\documentclass{article} \usepackage[utf8]{inputenc} \usepackage{amsfonts} % \usepackage{yfonts} % WIP \usepackage{amsthm} \usepackage{amsmath} \usepackage{enumerate} \usepackage{hyperref} \usepackage{amssymb} \usepackage{tikz} % diagram \begin{filecontents}[overwrite]{commutative-algebra-notes.bib} @misc{am, author = {M. F. Atiyah and I. G. MacDonald}, title = {{Introduction to Commutative Algebra}}, year = {1969} } @misc{reid, author = {Miles Reid}, title = {{Undergraduate Commutative Algebra}}, year = {1995} } @misc{mit-course, author = {Steven Kleiman}, title = {{Commutative Algebra - MIT OpenCourseWare}}, year = {2008}, note = {\url{https://ocw.mit.edu/courses/18-705-commutative-algebra-fall-2008/}}, url = {https://ocw.mit.edu/courses/18-705-commutative-algebra-fall-2008/} } \end{filecontents} \nocite{*} \theoremstyle{definition} \newtheorem{innerdefn}{Definition} \newenvironment{defn}[1] {\renewcommand\theinnerdefn{#1}\innerdefn} {\endinnerdefn} \newtheorem{innerthm}{Theorem} \newenvironment{thm}[1] {\renewcommand\theinnerthm{#1}\innerthm} {\endinnerthm} \newtheorem{innerlemma}{Lemma} \newenvironment{lemma}[1] {\renewcommand\theinnerlemma{#1}\innerlemma} {\endinnerlemma} \newtheorem{innerprop}{Proposition} \newenvironment{prop}[1] {\renewcommand\theinnerprop{#1}\innerprop} {\endinnerprop} \newtheorem{innercor}{Corollary} \newenvironment{cor}[1] {\renewcommand\theinnercor{#1}\innercor} {\endinnercor} \newtheorem{innereg}{Example} \newenvironment{eg}[1] {\renewcommand\theinnereg{#1}\innereg} {\endinnereg} \newtheorem{innerex}{Exercise} \newenvironment{ex}[1] {\renewcommand\theinnerex{#1}\innerex} {\endinnerex} \newcommand{\aA}{\mathfrak{a}} % TODO: use goth font \newcommand{\mM}{\mathfrak{m}} \title{Commutative Algebra notes} \author{arnaucube} \date{} \begin{document} \maketitle \begin{abstract} Notes taken while studying Commutative Algebra, mostly from Atiyah \& MacDonald book \cite{am} and Reid's book \cite{reid}. Usually while reading books and papers I take handwritten notes in a notebook, this document contains some of them re-written to $LaTeX$. The proofs may slightly differ from the ones from the books, since I try to extend them for a deeper understanding. \end{abstract} \tableofcontents \section{Ideals} \subsection{Definitions} \begin{defn}{ideal} $I \subset R$ ($R$ ring) such that $0 \in I$ and $\forall x \in I,~ r \in R,~ xr, rx \in I$.\\ \hspace*{2em} ie. $I$ absorbs products in $R$. \end{defn} \begin{defn}{prime ideal} if $a, b \in R$ with $ab \in P$ and $P \neq R$ ($P$ a prime ideal), implies $a in P$ or $b \in P$. \end{defn} \begin{defn}{principal ideal} generated by a single element, $(a)$. $(a)$: principal ideal, the set of all multiples $xa$ with $x \in R$. \end{defn} \begin{defn}{maximal ideal} $\mM \subset A$ ($A$ ring) with $m \neq A$ and there is no ideal $I$ strictly between $\mM$ and $A$. ie. if $\mM$ maximal and $\mM \subseteq I \subseteq A$, either $\mM=I$ or $I=A$. \end{defn} \begin{defn}{unit} $x \in A$ such that $xy=1$ for some $y \in A$. ie. element \emph{which divides 1}. \end{defn} \begin{defn}{zerodivisor} $x \in A$ such that $\exists 0 \neq y \in A$ such that $xy=0 \in A$. ie. $x$ \emph{divides 0}.. If a ring does not have zerodivisors is an integral domain. \end{defn} \begin{defn}{prime spectrum - $Spec(A)$} set of prime ideals of $A$. ie. $$Spec(A) = \{ P ~|~ P \subset A~ \text{is a prime ideal} \}$$ \end{defn} \begin{defn}{integral domain} Ring in which the product of any two nonzero elements is nonzero. ie. no zerodivisors. ie. $\forall~ 0 \neq a,~ 0 \neq b \in A,~ ab \neq 0 \in A$. Every field is an integral domain, not the converse. \end{defn} \begin{defn}{principal ideal domain - PID} integral domain in which every ideal is principal. ie. ie. $\forall I \subset R,~ \exists~ a \in I$ such that $I = (a) = \{ ra ~|~ r \in R \}$. \end{defn} \begin{defn}{nilpotent} $a \in A$ such that $a^n=0$ for some $n>0$. \end{defn} \begin{defn}{nilrad A} set of all nilpotent elements of $A$; is an ideal of $A$. if $nilrad A = 0 ~\Longrightarrow$ $A$ has no nonzero nilpotents. $$nilrad A = \bigcap_{P \in Spec(A)} P$$ \end{defn} \begin{defn}{idempotent} $e \in A$ such that $e^2=e$. \end{defn} \begin{defn}{radical of an ideal} $$rad I = \{ f \in A | f^n \in I~ \text{for some} n \}$$ $rad I$ is an ideal. $nilrad A = rad 0$ $rad I = \bigcap_{\substack{P \in \operatorname{Spec}(A)\\ P \supset I}} P$ \end{defn} \begin{defn}{local ring} A \emph{local ring} has a unique maximal ideal. Notation: local ring $A$, its maximal ideal $\mM$, residue field $K=A/\mM$: $$A \supset \mM ~\text{or}~ (A, \mM) ~\text{or}~ (A, \mM, K)$$ \end{defn} \subsection{$\mathbb{Z}$ and $K[X]$, two Principal Ideal Domains} \begin{lemma}{} $\mathbb{Z}$ is a PID. \end{lemma} \begin{proof} Let $I$ a nonzero ideal of $\mathbb{Z}$. Since $I \neq \{0\}$, there is at least one nonzero integer in $I$. Choose the smallest element of $I$, namely $d$. Observe that $(d) \subseteq I$, since $d \in I$. Then, every multiple $nd \in I$, since $I$ is an ideal. Take $a \in I$. By the Euclidean division algorithm in $\mathbb{Z}$, $a=qd+r$, with $q,r \in \mathbb{Z}$ and $0 \leq r \leq d$. Then $r = a - qd \in I$, but $d$ was chosen to be the smallest positive element of $I$, so the only possibility is $r=0$. Hence, $a=qd$, so $a \in (d)$, giving $I \subseteq (d)$. Since we had $(d) \subseteq I$ and now we got $I \subseteq (d)$, we have $I = (d)$, so every ideal of $\mathbb{Z}$ is principal. Thus $\mathbb{Z}$ is a Principal Ideal Domain(PID). \end{proof} \begin{lemma}{} $K[X]$ is a PID. \end{lemma} \begin{proof} This proof follows very similarly to the previous proof.\\ Let $K$ be a field, $K[X]$ a polynomial ring. Take $\{0\} \neq I \subseteq K[X]$. Since $I \neq \{0\}$, there is at least one non-zero polynomial in $I$. Let $p(X) \in I$ be of minimal degree among nonzero elements of $I$. Observe that $(p(X)) \subseteq I$, because $p(X) \in I$ and $I$ is an ideal. Let $f(X) \in I$. By Euclidean division algorithm in $K[X]$, $\exists q, r \in K[X]$ such that $f(X) = q(X) \cdot p(X) + r(X)$ with eithr $r(X)=0$ or $deg(r) < deg(p)$. Since $f,p \in I$, then $r(X) = f(X) - q(X)\cdot p(X) \in I$ If $r(X) \neq 0$, then $deg(r) < deg(p)$, which contradicts the minimality of $deg(p)$ in $I$. Therefore, $r(X)=0$, thus $f(X)=q(X)\cdot p(X)$, hence $f(X) \in (p(X))$. Henceforth, $I \subseteq (p(X))$. Then, since $(p(X)) \subseteq I$ and $I \subseteq (p(X))$, we have that $I = (p(X))$. So every ideal of $K[X]$ is principal; thus $K[X]$ is a PID. \end{proof} \subsection{Lemmas, propositions and corollaries} Let $\Sigma$ be a partially orddered set. Given subset $S \subset \Sigma$, an \emph{upper bound} of $S$ is an element $u \in \Sigma$ such that $s