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Abstract

Notes taken while studying Commutative Algebra, mostly from Atiyah
& MacDonald book [1I] and Reid’s book [2]. For the exercises, I follow the
assignments listed at [3].

Usually while reading books and papers I take handwritten notes in a
notebook, this document contains some of them re-written to LaTeX.

The proofs may slightly differ from the ones from the books, since I
try to extend them for a deeper understanding.
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1 Ideals

1.1 Definitions

Definition (ideal). I C R (Rring)suchthat0 € [ andVx € I, r € R, ar,rz €
I
ie. I absorbs products in R.

Definition (prime ideal). if a,b € R with ab € P and P # R (P a prime
ideal), implies « € P or b € P.

Definition (principal ideal). generated by a single element, (a).
(a): principal ideal, the set of all multiples za with x € R.

Definition (maximal ideal). m C A (A ring) with m # A and there is no ideal

I strictly between m and A. ie. if m maximal and m C I C A, either m = [ or
I1=A.

Definition (unit). z € A such that zy = 1 for some y € A. ie. element which
divides 1.

Corollary 1.8. A = A* U|Jm (where Ul denotes “disjoint union”), ie. f € A
is either a unit or it is contained in a maximal ideal, not both.

Definition (zerodivisor). x € A such that 30 # y € A such that 2y =0 € A.
ie. x divides 0..
If a ring does not have zerodivisors is an integral domain.

Definition (prime spectrum - Spec(A)). set of prime ideals of A. ie.

Spec(A) = {P | P C Ais a prime ideal}

Definition (integral domain). Ring in which the product of any two nonzero
elements is nonzero.

ie. no zerodivisors.

ie. VO#a, 0#£be A, ab#0 € A.

Every field is an integral domain, not the converse.



Definition (principal ideal domain - PID). integral domain in which every
ideal is principal. ie. ie. VI C R, 3 a € I such that I = (a) = {ra | r € R}.

Definition (nilpotent). a € A such that a™ = 0 for some n > 0.

Definition (nilrad A). set of all nilpotent elements of A; is an ideal of A.
if nilradA =0 = A has no nonzero nilpotents.

nilradA = m P
PeSpec(A)

Definition (idempotent). e € A such that e? = e.

Definition (radical of an ideal).
radl = {f € A|f™ € I for some n}

radl is an ideal.
nilradA = rad0

radl = ﬂPESpeC(A) P
PDI
Definition 1.13 (local ring). A ring is local if it has a unique maximal ideal.
Notation: local ring A, its maximal ideal m, residue field K = A/m:

ADmor (A,m)or (4,m, K)

By Corollary A is local
<= A has only one maximal ideal.
<= all the nonunits of A form an ideal.

1.2 Z and K[X], two Principal Ideal Domains
Lemma . Z is a PID.

Proof. Let I a nonzero ideal of Z.

Since I # {0}, there is at least one nonzero integer in I. Choose the smallest
element of I, namely d.

Observe that (d) C I, since d € I. Then, every multiple nd € I, since [ is
an ideal.

Take a € I. By the Euclidean division algorithm in Z, a = ¢qd + r, with
¢, r €Zand 0 <r <d.

Then r = a — qd € I, but d was chosen to be the smallest positive element
of I, so the only possibility is » = 0.

Hence, a = qd, so a € (d), giving I C (d).

Since we had (d) C I and now we got I C (d), we have I = (d), so every
ideal of Z is principal. Thus Z is a Principal Ideal Domain(PID). O

Lemma . K[X] is a PID.



Proof. This proof follows very similarly to the previous proof.

Let K be a field, K[X] a polynomial ring.

Take {0} # I C K[X].

Since I # {0}, there is at least one non-zero polynomial in I.

Let p(X) € I be of minimal degree among nonzero elements of I.

Observe that (p(X)) C I, because p(X) € I and [ is an ideal.

Let f(X) € I. By Euclidean division algorithm in K[X], 3¢,r € K[X] such
that f(X) = q(X) - p(X) + r(X) with eithr r(X) = 0 or deg(r) < deg(p).

Since f,p € I, then r(X) = f(X) —q¢(X) -p(X) €I

If r(X) # 0, then deg(r) < deg(p), which contradicts the minimality of
deg(p) in I.

Therefore, 7(X) = 0, thus f(X) = ¢(X) - p(X), hence f(X) € (p(X)).
Henceforth, I C (p(X)).

Then, since (p(X)) C I and I C (p(X)), we have that I = (p(X)).

So every ideal of K[X] is principal; thus K[X] is a PID.

1.3 Zorn’s lemma and Jacobson radicals

Let ¥ be a partially orddered set. Given subset S C 3, an upper bound of S is
an element u € 3 such that s < uVs € S.

A mazimal element of 3, is m € ¥ such that m < s does not hold for any
s €.

A subset S C X is totally ordered if for every pair s1,s9 € S, either 57 < s
or sg < §71.

Lemma R.1.7 (Zorn’s lemma). Suppose ¥ a nonempty partially ordered set
(ie. we are given a relation z < y on X), and that any totally ordered subset
S C ¥ has an upper bound in X.

Then ¥ has a maximal element.

Theorem AM.1.3. Every ring A # 0 has at least one maximal ideal.
Proof. By Zorn’s lemma [R-1.7} O

Corollary AM.1.4. if I # (1) an ideal of A, 3 a maximal ideal of A containing
I

Corollary AM.1.5. Every non-unit of A is contained in a maximal ideal.

Definition (Jacobson radical). The Jacobson radical of a ring A is the inter-
section of all the maximal ideals of A.

Denoted Jac(A).

Jac(A) is an ideal of A.

Proposition AM.1.9. z € Jac(A) iff (1 — zy) is a unit in A4, Yy € A.



Proof. Suppose 1 — xy not a unit.

By 1 — zy € m for m some maximal ideal.
But 2 € Jac(A) C m, since Jac(A) is the intersection of all maximal ideals

of A.
Hence zy € m, and therefore 1 € m, which is absurd, thus 1 — zy is a unit.
Conversely:
Suppose = € m for some maximal ideal m.
Then m and x generate the unit ideal (1), so that we have u + xy = 1 for
some v € m and some y € A.
Hence 1 — 2y € m, and is therefore not a unit. O

2 Modules

2.1 Modules concepts

Let A be a ring. An A-module is an Abelian group M with a multiplication
map

AxXM—M
(f,m) — fm
satisfying V f,g € A, m,n € M.
i. flm+n)=fm=*fn
ii. (f+£g)m=fm+gm
iii. (fg)m = f(gm)
iv. lym=m

Let ¢ : M — M an A-linear endomorphism of M.
Al] C EndM is the subring geneerated by A and the action of .

e since v is A-linear, A[1)] is a commutative ring.

e M is a module over A[i], so ¢ beomes multiplication by a ring element.

2.2 Cayley-Hamilton theorem, Nakayama lemma, and corol-
laries

Proposition AM.2.4. (Cayley-Hamilton Theorem) Let M a fingen A-module.

Let a an ideal of A, let 1 an A-module endomorphism of M such that ¥(M) C

aM.
Then 1 satisfies

P" + a " 1Y +a, =0

with a; € a.



Proof. Since M fingen, let {z1,...,z,} be generators of M.

By hypothesis, 1(M) C aM; so for any generator z;, it’s image ¢ (z;) € aM.
Any element in aM is a linear combination of the generators with coefficients

in the ideal a, thus

b(a) =Y ayw;
j=1

with ai; € a.
Thus, for a module with n generators, we have n different ¢ (x;) equations:

Y(x1) = a1 + a1 202 + ...+ a1 Ty
Y(x2) = a2121 + a2 o2 + ... + a2ty

n elements ¥ (x;) € aM which

are linear combinations of the

n generators of M

Y(Tp) = Gn1%1 + An2Ta + ... F Ay pTn

Next step: rearrange in order to use matrix algebra.

Observe that each row equals 0, and rearranging the elements at each row

we get

Y(z1) — (@121 +a1222+ ...+ a1 pzy) =0
0

¢($2) — (ag,ll‘l + agoxo + ...+ a27n$n) =

Y(xn) = (@n 121+ an2T2 + ... + @y pzn) =0

Then, group the x; terms together; as example, take the row i = 1:

(Y —ar11)r1 —a12T2 — ... — a1,y =0
(77/1 - 01,1)331 —a12T2 — ... — A1 nTp = 0
— a2171 + (’L/) — a2)2)$2 — .= 2Ty = 0
— Q1,171 —A12T2 — ... + (1,[) — al,n)xn =0

So, Vi € [n], as a matrix:

1/) —ai —a1,2 . —Q1n T 0
—a21 w — Q22 . —a2.n To 0
—anp,1 —Qp2 oo Y —apg T, 0
Denote the previous matrix by ®. Let m denote the vector (z1, 2, ...,2,)T
(ie. the vector of generators of the A-module M).
Then we can write the previous equality as
®-m=0 (1)



We know that
adj(®)® = det(P)I (2)

(aka. fundamental identity for the adjugate matrix).
So if at we multiply both sides by adj(®),
adj(®) - P-m =0
(recall from ([2)): adj(®)® = det(®) - I )
=det(®)-I'm =0

Thus,
det(®) - I'-m=0:
det(®) 0 ... 0 1 0
0 det(®) ... 0 Z9 0
0 0 .. det(®) T 0
=
det(®)-z; =0 Vi€ [n] (3)

ie. det(®) is an annihilator of the generators x; of M, thus is an annihilator
of the entire module M.

So, we're interested into calculating the det(®).

By the Leibniz formula,

det(A) = Z sgn(a)HaiJ(i)
oES, i=1

thus,
det(®) = (Y —a11)(¥ —a2)... (Y —ann)

diagonal of ®, leading term of the determinant

The determinant trick is that the terms that go after the ”leading term of
the determinant”, will belong to a and their combinations with ¢ will not be
bigger than ™. Furthermore, when expanding it

e highest power is 1 - 9™

o coefficient of Y"1 is —(a1y + asa + ...+ ann),

ay
where, since each a;; €a, a1 €a

e the rest of coefficients of 1/* are also elements in a

Therefore we have

det(®) = Y™ + a1 0"+ a4 ap_ 1+ ap



with a; € a.

Now, notice that we had det(®) -x; =0V i € [n].
The matrix ® is the characteristic matriz, xI — A, viewed as an operator.
Then,
det(®) = det(xl — A) = p(x)

where p(x) is the characteristic polynomial.

If a linear transformation turns every basis vector (z;) into zero, then that
transformation is the zero transformation. So in our case, det(®) is the zero
transformation, thus det(®) = 0. Therefore,

Y+ ad" T ey P Lt ape1d +an =0

Corollary AM.2.5. Let M a fingen A-module, let a an ideal of A such that
aM = M.
Then, 3 2 =1 (mod a) such that zM = 0.

Proof. take ¢ = identity. Then in Cayley-Hamilton (AM.2.4):

P+ a1+ aoy P Lt a1t an =0
= idpy + aridpy; + agidpy + ...+ ap—1tdy +a, =0
= (14+a1+...+a)idyy =0

apply it to m € M, where since idys(m) = m (by definition of the identity), we
then have
(1+a1+...+a,)-m=0

with a; € a.

part i. M =0:
Thus the scalar = (1 + a1 + ... + a,) annihilates every m € M, ie.
the entire module M.

part ii. x =1 (mod a):
=1 (moda) < (z—1)€a
then fromz = (14+a1+...+a,) €Ea,set b=a; + ...+ ay,
—_——

b
so that z = (1+b) € a.

Thenz—1=(1+b)—-1=b€a
sox—1€a, thus x =1 (mod a) as stated.



Proposition AM.2.6 (Nakayama’s lemma). Let M a fingen A-module, let a
an ideal of A such that a C Jac(A).
Then aM = M implies M = 0.

Proof. By AM.2.5F since aM = M, we have M = 0 for some z = 1 (mod Jac(A)).

(notice that at JAM.2.5|is (mod a) but here we use (mod Jac(A)), since we
have a C Jac(A)).

(recall x € Jac(A) iff (1 —zy) is a unit in A4, Vy € A).
By x is a unit in A (thus 2712 = 1).

Hence M =z~ 1 - x - M =0.
—
=0 (by [AM.2.5)
Thus, if aM = M then M = 0. O

Corollary AM.2.7. Let M a fingen A-module, let N C M a submodule of M,
let a C Jac(A) an ideal.

implies

Then M =aM + N =" M = N.

Proof. The idea is to apply Nakayama (AM.2.6]) to M/N.
Since M fingen = M/N is fingen and an A-module.

Since a C Jac(A) = Nakayama applies to M /N too.
By definition,

aM:{Zai-mi ‘ aiECLmiEM}

where m; are the generators of M.
Then, for M/N,

a(%): {Zai~(mi+N) | a; € a,m; EM}

observe that a;(m; + N) = a;m; + N, thus

Zai~(mi—|—N):(Zai-mi)—l—NEaM—FN

————
caM

Hence,

a(%):{x—i—]\f | z€aM}=aM+ N (4)

By definition, if we take w, then

aM + N

~ ={y+N | yeaM+N}=aM + N

thus every y € aM + N can be written as

y=z+n, withxeaM, ne N



which comes from .
Thus, y+ N = (z+n)+ N =x + N, since n € N is zero in the quotient.
Hence, every element of w has the form

M+ N
%:{zwLN | z€aM}
as in .
Thus M M4 N
a
Y aM AN = T
() = aM + - (5)
By the Collorary assumption, M = aM + N; quotient it by N:
M aM+ N
o _ I 6
So, from and @:
M aM+N M
a( N) aM + ~ N
(MY _ M
thus, a(5) = 5 o
By Nakayama’s lemma [AM.2.6] if a(3f) = 42 LS X=o0

Note that M
ﬁ:{m+N|m€M}

(the zero element in 4 is the coset N =0+ N)

Then, % = 0 means that the quotient has exactly one element, the zero
coset N.

Thus, every coset m+ N equals the zero coset N;som—0€ N = m € N.

Hence every m € M lies in N, ie. Vm € M, m € N.

So M C N. But notice that by the Corollary, we had N C M, therefore
M = N.

Thus, if M = aM + N "5 ) = N. 0
Proposition AM.2.8. Let z; Vi € [n] be elements of M whose images %

from a basis of this vector space. Then the z; generate M.

Proof. Let N submodule M, generated by the z;.

Then the composite map N — M — mzvfw maps N onto %, hence

N + aM = M, which by [AM.2.7] implies N = M. O

2.3 Sequences

Definition R.2.9.a (Exact Sequence). Let a sequence of homomorphisms
LM N

It is exact at M if im(a) = ker(B).

ie. foa =0 and o maps surjectively to ker(f).

10



Definition R.2.9.b (Short Exact Sequence (s.e.s.)).

0—L-5M-2N—0

is exact <= L C M and N = M/L.
Properties:

e (« injective

e [3 surjective

e a: L = kerp

e induces M/a(L) — N

Proposition R.2.10 (Split exact sequence). For the previous s.e.s., 3 equiva-
lent conditions:

i. disomorphism M = L & N, with
a:m— (m,0)
B:(m,n)—n
ii. 3 a section of 3, that is, a map s : N — M such that S o s = idy
iii. 3 a retraction of a, that is, a map r : M — L such that r o a = id,
If all i, ii, iii are satisfied, it is a split exact sequence.

Proof. Intuitively, when a s.e.s. splits it means that the middle module M is
the direct sum of the other (outer) two modules, ie. M = L& N.

(itoii, iii) if M = L & N such that o : m +—— (m,0), B: s(m,n) — n, we can
define the maps

for ii:

s: N—L&N
s(n) — (0,n)

Then B(s(n)) = £(0,n), so fos=1idy.

for iii:

r: LON — L
r(m,n) — m

Then r(a(m)) = r(m,0), so ro o = idy,.

11



(ii to i) assume s: N — M such that fos =1idy
Want to show M = im(a) @ im(s).
VYm € M, consider m — s(8(m)), apply § to it:
B(m = s(B(m))) = B(m) — (Bos)(B(m)) = B(m) — f(m) =0
Since ker(B) = im(c), 3 € L such that a(l) =m — s(B8(m)).
Thus m = «a(l) + s(B8(m)).

Now, suppose = € im(a) Nim(s), then x = a(l) = s(n), apply B to it:
Bla(l)) = B(s(n)) = 0=mn.
If n = 0, then s(n) = 0, so the intersection is {0}.

Define

¢:LON — M
o(l,n) — a(l) + s(n)
This isomorphism satisfies the required conditions.

(iii to i) similar to the previous one.

Overview:

0— L2 iy 2N — 0
a:l—s (1,0)
r:(m,n) —m

aor =1idy
B:(,n)—mn
s:n+— (0,n)

Bos=1idy

3 Noetherian rings (and modules)

Definition (Ascending Chain Condition). A partially orddered set ¥ has the
ascending chain condition (a.c.c.) if every chain

51 <82 <

eventually breaks off, that is, s = sx4+1 = ... for some k.

12



— ¥ has the a.c.c. iff every non-empty subset S C ¥ has a maximal
element.
if 25 C X does not have a maximal element, choose s; € S, and for each
Sk, an element siy1 with si < sg41, thus contradicting the a.c.c.
3.1 Noetherian rings and modules
Definition R.3.2 (Noetherian ring). Let A a ring; 3 equivalent conditions:

i. the set ¥ of ideals of A has the a.c.c.; in other words, every increasing chain
of ideals
LcLc...CcI,C...

eventually stops, that is I, = Ix41 = ... for some k.
ii. every nonempty set S of ideals has a maximal element
iii. every ideal I C A is finitely generated
If these conditions hold, then A is Noetherian.
Proof. TODO O

Definition R.3.4.D (Noetherian modules). An A-module M is Noetherian if
the submoles of M have the a.c.c.,
that is, ay increasing chain

My CMyC...CMgC...
of submodules eventually stops.
As in with rings, it is equivalent to say that
i. any nonempty set of modulesof M has a maximal element

ii. every submodule of M is finite

Proposition R.3.4.P. Let 0 — L = M PN 0 be a s.e.s. (split

exact sequence, [R.2.10)).

Then, M is Noetherian <—=- L and N are Noetherian.

Proof. = trivial, since ascending chains of submodules in L and N correspond
one-to-one to certain chains in M.

<=: suppose M1 C My C ... C My, C ... is an increasing chain of submod-
ules of M.

Then identifying (L) with L and taking intersection gives a chain
LNMyCcLNMyC...CLNMgC...
of submodules of L, and applying 3 gives a chain

B(My) C B(Mz) C ... (M) C ...

13



of submodules of N.
Each of these two chains eventually stop, by the assumption on L and N, so
that we only need to prove the following lemma which completes the proof. [

Lemma R.3.4.L. for submodules M; C My C M,
LNM =LnNMs;and ﬁ(Ml) = B(Mg) = M, = M,

Proof. if m € Ms, then f(m) € (M) = B(Mz), so that there is an n € M;
such that 8(m) = B(n).
Then S(m —n) =0, so that

m—n € My Nker(8) = My Nker(3)

Hence m € My, thus My = M. O

Corollary R.3.5 (Properties of Noetherian modules). i. if Vi € [r], M, are
Noetherian modules, then @;_, M; is Noetherian.

ii. if A a Noetherian ring, then an A-module M is Noetherian iff it is finite
over A.

iii. if A a Noetherian ring, M a finite module, then any submodule N C M is
again finite.

iv. if A a Noetherian ring, and v : A — B a ring homomorphism such that
B is a finite A-module, then B is a Noetherian ring.

Proof. 1. a direct sum M; & M> is a particular case of an exact sequence.

Then, Proposition proves this statement when r = 2. The case
r > 2 follows by induction.

ii. if M finite, then 3 surjective homomorphism
A" — M —0
for some 7, so that M is a quotient
M= A"/N

for some submodule N C A".

A" is a Noetherian module by i., so M is Noetherian due Proposition

R.34P
Conversely, M Noetherian implies M finite.

item as in previous implications:

M finite and A Noetherian = M is Noetherian,
— since N C M, then N is Noetherian too

= which implies that N is a finite A-module.

14



iii. B is Noetherian as an A-module; but ideals of B are submodules of B as
an A-submodule, so that B is a Noetherian ring.
O

3.2 Hilbert basis

Theorem R.3.6 (Hilbert basis theorem). If A a Noetherian ring, then so is
the polynomial ring A[z].

Proof. Prove that any ideal I C A[x] is fingen.
Define auxiliary sets J, C A by
Jo={acA|3fcIsth f=ar" +b, 12" ' 4+... by}

ie. J, is the set of leading coeflicients of I of degree n.
Jp is an ideal, since I is an ideal.
Jn C Jpy1, since for f €I also xf € I.
Therefore J; C Jo C ... C Jx C ... is an increasing chain of ideals.
Using the assumption that A is Noetherian, deduce that J,, = J, 11 for some n.
For each m <n, J, C A is fingen, ie.

Im = (@m 1, Am )

By definition of J,,, for each @, ; with 1 < j <y,
3 a polynomial fy, ; € I of degree m having the leading coefficient ay, ;.

= {f7n,j}m<n;1§j§7'm

the set of elements of I.
Claim: this finite set ({fm ;}) generates I.
Vf €I, if deg f = m, then its leading coefficient is a € J,,,
hence if m > n, then a € J,,, = J,, so that

a = Z bian’i with b; € A

and
F=Y biX™" i

has degree < m.
Similarly, if m < n, then a € J,,, so that

a = Zbiam,i with b; € A

and
F=Y bifni

has degree < m.

15



By induction on m, f can be written as a linear combination of finitely many
elements.
Thus, any ideal of Alz] is finitely generated. O

Corollary R.3.6.C. if A a Noetherian ring, and ¢ : A — B a ring homomor-
phism such that B is a fingen extension ring of ¥(A), then B is Noetherian.
In particular, any fingen algebra over Z or over a field K is Noetherian.

Proof. the assumption is that B is a quotient of a polynomial ring,
B Alzy, ... x,)/1

for some ideal I.
By the Hilbert basis theorem and induction,
A being Noetherian implies that A[zq,...,2,] is Noetherian.

And by Corollary iv),

Alzy, ..., 2,] being Noetherian implies that A[xy,...,z,]/I is Noetherian. [

4 Finite ring extensions and Noether normaliza-
tion
4.1 A-algebras and integral domains

Definition (A-algebra). An A-algebra is a ring B with a ring homomorphism
Yv:A— B.
B is an A-module with multiplication defined by ¢(a)-b (a € A,b € B).
When A C B, B is an extenaion ring of A; denoted ¢(A4) = A’ C B.

Definition R.4.1. Let B be an A-algebra.
i. Bis a finite A-algebra (finite over A) if it is finite as an A-module.
ii. y € B is integral over A if 3 a monic polynomial
fY)=Y"+a, 1 Y" ' +.. . 4ay € A]Y]
such that f(y) =0:
fW) =" +an1y" " +.. . +ag=0
The algebra B is integral over A if V b € B is integral.
Proposition R.4.2. Let ¢ : A — B be an A-algebra, and y € B. Three

equivalent conditions:

16



i. y is integral over A

ii. subring A’[y] C B generated by A’ = )(A) and y is finite over A

iii. 3 an A-subalgebra C' C B such that A’[y] C C and C is finite over A

Notes: A’ is the image of A in B, ie. A" = ¢(A).
A’[y] is the smallest subring of B containing both coefficients from A and the

element y.
Proof. .
(i to ii): since y integral over A = by (ii), y satisfies

(iii to 1):

f)=y"+an1y" 4. . +ag=0

So any power y* (k > n) can be expressed in terms of {1,y,v%,...,y" "'}
Thus the set {1,y,y?,...,y" '} spans A’[y] as an A-module.

since A'lyjcC = yeC

since C finite over A, C has finite generators {cy,...,c,} such that C =
A-ct+A-co+...+A ¢,
Thus y - ¢; € C,

n
Y- G = Z QijCy
j=1
with a;; € A.
By the Cayley-Hamilton theorem (AM.2.4)),
V't any" T+t ay+ag=0

Therefore, y is integral (by (ii)).

Proposition R.4.3 (Tower Laws). Let B be an A-algebra.

a. Transitivity of finiteness: if A C B C C are extension rings such that C' is a
finite B-algebra and B a finite A-algebra,
then C is finite over A.

b. Finiteness of generated algebras: if y1,...,y, € B are integral over A, then
Aly1, ..., Ym] is finite over A.
In particular, every f € Alyi,...,ym] is integral over A.

c. Transitivity of integrality: if A C B C C with C integral over B, and B
integral over A,
then C' is integral over A.
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d.

Integral closure as a subring: the subset
A= {y € B|yis integral over A} C B
is a subring of B.

Moreover, if y € B is integral over A then y € A, so that A = A.

Proof. .

a. if {B1,...,0n} generate B as an A-module and {7v1,...,7,} generate C as

d.

an B-module,
then the set of products {f;7;} generates C' as an A-module.

Since there are n x m generators (ie. finite), C' is finite over A.

. proof by induction:

base case: if y; integral over A = it satisfies a monic polynomial.

Thus A[y,] is generated as an A-module by {1,y1,¥,...,y!" '}, making it a
finite A-algebra.

inductive step: let Ry = Aly1,...,yx]. Assume Ry is finite over A.
Since y+1 is integral over A = it is also integral over Rj.
Thus Ri4+1 = Ri[yg+1] is finite over Ry.

Applying part (a) (transitivity of finiteness), if Ry1 is finite over Ry and Ry
finite over A, then Ry is finite over A.

Consequence: since any f € Alyy,...,ym] belongs to a finite A-algebra, f
must be integral over A (since an element is integral iff it is contained in a
finite extension).

let x € C, since x integral over B, it satisfies:

"+ by 12" . 4+ bx+by=0, b €B

Let B"” = Albo,b1,...,bn—1]. Since each b; € B and B is integral over A
= each b; is integral over A.

Since all b; are integral over B = B’[z] is a finite B’-algebra.
By part (a) (transitivity of finiteness), B’[z] is a finite A-algebra.
Therefore, x is integral over A.

. subring: R
let x,y € A. Want to show x + y,xy € A:

by part (b), the algebra Alx,y] is finite over A.
Since x + y, zy € Alz,y], they are integral over A.
Thus = + y,zy € A, since A = {b € B | b integral over A}.
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II. idempotence R
let z € B be integral over A
we have a chain A C A C Alz].
By definition, A is integral over A, and z is integral over A
thus by part (c), z is integral over A.

Therefore, z € A.
O

Lemma 4.3.Aux (Integrality implies finiteness). If y integral over A then Afy]
is finite over A.
This extends on point (b) from the previous proposition

Proof. Suppose y is integral over A. By definition 3 f € A[T], with f monic,
such that f(y) = 0.
Let deg(f) = d, so that for f(y) = 0 we have

yd—i—ad,lyd_l—i—...—i-aly—&-aozo a; € A

Since it is monic (leading coefficient is 1), we can rearrange it to isolate the
highest power:
yd = —(ag_1y 4+ ...+ awy + ao) (7)

Thus y¢ can be written using lower powers of y with coefficients in A.

Consider any element p € Aly], p = cny™ + Cm_1y™ > + ... + co.
if m < d, leave it as it is.
if m > d, use the monic equation to replace y¢ with lower powers.
Repeating this process, can reduce any power of y down to a linear combi-
nation of {1,y,y2, ...,y 1}
Thus every element in Afy] can be expressed as

/\d_lyd_l+...+)\2y2+)\1y+/\0~1 N €EA

Henceforth, the set {1,y,%2,...,y% !} generates A[y] as a finite A-module.
O

Definition 4.4 (Integral closure). Given the ring A from (d), ie. A=
{y € B | y integral over A} C B, A is the integral closure of A in B.
If A=A, then A is integrally closed in B.
An integral domain A is normal if it is integrally closed in its field of frac-
tions, that is if
A=ACK = Frac(A)

For any integral domain A, the integral closure of A in its field of fractions
K = Frac(A) is also called the normalization of A.
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4.2 Noether normalization

Definition 4.6 (Algebraically independent). yi,...,y, € A are algebraically
independent over K if the natural surjection K[Y1,...,Y,] — Kly1,...,yn] is
an isomorphism.

= 3 F(yi,...,yn) = 0 (F nonzero) with coefficients in K.

Recall: a K-algebra A is fingen over K if A = K|y, ...,yy] for some finite
set y1,...,Yn-

Lemma R.4.6.L. Let A= K|yi,...,yn] and 0 # F € K|[Y7,...,Y,] such that

F(y1,---,yn) = 0.
Then 3 y7,...,y;_; € A such that y, is integral over

A*=Klyf,...,ys_q] and A= A"[y,]

Proof. Set yf =y, —yli fori € n—1] and rq,...,7p—1 > 1 € Z.

(ie. yi =y +yn')
Define G € A by

GYis s Yn_1,Yn) = F(y; +y5'syn) =0

viewed as a relation for y, over K[yy,...,y5_4].
Since F'is a polynomial in yi,...,y:_4, can write it as a sum of monomials

where m = (my,...,m,) and each a,, # 0.

Therefore,
G=> am [ +yi)™

which when expanding out, each summand a,, [[(y} 4+ y5)™ has a unique term
. . (32 rims)
of highest order in y,,, namely a,y .

Suppose we can arrange so that
m#m = Zrimi # Zrim;

Then max{>_ r;m; | m s.th. a,, # 0} is achieved in only one summand, so
that here is no cancellation; thus the highest order term in G is amy§LZ rimi) (ie.

a, times a pure power of yy,). O

Theorem R.4.6 (Noether normalization lemma). Let K a field, A a fingen
K-algebra.
Then 3 21, ..., 2z, € A such that
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i. z1,...,2zn are algebraically independent over K
ii. A is finite over B = K|z1,. .., zm]
That is, a fingen extension K C A can be written as a composite
KCB=Klz,...,2m] CA
where K C B is a polynomial extension, and B C A is finite.

Proof. Let yi,...,yn be generators of A = K[yi,...,yn]-

if n = 0, nothing to prove since A is generated by 0 elements — A = K,
and K is finite.

if n > 0 we have two cases:

- Y1,...,Yn are algebraically independent over K, then by definition
A2 K[y1,...,Yn], so that A is a finite module over itself, with m = n.

- Y1,...,Yn are algebraically dependent over K,
30#4 feKy,...,yn] sth f(y1,...,yn) =0

Want f to be monic, so that y, is integral over new defined variables
Yi,--.,yr_1. In other words, want some polynomial like

yfﬁ—i—ad,lyz_l—l—...—&—alyn—i—ao:0 a; € K[yy,.. ., y5_1]

ie. monic, so that by definition (R.4.1)), y,, is integral over K[yj,...,y5_1].
— Change variables so that f becomes monic in one of the variables (yy);
this allows to express one generator (y,) as an integral element over the others.

Following from Lemma [R-4.6.T} define the new variables yi,...,y;_; € A
such that y,, is integral over

A*=Kly,...,yi_1], and A = A™[y,]

Setting ¥ = y; —yli, so that y; = yf +yli Vi € [n—1], r1,...,rp—1 > 1€ Z.
Use those new variables at f(y1,...,yn) = 0:

FOr +unt s + 002, Y U yn) =0

(> airi)

Then the highest power of y, in each term of f will look like yy; , and
with r; growing fast enough we ensure that each monomial in f produces a
unique power of y,,.

Then we have c-y2 + (terms with lower powers of y,,) = 0 with ¢ € K \ {0}.
So that dividing by ¢ we get the shape y? + ... = 0, thus y,, is integral over

A* =Kyt ..., yi_4]-

Induction:
Since y,, integral over A* = A = A*[y,] is finite over A* = K[y],...,y}_4]

(by F3-Awd).
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By inductive hypothesis on A*, 3 z1,..., 2z, € A* algebraically independent

over K and with A* finite over B = K|[z1,...,2m].
Therefore, each step of B C A* C A*[y,| = A is finite, and A is finite over
B as required. O

Example . A= K[X,Y]/(XY —1). Y is algebraic over K[X], but not integral
over K[Y].

This corresponds to the fact that the hyperbola XY = 1 has the line X =0
as an asymptotic line (so that its projection to the X-axis misses a root over
X =0).

Take X' = X — €Y as the element of A instead of X; then the relation
becomes (X’ +€Y)Y = 1, monic in YV if € # 0.

This corresponds geometrically to tilting the hyperbola a little before pro-
jecting, so that no longer has a vertical asymptotic line.

4.3 Weak Nullstellensatz

Proposition R.4.9. let A C B be an integral extension of integral domain,
then A is a field <= B is a field.

Proof. =
let 0#£x € B,then3 z"+ap_12" ' +...4+ap=0 a; € A, monic.

Since A is a field, 3 inverse, observe that:

"+ ap 12" P4+ +axz+arg=0
x(m"‘l tan 12" 4.+ ay) = —ap
—aal(mnfl +ap_12" 4+ .+ ay) = z'eB

thus there exists inverse in B, so B is a field too.

—:
if Bis a field and 0 # x € A, then 27! € B, so ™! is integral over A.

So there is a relation of the form

(™" +ap_1(z7H" P+ +ap=0

Therefore
()" + a1z P+ +ap=0
(™" = —ap_1(z7H" = —ag
" = —an, 17" — .. —ap (mult by 2"71)
R B e D Y.
tl=—an_1—...—apx" €A
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thus there exists inverse in A, so A is a field too. O

Theorem R.4.10 (Weak Nullstellensatz - Zariski’s lemma). let k a field, K a
k-algebra which

1. is finitely generated as a k-algebra
2. is a field

Then K is algebraic over k, so that k& C K is a finite field extension. That is,
[K : k] < c0.

Proof. K =k[z1,...,2ny)] a field; want to show that K is algebraic over k.

Since K is a fingen k-algebra, by Noether normalization lemma (R.4.6)),
d21,...,2m € K such that

e are algebraically independent

e K is integral over the polynomial ring A = k[z1,. .., z;] (which by
is finite)

Now we’re at the situation of [R.4.9]
A C K is integral, K is a field == therefore A is a field.

Since 21, ..., 2z, € K are algebraically independent,
= A =k[z1,...,2n] is a polynomial ring in m indeterminates, and this

is a field only if m =0

(since in k[z1] the element z; is not invertible, since 1/z; is a rational func-
tion, not a polynomial).

So A = k; which by Noether normalization we saw that K is integral over
A =k, and by that it is finite, thus K is finite over k, ie. [K : k], 00,
and K is algebraic over k. O

5 Nullstellensatz

Note: for k a field, k[Xy,...,X,], m maximal ideal; the residue field K =
k[X1,...,X,]/m satisfies the Zariski’s lemma (R.4.10)), thus K is a finite alge-
braic extension of k.

Corollary 5.2. k algebraically closed. Then every maximal ideal of A =
E[X1,...,Xy] is of the form

m=(X;—a,...,Xn —an), a; €k
The map k[X1,...,X,] — k[X1,...,X,]/m = k is the natural evaluation
map f(Xy,...,Xn) — fa1,...,an).
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Thus
k™ <— m — Spec A
(at,...,ap) +— f(a1,...,an)

Proof. let m C k[X1,...,X,] be a maximal ideal.

By fundamental property of maximal ideals, K = A/m is a field.

Since A is a fingen k-algebra (generated by Xi,...,X,,), then K = A/m is
also a fingen k-algebra, generated by residues x} = z; + m.

By Zariski’s lemma , K = A/m is algeraic over k.

Since by hypothesis k is algebraically closed, it has no proper algebraic
extensions

= K=k = kX A/m.
So, Vz; € k, its image in the quotient field A/m must be an element of k.

=1z, =a; €k, Vi€ [n]

— T, —a; €M

The ideal generated by these terms is a subset of m:
J=(X1—-a1,....,Xn—a,) CTm

Since J is the kernetl of the evaluation map at point (aq,...,ay), then J is
a maximal ideal. Together with J C m, then we have J = m, ie.

m= (X1 —ai,...,X, —ay)

Let

w:]{}[Xl,...,Xn] —>]<:[X1,,Xn]/m
’(/J:.%‘i'—>ai

Since 1 is a k-algebra homomorphism, then Vf € A:
P(f(Xr, . X)) = f(@(@1), - ¥(an)) = flar, ... an)
Thus there is a one-to-one correspondence:

points in k"  <— m — Spec A (maximal ideals in k[Xq,..., X,]
(al,...,an) — (Xl—al,...,Xn—an) ]
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5.1 Variety
Definition 5.3 (Variety). A variety V C k™:
V=V({J)={P=(a1,...,a,) €L"|f(P)=0V feJ}
— Vis defined by f1(P)=...= fm(P)=0

— V is defined as the simultaneous solutions of a number of polynomial
equations.

Proposition 5.3. k an algebraically closed field, and A = k[X;,...,X,] a
fingen k-algebra of the form A = k[X4,...,X,]/J, where J is an ideal of
k[X1,...,X,]. (notation: x; = X; (mod J))

Then every maximal ideal of A is of the form

(x1 — a1, ..., Ty — ay)

for some point (a,...,a,) € V(J).
Therefore, 3 a one-to-one correspondence

V(X) +— m — Spec A

given by (a1,...,a,) > (¥1 — a1, ..., Ty — ay)

Proof. the ideals of A are given by ideals of k[X7,..., X,] containing J, since
for @ = R/I, 3 one-to-one correspondence between ideals of @ and ideals of R
that contain I, ie.

mC A+—m' Ck[Xy,...,X,]
s.th. J Cm/

Thus, every maximal ideal of A is of the form

(x1 —a1,...,o, —a,) such that J C (X1 —a1,..., X, — an)

i. Since k is algebraically closed, the maximal ideals of k[X7, ..., X,,] look like
m=(Xy; —ay,...,X, —ay) for some point (ai,...,a,) € k™.
Which when projected to the quotient ring A, X; — x; (residue class),

giving (x1 — @y, ..., Ty — ay).

ii. for m to exist in A, the corresponding m’ must contain .J; since if it didn’t
contain J it wouldn’t ”survive” the quotient process.

However, since (X7 — a1,...,X, — ay,) is the kernel of the evaluation map
f— flay,...,an)
— means that m’ = (X; — a1,...,X,, — a,) consists of all polynomials

that vanish at point P = (aq,...,an,).
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If J Cm/, thenV f € J must vanish at P.
By definition, the set of points where all polynomials in J vanish is the
variety, V(J).

Thus,
every maximal ideal in A corresponds to a point (aq,...,a,) € k", ie.

m — Spec A «— k"

The condition that the ideal belongs to the quotient ring A = k[X7,..., X,]/J
forces that point to lie in V(J), so

m — Spec A <— V(J)

maximal spectrum <— variety
O

Proposition 5.5 (Correspondeces V and I). A variety X C k™ is by definition
X =V(J) (J an ideal of k[ X1, ..., X,]).
So V gives a map:

{ideals of k[X},..., X,]} AN {subsets X of k"}

correspondence going the other way:
{subsets X of k"} L {ideals of k[X1,..., X,]}
defined by taking a subset X C k™ into the ideal

I(X) = {f € k[X1,...,X,]|f(P) =0V P € X}

V, I satisfy reverse inclusions:

JcJ = V(J)oV(J) and XCY = I[(X)DI(Y)

5.2 Nullstellensatz

Theorem 5.6 (Nullstellensatz). Let k algebraically closed field.
a. if J Ck[Xy,...,X,] then V(J) #£0
b. I(V(J)) = radJ, in other words, for f € k[X1,...,X,],

f(P)=0VPeV <« f"eJforsome n.
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Proof. a. if J C k[Xy,...,X,] then V(J) # 0:
Let m C k[X1,...,X,] be a maximal ideal.
Then L = k[X1,...,X,]/m is a field (by TODO ref).

By Zariski’s lemma (R.4.10]), since L is generated as a k-algebra by the images
of the variables x;, and k is algebraically closed.

Then the only algebraic extension of k is k itself. Thus L = k.

Then 3 a surjective homomorphism ¢ : k[X1,..., X, ] — k.
Let a; = ¥(x;). Then z; — a € ker(v) =m V i.

Since the ideal (X1 —aq,..., X, — a,) is maximal and contained in m, they
must be equal, ie. m = (X7 —ay,..., X, — ap).

Therefore, P = (a1, ...,a,) € k™ is a zero for every polynomial in m.

Since J C m, P is also a zero for every polynomial in J.
= thus P € V(J), and thus V(J) # 0.

b. I(V(J)) =radJ:

I(V(J)) =radJ

vanishing ideal of a variety = radical of the ideal defining the variety

where rad J ={f € R | f™ € J for some n > 0}.

Want to show that if a polynomial vanishes at all points where g1,...,gm
vanish, then f € rad(g1, ..., gm).

Consider the ring k[ X1, ..., X,,, Y] and the ideal J’ generated by {g1, ..., gm, 1—
Yf}

Suppose there is a point (ay, ..., an, ay+1) that is a zero of J'. ie.

J(at,...,an,an11) € V(J)

Since g;(a) = 0, our hypothesis says f(a) = 0. However, the last generator
(1 =Y f) requires
1—apy1f(a) =0 = impliesl —ay41-0=0 = 1-0=0

a contradiction.

Therefore, V(J') = 0.

Since V(J') = 0, by the Weak Nullstellensatz/Zariski (R.4.10]),
if V(J')=0then J' = (1),s0 1 € J = (1).

Every element in an ideal is a linear combination of its generators: J' is
generated by {g1,...,9m,1 =Y [}
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= VjelJ, j= (Z (polynomial) g;) + (polynomial) - (1 — Y f)

which, since 1 € J',

i=1

1= <Zpi(X7 Y)gi(X)> +q(X,)Y)- 1 -Yf(X))
substitute Y =1/f,

1= (me, }m(X)) 0¥, 5) - (1= £1()
=1

+
thus .
1= ;pi(x7 %)gi(X)
multiply by /", .
1= AdX)gi(X)
=1

thus f™ is a linear combination of g;.
Thus f* € J,so f € rad J.

5.3 Irreducible varieties

Definition 5.7 (Irreducible variety). a variety X C k™ is irreducible if it is
nonempty and not the union of two proper subvarieties; that is, if

X = X1 U Xy for varieties X1,Xo — X = X; or X
Proposition 5.7. a variety X is irreducible iff I(X) is prime.

Proof. set I = I(X).
if I not prime, then f,g € A\ I be such that fg € I.
Define new ideals
Ji=(,f) and Jo=(I,9)

Then, since f ¢ I(X), it follows that V(J;) € X
= so X = V(J1) UV (J3) is reducible.
The converse is similar. O
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Corollary 5.8. let k algebraically closed field. Then V and I induce one-to-one
correspondences

{radical ideals J of k[X1,..., X, |} «— {varieties X C k"}
{prime ideals P of k[X1,...,X,]} +— {irreducible varieties X C k"}

Therefore,
Spec k[X1,...,X,] = {irreducible varieties X C k"}

Proposition 5.8. let A = k[x1,...,2,] a fingen k-algebra (k an algebraically
closed field).

Write J for the ideal of relations holding between x1,...,z,, so that A =
k[X1, ..., X,/ J.

Then there is a one-to-one correspondence

Spec A «— {irreducible subvarieties X C V(J)}

Proof. By definition, Spec A = {P | P C A is prime ideal}.
By Corollary

{prime ideals P of k[X1,...,X,]} «— {irreducible varieties X C k"}
About varieties:

e I(X)in R =k[X1,...,X,] is the ideal of the variety X
ie. the set of all polynomials that vanish on every point of X.

e I(X)in A=k[Xy,...,X,]/J, we're not looking at all possible polynomi-
als but at the residue classes.

If P is prime in A = it must correspond to some prime ideal ¢ in R
(also J C R).
Then from Nullstellensatz 7 every prime ideal P in R is the ideal of
some irreducible variety X.
= P=I(X).
Since we're restricted to the ring A = k[X1,...,X,]/J, the ideal P are the
elements of I(X) viewed through the lens of the quotient

= P={f+J|fel(X)} =I(X)modJ

Now, J is the set of equations defining our ”universe” V(.J).
Since A = R/J = we thus have J C R.
Also we have a correspondence between A = R/J and R.
Let B be the preimage of P in R = k[Xq,...,X,], ie.

R— A=R/J

B +— P

I(X) — I(X) mod J
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= thus J C L.

Now, JP = I(X);
by the set of points where 8 vanishes must be inside the set of points where
J vanishes, so

V()2 V(B) =VI(X)) =X

= X CV(J), ie. the irreducible variety X must be a subvariety of V'(.J).
Therefore,

P € Spec A +— X CV(J)
where X = V(). O

6 Rings of fractions S~!A and localization

6.1 Rings of fractions S—'A

Definition 6.1 (ring of fractions). let A a ring, S C A a multiplicative set
(1€S, and st € SVs, tell).
Introduce th following relation ~ on A x S:

(a,s) ~ (b,t) <=y € S such that u(at — bs) =0

(write a/s for the equivalence class of (a, $).
Then, the ring of fractions of A with respect to S is

ST'A=(Ax8)/ ~
with ring op’ns defined by the usual arithmetic op’ns on fractions:

giéz (at £ bs) and
t st

a b _ab
t st
Proposition 6.1. i. ~ is an equivalence relation
ii. the ring op'ns are well defined, and S~'A4 is a ring
iii.
P A— S1A
ar— afl
is a ring homomorphism.
Example . TODO
Lemma 6.2. For f € A, write S = {1, f, f?,...}, and Ay 2 A[X]/(Xf —1).
Then
A[X]

A=
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Proof. Define the homomorphism

a—afl
X+—1/f

By the 1st isomorphism theorem:

qj\ /
X/ ker(y
Thus we want to prove that ker(¢) = (X f — 1), so that % = ()?}{]1)’

and the lemma is proven.

First, observe that (X f — 1) = »(X)¥(f) — (1) = %
Xf—1¢€cker(y),ie. (Xf—1)C ker(y).

Now, we want to prove that ker(¢) C (X f —1).

Take h € ker(y), will prove that h € (Xf —1) h € ker(¢), and thus
Fer($) C (Xf 1)

Want to prove that h(X) is a multiple of (X f —1).
Let

=l

—1=1-1=0,s0

h(X) =a, X" + an_lXﬂHl +...+a1 X +ag
multiply hA(X) by f™:
Fh(X) = an(f"X™) + ana F(FT XYY an—o AP TXT?) L

Note that since Vi > 1, fiX'=(Xf—1)-(fI X7 4 fI72X72 4+ +1),
then fiX?=1 (mod Xf —1).

So,

" h(X) = an(1) + an1f(1) + an_of?*(1) +... +agf™ (mod Xf —1)

C  (constant)

— " h(X)=C (mod Xf-1)
= " aMX)=QX) (Xf-1)+C

Want to remove C, but it is non-zero. Note that in Ay (ring of fractions),
a" = 0 iff k such that f¥.a =0in A.
So, multiply both sides by f*:

(X)) = QX)) - (X f-1)+C)
SR (X)) = fPFQIX) (X f - 1) + f*C
—— — ~~

frk Q'(X) 0
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= [MRX) =Q(X)-(Xf-1)
— P pX)=0 (mod Xf—1)
multiply it by X"+k:
Xtk iR p(X) = XR 0 (mod X f — 1)
(X" h(X)=0 (mod Xf—1)

Now, since we had X f =1 in ()}4}{]1)7

(1)™* . h(X)=0 (mod Xf—1)
= h(X)=0 (mod Xf—-1)
By definition this is saying h(X) € (Xf —1) V k € ker(y).
Thus ker(¢y) C (X f —1).

Initially we saw that (X f — 1) C ker(t). Therefore ker(v) = (X f —1).

Hence,
A[X]

(Xf-1)

2

Ay

Given a ring homomorphism 1 : A — B, there is a correspondence

e : {ideals of A} — {ideals of B}

given by e(I) = ¢(I)B = IB (called extension),
and

r : {ideals of B} — {ideals of A}

given by r(J) = 1 ~1J (called restriction, written AN .J).
Set B=S—1A. Then S™'T =e¢(I) = ¢(I)B.

Proposition 6.3. a. Videal J of S71A, e(r(J)) = J
b. Videal I of A,
r(e(I)) ={a€ A | as €I for some s € S}

c. if P prime and PN S = (),
then e(P) = S™1P is a prime ideal of S™1A.

Proof. O

Corollary 6.3. for an ideal I of A, the necessary and sufficient condition for
r(e(I)) =11is
as€l=a€cl Vs 8
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6.2 Localization

If P prime ideal, then S = A\ P is a multiplicative set. Define the set Ap =
STLA.

Proposition 6.4. a/s € Ap is a unit of Ap <= a & P.
Therefore Ap is a local ring, with maximal ideal e(P) = PAp.
The local ring (Ap, PAp) is called the localization of A at P.

Proof. < (ifa¢ P = a/s € Ap is a unit)

if a € P, then by definition of S, a € S.
In the localization Ap, every element of S is invertible.
The inverse of ¢ is 2

— 2.3 =1, thus a/s € Ap is a unit.

a

= (if a/s unit = a & P)

Suppose a/s a unit; then % € Ap such that % - g =1.
By definition of equality in localization, ’;—f =1 means u € S such that
u(ab-1—st-1)=0 = wuab= ust (eq.6.4)

with u,s,t € S.
Since S = A\ P and P is a prime ideal,
the products of elements outside P must also be outside of P.

u,8,t ¢ P = ust¢ P

At eq.6.4, we know that uab = ust ¢ P, thus uab & P.
If wab € P, then a & P.

Next we will prove that Ap is a local ring.

A ring is local if it has exactly one maimal ideal ([1.13)); so we show that
the set of non-units forms an ideal.

a/s is not a unit iff a € P. Let m = {a/sla € P, s ¢ P} = PAp. Want
to show that PAp is the unique maximal ideal:
e it’s an ideal: let 2,2 € PAp with a,b € P.
Then ¢ + % € PAp with numerator in P.

If multiply a fraction in PAp by any fraction in Ap, the numerator
stays in P, thus PAp is an ideal.

e every element outside of PAp is a unit (proven at the beginning of
this proposition’s proof (<=)).
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e maximality: every ideal strictly larger than PAp must contain a unit.
If an ideal contains a unit, it must be the entire ring Ap.
— therefore, PAp is the unique maximal ideal.

In other words:

Localization: formal way to 'force’ certain elements to have inverses.

It’s the smallest ring that contains A and makes all the elements of S in-
vertible.

There is a natural map ¢ : A — S7'A, by f(a) =%, f(s) = % for s € S.

6.3 Localization commutes with taking quotients

Let A ring, S multiplicative set, I ideal.

Write T for the image of S in A/I.

Then S~'1 = I-S"'A is an ideal of S™'A, can take the quotient ring
S—1A/S~I.

+— can take the quotient A/I and then localize to get T=1(A/I).

Corollary 6.7.
T A/ = =—=

In particular, for P prime ideal,

Ap
integral
domain

From[6.4] Ap: local ring, PAp: unique maximal ideal. k(P) and Frac(A/P)
are field of fractions.

Proof. the quotient ring A/I can be viewed as an A-module and

S—tA

N—_——— S-17
ring of fractions module of fractions

The ?7.i, gives an isomorphism of modules

S—1A

T-'(A/I) =S (A/I) = 5iT

it’s easy to see that this is a ring homomorphism. O
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7 Exercises

For the exercises, I follow the assignments listed at [3].
The exercises that start with R are the ones from the book [2], and the ones
starting with AM are the ones from the book [I].

7.1 Exercises Chapter 1

Exercise R.1.1. Ring A and ideals I, J such that IUJ is not an ideal. What’s
the smallest ideal containing I and J7

Proof. Take ring A =7. Set I =27, J = 3Z.
I, J are ideals of A (=Z). And TU J =27 U 3Z.

Observe that for2 € I, 3e€J = 2,3€lUJ,but2+3=5¢1UJ.
Thus I U J is not closed under addition; thus is not an ideal.
Smallest ideal of Z (= A) containing I and J is their sum:

I+J={a+blael,be J}
gced(2,3) =1,80 I +J =Z.
Therefore, smallest ideal containing I and J is the whole ring Z. O

Exercise R.1.5. let ¢ : A — B a ring homomorphism. Prove that 1~ takes
prime ideals of B to prime ideals of A.

In particular if A C B and P a prime ideal of B, then AN P is a prime ideal of
A.

Proof. (Recall: prime ideal is if a,b € R and a-b € P (with R # P), implies
a€ PorbeP).
Let
v I (P)={ac Ap(a) e Py =ANP

The claim is that ¢»~1(P) is prime ideal of A.
i. show that ¢)~1(P) is an ideal of A:
04 € Y 1(P), since ¥(04) = 0p € P (since every ideal contains 0).
If a,b € =1 (P), then v (a),¥(b) € P, so

Pla—b) =9(a) —¢(b) € P

hence a — b € »~1(P).

If a € p~1(P) and r € A, then ¢(ra) = 1 (r)y(a) € P, since P is an ideal.
Thus ra € Yp~1(P).

= 50 ¢~ ! is an ideal of A.

ii. show that ¢»~1(P) is prime:
p~1(P) # A, since if ~1(P) = A, then 14 € ¥~ }(P), so ¢(14) = 15 € P,
which would mean that P = B, a contradiction since P is prime ideal of B.
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Take a,b € A with ab € ¢»~1(P); then ¥(ab) € P, and since 1 is a ring
homomorphism, ¢(ab) = ¥ (a)p(b).

Since P prime ideal, then ¢(a)y(b) € P implies either ¢)(a) € P or ¢(b) € P.
Thus a € »~1(P) or b € = 1(P).

Hence 1~ 1(P) (= AN P) is a prime ideal of A.

Exercise R.1.6. prove or give a counter example:

a.
b.

C.

the intersection of two prime ideals is prime
the ideal P; + P» generated by 2 prime ideals Py, P is prime

if ¢ : A — B ring homomorphism, then ~! takes maximal ideals of B to
maximal ideals of A

. the map ¥~! of Proposition 1.2 takes maximal ideals of A/I to maximal

ideals of A

Proof. a. let I =27 = (2), J = 3Z = (3) be ideals of Z, both prime.

Then INJ =(2)N(3) = (6).
The ideal (6) is not prime in Z, since 2 - 3 € (6), but 2 # (6) and 3 # (6).
Thus the intersection of two primes can not be prime.
P, =(2), P, = (3), both prime.
Then,
Pl+P,=(2)+3)={a+blac P,be P}
— in a principal ideal domain (like Z), the sum of two principal ideals is
again principal, and given by (m) + (n) = (ged(m, n)).
(recall: principal= generated by a single element)
So, Pi + P> = (2) + (3) = (9cd(2,3)) = (1) = Z.

The whole ring is not a prime ideal (by the definition of the prime ideal), so
P, + P, is not a prime ideal.

Henceforth, the sum of two prime ideals is not necessarily prime.
let A=7Z, B=Q, v: A— B.

Since Q is a field, its only maximal ideal is (0).

Then

v7H(0) = (0) CzZ
ie. ¢~ (mp) = (mp) C A

But (0) is not maximal in Z, because Z/(0) = Z is not a field.

Thus the preimages of maximal ideals under arbitrary ring homomorphisms
need not be maximal.
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d. ¢ : A — A/I quotient homomorphism, I C A an ideal.
Let M a maximal ideal of A/I, then % is a field (Proposition 1.3).

By the isomorphism theorems,

wn ., A
Mo T H(M)

Since % is a field, the quotient w*%(M) is a field, so 9 ~1(M) is a maximal

ideal of A.

—> under 1, preimages of maximal ideals are maximal.

Exercise R.1.12.a. if I, J ideals and P prime ideal, prove that
IJCP <= INJCP <= ITorJCP

Proof. assume I C P (for J C P will be the same, symmetric), take x € IJ,

then
n
xr = Z akbk
k=1

with ap € I, b, € J.
Each a € I C P. Since P an ideal,

i apby € P
k=1

thus z € P, hence I.J C P.
SolICPorJCP —1JCP.

Conversely,
assume P prime and IJ C P.
Suppose by contradiction that I € P and J € P.

- since I Z P, Ja € I witha & P
- since J L P, 3be J withb g P

Sincea € I, be J, abe IJ C P, but P is prime, so ab € P implies that a € P
or b € P. This contradicts a, b being taken outside of P.
Thus I € P and J € P are false.

So both directions are proven, hence

IJCP = ICPorJCP
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Exercise R.1.18. Use Zorn’s lemma to prove that any prime ideal P contains
a minimal prime ideal.

Proof. Let P prime ideal of R.

S =1{Q C R| Q aprime ideal AND Q C P}

Goal: show that S has a minimal element, the minimal ideal contained in

P C S, so S is nonempty.
Let C C S be a chain (= totally ordered subset) with respect to inclusion.
Define

Q=)@

QeC

Clearly Q¢ C P, since each Q € C'is Q C P.
Since C' is ordered by inclusion, it is a decreasing chain of prime ideals.
Intersection of a decreasing chain of prime ideals is again a prime ideal:

- if ab € Q¢, then ab € Q VQ € C
- since @ prime, V@ € C either a € Q or b € @

If there were some @1, Q2 € C with a € @1 and b € 2, then by total
ordering, either Q1 C Q2 or Q2 C Q1.

In either case: contradiction, since the smaller one would have to contain
the element that was assumed to be excluded.

Thus VQ € C the same element a,b must lie in all Q. = lies in the
intersection of them, Q¢.

Henceforth, Q¢ is a prime ideal and lies in S, and its a lower bound of C' in
S.

Now, S is nonempty, and every chain in S has a lower bound in S (its
intersection).
Therefore, S has a minimal element P,,;,,.

By construction, P,,;, is a prime ideal P,,;, C P, and by minimality there
are no strictly smaller prime ideals inside P.

So P,,i, is a minimal prime ideal, contained in P. O

Exercise R.1.10.

Proof. O
Exercise R.1.11.

Proof. O
Exercise R.1.4.

Proof. O
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7.2 Exercises Chapter 2

Exercise R.2.9. 0 — L — M SN 0 is a s.e.s. of A-modules. Prove
that if N, L are finite over A, then M is finite over A.

Proof. Denote the generators of L and IV respectively as

(h,....L,} CL
{’I’Lh...,’l’Lp}gN

By s.e.s. definition,
- « is injective (one-to-one), so

Vi, € L, 3x; € M s.th. a(l;) = z;

- [ is surjective (onto), so

Vn; € N, 3 y; € M s.th. ﬂ(yj) =n;

We will show that {x1,..., 2k, ¥1,...,yp} generate M, and thus M is finite:
Let m € M, then 8(m) € N, and

P
B(m) = Zajnj with a; € A
j=1
Take m' € M, with m’ =" a;y;, then
Bm) =D _a;Bly;) = D agng = B(m)
Then, since S(m) = g(m’) = B(m —m’') =0, thus
(m—m') € ker(B)

By ezactness property, since o : L — ker(3), we have ker(8) = im(«).
Therefore, 3 [ € L such that «(l) =m —m/’.

Since {l;}1, generate L,
k
1= bil;

m — m' = a(l) = a(z blll) = Z bz Oé(lz) = Z bl,TZ
\T_/ D

thus

—~—

i

Rearrange,

p k
m:m’—l—Zbixi:Zajyj—i—Zbixi Ym e M
j=1 i—1

So, L provides k generators for the kernel part of M, N provides p ”lifts”
for the quotient part of M; thus M is generated by k + p elements.
Thus M is finitely generated over A. O
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7.3 Exercises Chapter 3

Exercise R.3.2. K a field, A D K a ring which is finite dimensional as a
K-vector space. Prove that A is Noetherian and Artinian.

Proof. dim(A) =n < oo, so every ideal a of A is a K-subspace of A, because if
r€aandce€ K, thenc-x € a.

1. Noetherian:
let I; C I, C ... be an ascending chain of ideals in A.

Since each I; is a subspace, we have
dimg (1) <dimg(l2) <...<n

where at some i = m we have dimg(I;,) = dimg(Iny1); then since
I, C I41, we have I,, = I,,11. So A is Noetherian.

2. Artinian:
Similarly, if I O Iy O ... a descending chain of ideals in A.
then
n > dimg(l1) > dimg(lz) > ... >0

where at some ¢ = m we have dimg (I,) = dimg(l,41); then since
I, C I,,41, we have I,, = I;,11. So A is Artinian.

O

Exercise R.3.5. Let 0 — L —— M i> N — 0 an exact sequence. Let
My, My C M be submodules of M.
Prove if the following holds or not:

B(My) = B(Mz) and o' (My) = o' (M) = My = M,

Proof. Counterexample showing that it does not hold:
Let Kafield M=K®&K ,L=K, N=K.
Set, for I € L, (my,ma) € M,

a:l—(1,0)
B (mi,ma) — ma
So we have
0— K- K> 2 K50
Then,

My ={(z,z) |z € K}  ~ (diagonal line)
My, ={(0,z) |z € K} ~ (y-axis)

(Geometric interpretation: My, Ms are the diagonal line and y-axis respec-
tively; and «, B capture information about the wvertical components (x-axis,
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y-axis respectively), but not about the diagonal way a submodule is embedded
in M).
Then,
B(M)={z|ze K} =K
B(My) = {o |z € K} = K
thus, B(M1) = B(M2).
For My, (1,0) € M iff I =0, thus a~1(M;) = {0},
for My, (1,0) € M iff | =0, thus o~ (Ms) = {0},

thus a1 (M;) = a1 (My).
So we've seen that

B(My) = B(Ma)
Oéil(Ml) = ail(Mz)

while having M7 # M. O

Exercise R.3.3. Let A aring, I1,..., I} ideals such that each A/I; is a Noethe-
rian ring. Prove that @ A/I; is a Noetherian A-module, and deduce that if
() I; = 0 then A is also Noetherian.

Proof. i. by Corollary (i), if M; Noetherian modules, then € M; is
Noetherian. = thus € A/I; is Noetherian.

ii. Take the canonical homomorphism

n
¢: A— @A/
i=1
by ¢(a) =(a+ I,a+ Is,...,a+ I,).
¢ is injective: ker(¢) = {a € Ala € I,Vi}.
Since we'’re given NI; = 0, then ker(¢) = NI;, and ¢ is injective.
Thus, ¢ is the isomorphism A 2 im(¢), where im(¢) is an A-submodule of
P A/IL.
We know that any submodule of a Noetherian module is Noetherian, thus,
since

e A/I; is Noetherian by hypothesis of the exercise
o« A= im()
e im(¢) is an A-submodule of P A/I;

then, A is Noetherian.
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Exercise R.3.4. Prove that if A is a Noetherian ring and M a finite A-module,

then there exists an exact sequence A7 —— AP Lo — 0. That is, M has a
presentation as an A-module in terms of finitely many generators and relations.

Proof. since M fingen = generators {my,...,ma} C M span M.
Let 8 be a surjective A-linear map, which forms a free A-module of rank p
onto M:

B8: AP — M
p

(a1,...,ap) »—>Zaimi
=1

Let K = ker(5). By the 1st Isomorphism Theorem,
M= APJK

Since A is a Noetherian ring, then every free A-module of finite rank (eg.
AP) is a Noetherian module.

Every submodule of a Noetherian module is fingen.

= since K C AP, — K (= ker(8)) is fingen.

Since K fingen, let {k1,...,l,} be generators of K.

Define ¢ : A9 — K.

Compose it with the inclusion map i : K — AP,

a=io1: AT — AP

So we have the whole sequence A7 —*5 AP Lo — 0, where
e (3 is surjective
e im(a) = ker(B)

so that it is a exact sequence, thus, M has a finite presentation. O

7.4 Exercises Chapter 4

Exercise R.4.1.a. k[X?] C k[X] is a finite extension, hence integral. Find the
integral dependence relation for any f € k[X].

Proof. Vf(X) € k[X] can be uniquely decomposed into its even and odd parts:
FX) =p(X?) + X - q(X?)

with p(X?), ¢(X?) € k[X?], and
p(X?): sum of all terms with even exponents
q(X?): sum of all terms with odd exponents, and then factoring out X.

(Observation: this is used in FRI cryptographic protocol
https://github.com/arnaucube/math /blob/master /notes_fri_stir.pdf)
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Rearrange it

f(X)—p(X?) =X -q(X?), square:
(F(X) = p(X?)? = X? . q(X?)?
F(X)? = 2p(X?) f(X) + p(X?)* = X? - ¢(X?)?
FX)? =[2p(X?)] F(X) + [p(X*)? = X* - q(X?)*] = 0

Denote the last polynomial as P(T') € k[X?], where f(X) is a root of P(T).

The integral dependence relation for any f € k[X] is given by the monic
polynomial from i, in this case 7% + a1 T + ag = 0 with a; € k[X?].
We have that
[ —Qp(XQ)
ag = p(X2)2 o X2q(X2)2
So for example, for f(X) = X2+ X2+ X + 1:
fFX)=(X?+1)+X(X*+1)
(f(X) = (X2 +1))* = X*(X? +1)°
(f(X) = p(X))? = X*(¢(X))?
O

Exercise R.4.5. Let A = k[X,Y]/(Y? — X2 — X?). Prove that the normaliza-
tion of A is k[t] where t = Y/X.

Proof. A=k[X,Y]/(Y? - X? — X3), express X and Y in terms of ¢:
Since t = Y/X then Y = tX, and combined with Y? = X2 + X3, then
(tX)* = X2+ x3
t2X?% = X? + X3, assuming X #0:
t2 =14 X, thus
X =1 —1¢€k[X]
Then, Y = tX = t(t

Hence X,Y € k[X].

—1) =1 —tek[X].
Therefore, k[X,Y]/(Y? — X2 — X3) C k[t].

By (Noether normalization lemma), to show that k[t] is the normal-
ization, must show that k[t] is integral over A.

From X =t-1 = #-1-X=0 = t*-(1+X)=0.

(14 X) € A, so t satisfies the monic polynomial

P(T)=T*—-(1+X) € A[T]
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Thus t is integral over A.

Since k[t] is generated by ¢ over k, and k C A, then the entire ring k[t] is
integral over A.

Since k[t] is a polynomial ring over a field, which is a UFD, it is integrally
closed (since all UFD are integrally closed).

FracA=k(X,Y),since X =t -1, Y =3 -t = k(X,Y) Ck()

and ¢ = Y/X € k(X,Y), thus k(X,Y) = k(t).

Since k[t] is integrally closed and is the integral closure of A in its fraction
field k(t), we conclude that the normalization of A is k[t]. O

Exercise R.4.9. k a field, A = k[X,Y, Z]/(X?-Y?®-1,XZ —1),find o, € k
such that A is integral over B = k[X + aY + (z], and write a set of generators
of A as a B-module.

Proof. (want to find a linear combination of the coordinates such that the orig-
inal variables satisfy monic polynomials over the new ring B)
The relations defining A are

X?-Y3-1=0 = Y?’=X?-1 (¥
XZ-1=0 = Z=1/X=X"!

Thus A can be denoted as A = k[X,Y, X~1]/(Y3 - X2 —1).

Now, Y is inegral over k[X], since Y? — (X2 — 1) = 0 is monic in Y with
coefficients in k[X].

Z is not integral over k[X], since Z =1/X and X is not a unit in k[X].

Choose a, 8 € k such that X (and thus Z) becomes integral over B:
seta=0, =1 = B=k[X+aoY +pZ]=k[X+Z].

Let w = X 4+ Z; since XZ =1, we have

1
w=X+5 = Xw=X"4+1 = X?—wX+1=0 (*%)

which is monic with coefficients in k[w], thus X is integral over B.
Since Z = w — X, Z is also integral.

Generators of A as a B-module:
we hadd B = k[w] with w = X + Z.
From (#x) we have X? —wX +1=0,s0 X2 =wX — 1.
Thus any polynomial in X can be reduced to a linear form b X + by with
b; € k[w]. Hence it’s partial basis is {1, X'}.
Fitting X? into (x),
X?-Y?-1=0
Y3=Xx%-1
YV3=wX -2
thus any power of Y higher than 2 can be reduced (eg. Y* =Y (wX —2) =
w(XY) —2Y).
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So its partial basis is {1,Y,Y?}.
For Z,since XZ =1and w=X+7 — Z =w — X, thus Z is a B-linear
combination of {1, X}.

Combining the previous partial basis, the generators are

{1, X} x {1,Y,Y?} = {1,Y,Y?, X, XY, XV?}
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