motivation IVC Decider (Final compressed proof) Sonobe

Status of Sonobe - dev experience

◦ Verify in Ethereum

◦ solidity verifier contract generator

◦ Frontends - how can the dev define a circuit to be folded

◦ Arkworks https://github.com/arkworks-rs/
◦ Circom https://github.com/iden3/circom
◦ Noir https://noir-lang.org/
◦ Noname https://github.com/zksecurity/noname

23/27



Motivation IVC Decider (Final compressed proof) Sonobe

Status of Sonobe - schemes implemented

Implemented:

◦ Nova: Recursive Zero-Knowledge Arguments from Folding Schemes
https://eprint.iacr.org/2021/370.pdf, Abhiram Kothapalli, Srinath Setty, Ioanna
Tzialla. 2021

◦ CycleFold: Folding-scheme-based recursive arguments over a cycle of elliptic
curves
https://eprint.iacr.org/2023/1192.pdf, Abhiram Kothapalli, Srinath Setty. 2023

◦ HyperNova: Recursive arguments for customizable constraint systems
https://eprint.iacr.org/2023/573.pdf, Abhiram Kothapalli, Srinath Setty. 2023

Almost finished:

◦ ProtoGalaxy: Efficient ProtoStar-style folding of multiple instances
https://eprint.iacr.org/2023/1106.pdf, Liam Eagen, Ariel Gabizon. 2023

Soon:

◦ Mova: Nova folding without committing to error terms
https://eprint.iacr.org/2024/1220.pdf, Nikolaos Dimitriou, Albert Garreta,
Ignacio Manzur, Ilia Vlasov. 2024

Temptative:

◦ LatticeFold: A Lattice-based Folding Scheme and its Applications to Succinct
Proof Systems
https://eprint.iacr.org/2024/257.pdf, Dan Boneh, Binyi Chen. 2024

◦ Parallel folding

24/27



Motivation IVC Decider (Final compressed proof) Sonobe

Code example

[show code with a live demo]

25/27



Motivation IVC Decider (Final compressed proof) Sonobe

Code example

Some numbers (still optimizations pending):

◦ AugmentedFCircuit (Nova): ∼ 50k R1CS constraints

◦ DeciderEthCircuit: ∼ 10M R1CS constraints

◦ < 3 minutes in a 32GB RAM 16 core laptop

◦ gas costs (DeciderEthCircuit proof): ∼ 800k gas

◦ mostly from G16, KZG10, public inputs processing
◦ will be reduced by hashing the public inputs
◦ expect to get it down to < 500k gas.

Recall, this proof is proving that applying n times the function F (the circuit
that we’re folding) to an initial state z0 results in the state zn.

In Srinath Setty words, you can prove practically unbounded computation
onchain by 800k gas (and soon < 500k).

26/27



Motivation IVC Decider (Final compressed proof) Sonobe

Wrappup

◦ https://github.com/privacy-scaling-explorations/sonobe
◦ https://privacy-scaling-explorations.github.io/sonobe-docs/

2024-08-08

0xPARC & PSE.

27/27


	Motivation
	IVC
	Decider (Final compressed proof)
	Sonobe

