Weil Pairing - study

arnaucube

August 2022

Abstract

Notes taken from Matan Prsma math seminars and also while reading about Bilinear Pairings. Usually while reading papers and books I take handwritten notes, this document contains some of them re-written to LaTeX.

The notes are not complete, don't include all the steps neither all the proofs. I use these notes to revisit the concepts after some time of reading the topic.

Contents

1 Rational functions 1
1.1 Zeros, poles, uniformizers and multiplicities 2
2 Divisors 3
3 Weil reciprocity 4
4 Generic Weil Pairing 5
5 Properties 6
6 Exercises 6

1 Rational functions

Let E / \mathbb{k} be an elliptic curve defined by: $y^{2}=x^{3}+A x+B$.
set of polynomials over $E: \mathbb{k}[E]:=\mathbb{k}[x, y] /\left(y^{2}-x^{3}-A x-B=0\right)$ we can replace y^{2} in the polynomial $f \in \mathbb{k}[E]$ with $x^{3}+A x+B$
canonical form: $\quad f(x, y)=v(x)+y w(x)$ for $v, w \in \mathbb{k}[x]$
conjugate: $\bar{f}=v(x)-y w(x)$
norm: $\quad N_{f}=f \cdot \bar{f}=v(x)^{2}-y^{2} w(x)^{2}=v(x)^{2}-\left(x^{3}+A x+B\right) w(x)^{2} \in \mathbb{k}[x] \subset$ $\mathbb{k}[E]$
we can see that $N_{f g}=N_{f} \cdot N_{g}$
set of rational functions over $E: \mathbb{k}(E):=\mathbb{k}[E] \times \mathbb{k}[E] / \sim$
For $r \in \mathbb{k}(E)$ and a finite point $P \in E(\mathbb{k})$, r is finite at P iff

$$
\exists r=\frac{f}{g} \text { with } f, g \in \mathbb{k}[E] \text {, s.t. } g(P) \neq 0
$$

We define $r(P)=\frac{f(P)}{g(P)}$. Otherwise, $r(P)=\infty$.
Remark: $r=\frac{f}{g} \in \mathbb{k}(E), r=\frac{f}{g}=\frac{f \cdot \bar{g}}{g \cdot \bar{g}}=\frac{f \bar{g}}{N_{g}}$, thus

$$
r(x, y)=\frac{(f \bar{g})(x, y)}{N_{g}(x, y)}=\underbrace{\frac{v(x)}{N_{g}(x)}+y \frac{w(x)}{N_{g}(x)}}_{\text {canonical form of } r(x, y)}
$$

degree of f : Let $f \in \mathbb{k}[E]$, in canonical form: $f(x, y)=v(x)+y w(x)$,

$$
\operatorname{deg}(f):=\max \left\{2 \cdot \operatorname{deg} g_{x}(v), 3+2 \cdot \operatorname{deg}_{x}(w)\right\}
$$

For $f, g \in \mathbb{k}[E]$:
i. $\operatorname{deg}(f)=\operatorname{deg}_{x}\left(N_{f}\right)$
ii. $\operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g)$

Def 1.1. Let $r=\frac{f}{g} \in \mathbb{k}(E)$
i. if $\operatorname{deg}(f)<\operatorname{deg}(g): r(0)=0$
ii. if $\operatorname{deg}(f)>\operatorname{deg}(g): r$ is not finite at 0
iii. if $\operatorname{deg}(f)=\operatorname{deg}(g)$ with $\operatorname{deg}(f)$ even:
f 's canonical form leading terms $a x^{d}$
g 's canonical form leading terms $b x^{d}$
$a, b \in \mathbb{K}^{\times}, d=\frac{\operatorname{deg}(f)}{2}$, set $r(0)=\frac{a}{b}$
iv. if $\operatorname{deg}(f)=\operatorname{deg}(g)$ with $\operatorname{deg}(f)$ odd
f 's canonical form leading terms $a x^{d}$
g 's canonical form leading terms $b x^{d}$
$a, b \in \mathbb{k}^{\times}, \operatorname{deg}(f)=\operatorname{deg}(g)=3+2 d$, set $r(0)=\frac{a}{b}$

1.1 Zeros, poles, uniformizers and multiplicities

$r \in \mathbb{k}(E)$ has a zero in $P \in E$ if $r(P)=0$
$r \in \mathbb{k}(E)$ has a pole in $P \in E$ if $r(P)$ is not finite.
uniformizer: Let $P \in E$, uniformizer: rational function $u \in \mathbb{k}(E)$ with $u(P)=0$ if $\forall r \in \mathbb{k}(E) \backslash\{0\}, \exists d \in \mathbb{Z}, s \in \mathbb{k}(E)$ finite at P with $s(P) \neq 0$ s.t.

$$
r=u^{d} \cdot s
$$

order: Let $P \in E(\mathbb{k})$, let $u \in \mathbb{k}(E)$ be a uniformizer at P. For $r \in \mathbb{k}(E) \backslash\{0\}$ being a rational function with $r=u^{d} \cdot s$ with $s(P) \neq 0, \infty$, we say that r has order d at $P\left(\operatorname{ord}_{P}(r)=d\right)$.
multiplicity: multiplicity of a zero of r is the order of r at that point, multiplicity of a pole of r is the order of r at that point.
if $P \in E(\mathbb{k})$ is neither a zero or pole of r, then $\operatorname{ord}_{P}(r)=0\left(=d, r=u^{0} s\right)$.
Multiplicities, from the book "Elliptic Tales" (p.69), to provide intuition
Factorization into linear factors: $p(x)=c \cdot\left(x-a_{1}\right) \cdots\left(x-a_{d}\right)$
d : degree of $p(x), a_{i} \in \mathbb{k}$
Solutions to $p(x)=0$ are $x=a_{1}, \ldots, a_{d}$ (some a_{i} can be repeated)
eg.: $p(x)=(x-1)(x-1)(x-3)$, solutions to $p(x)=0: 1,1,3$ $x=1$ is a solution to $p(x)=0$ of multiplicity 2 .
The total number of solutions (counted with multiplicity) is d, the degree of the polynomial whose roots we are finding.

2 Divisors

Def 2.1. Divisor

$$
D=\sum_{P \in E(\mathbb{k})} n_{p} \cdot[P]
$$

Def 2.2. Degree \& Sum

$$
\begin{gathered}
\operatorname{deg}(D)=\sum_{P \in E(\mathbb{k})} n_{p} \\
\operatorname{sum}(D)=\sum_{P \in E(\mathbb{k})} n_{p} \cdot P
\end{gathered}
$$

The set of all divisors on E forms a group: for $D=\sum_{P \in E(\mathbb{k})} n_{P}[P]$ and $D^{\prime}=\sum_{P \in E(\mathbb{k})} m_{P}[P]$,

$$
D+D^{\prime}=\sum_{P \in E(\mathbb{k})}\left(n_{P}+m_{P}\right)[P]
$$

Def 2.3. Associated divisor

$$
\operatorname{div}(r)=\sum_{P \in E(\mathbb{k})} \operatorname{ord}_{P}(r)[P]
$$

Observe that

$$
\begin{aligned}
& \operatorname{div}(r s)=\operatorname{div}(r)+\operatorname{div}(s) \\
& \operatorname{div}\left(\frac{r}{s}\right)=\operatorname{div}(r)-\operatorname{div}(s)
\end{aligned}
$$

Observe that

$$
\sum_{P \in E(\mathbb{k})} \operatorname{ord}_{P}(r) \cdot P=0
$$

Def 2.4. Support of a divisor

$$
\sum_{P} n_{P}[P], \forall P \in E(\mathbb{k}) \text { s.t. } n_{P} \neq 0
$$

Def 2.5. Principal divisor iff

$$
\begin{aligned}
& \operatorname{deg}(D)=0 \\
& \operatorname{sum}(D)=0
\end{aligned}
$$

$D \sim D^{\prime}$ iff $D-D^{\prime}$ is principal.
Def 2.6. Evaluation of a rational function (function r evaluated at D)

$$
r(D)=\prod r(P)^{n_{p}}
$$

3 Weil reciprocity

Thm 3.1. (Weil reciprocity) Let E / \mathbb{k} be an e.c. over an algebraically closed field. If $r, s \in \mathbb{k} \backslash\{0\}$ are rational functions whose divisors have disjoint support, then

$$
r(\operatorname{div}(s))=s(\operatorname{div}(r))
$$

Proof. (todo)

Example

$$
\begin{aligned}
p(x)= & x^{2}-1, q(x)=\frac{x}{x-2} \\
& \operatorname{div}(p)=1 \cdot[1]+1 \cdot[-1]-2 \cdot[\infty] \\
& \operatorname{div}(q)=1 \cdot[0]-1 \cdot[2]
\end{aligned}
$$

(they have disjoint support)

$$
\begin{aligned}
p(\operatorname{div}(q)) & =p(0)^{1} \cdot p(2)^{-1}=\left(0^{2}-1\right)^{1} \cdot\left(2^{2}-1\right)^{-1}=\frac{-1}{3} \\
q(\operatorname{div}(p)) & =q(1)^{1} \cdot q(-1)^{1}-q(\infty)^{2} \\
& =\left(\frac{1}{1-2}\right)^{1} \cdot\left(\frac{-1}{-1-2}\right)^{1} \cdot\left(\frac{\infty}{\infty-2}\right)^{2}=\frac{-1}{3}
\end{aligned}
$$

so, $p(\operatorname{div}(q))=q(\operatorname{div}(p))$.

4 Generic Weil Pairing

Let $E(\mathbb{k})$, with \mathbb{k} of char p, n s.t. $p \nmid n$.
\mathbb{k} large enough: $E(\mathbb{k})[n]=E(\overline{\mathbb{k}})=\mathbb{Z}_{n} \oplus \mathbb{Z}_{n}$ (with n^{2} elements). For $P, Q \in E[n]$,

$$
\begin{aligned}
D_{P} & \sim[P]-[0] \\
D_{Q} & \sim[Q]-[0]
\end{aligned}
$$

We need them to have disjoint support:

$$
\begin{aligned}
D_{P} & \sim[P]-[0] \\
D_{Q}^{\prime} & \sim[Q+T]-[T]
\end{aligned}
$$

$$
\Delta D=D_{Q}-D_{Q}^{\prime}=[Q]-[0]-[Q+T]+[T]
$$

Note that $n D_{P}$ and $n D_{Q}$ are principal. Proof:

$$
\begin{aligned}
n D_{P} & =n[P]-n[O] \\
\operatorname{deg}\left(n D_{P}\right) & =n-n=0 \\
\operatorname{sum}\left(n D_{P}\right) & =n P-n O=0
\end{aligned}
$$

($n P=0$ bcs. P is n-torsion)
Since $n D_{P}, n D_{Q}$ are principal, we know that f_{P}, f_{Q} exist. Take

$$
\begin{aligned}
& f_{P}: \operatorname{div}\left(f_{P}\right)=n D_{P} \\
& f_{Q}: \operatorname{div}\left(f_{Q}\right)=n D_{Q}
\end{aligned}
$$

We define

$$
e_{n}(P, Q)=\frac{f_{P}\left(D_{Q}\right)}{f_{Q}\left(D_{P}\right)}
$$

Remind: evaluation of a rational function over a divisor D :

$$
\begin{aligned}
D & =\sum n_{P}[P] \\
r(D) & =\prod r(P)^{n_{P}}
\end{aligned}
$$

If $D_{P}=[P+S]-[S], \quad D_{Q}=[Q-T]-[T]$ what is $e_{n}(P, Q)$?

$$
\begin{aligned}
f_{P}\left(D_{Q}\right) & =f_{P}(Q+T)^{1} \cdot f_{P}(T)^{-1} \\
f_{Q}\left(D_{P}\right) & =f_{Q}(P+S)^{1} \cdot f_{Q}(S)^{-1} \\
e_{n}(P, Q) & =\frac{f_{P}(Q+T)}{f_{P}(T)} / \frac{f_{Q}(P+S)}{f_{Q}(S)}
\end{aligned}
$$

with $S \neq\{O, P,-Q, P-Q\}$.

5 Properties

i. $e_{n}(P, Q)^{n}=1 \forall P, Q \in E[n]$
$\left(\Rightarrow e_{n}(P, Q)\right.$ is a $n^{t h}$ root of unity)
ii. Bilinearity

$$
\begin{aligned}
& e_{n}\left(P_{1}+P_{2}, Q\right)=e_{n}\left(P_{1}, Q\right) \cdot e_{n}\left(P_{2}, Q\right) \\
& e_{n}\left(P, Q_{1}+Q_{2}\right)=e_{n}\left(P, Q_{1}\right) \cdot e_{n}\left(P, Q_{2}\right)
\end{aligned}
$$

proof: recall that $e_{n}(P, Q)=\frac{g(S+P)}{g(S)}$, then,

$$
\begin{gathered}
e_{n}\left(P_{1}, Q\right) \cdot e_{n}\left(P_{2}, Q\right)=\frac{g\left(P_{1}+S\right)}{g(S)} \cdot \frac{g\left(P_{2}+P_{1}+S\right)}{g\left(P_{1}+S\right)} \\
\text { (replace } \left.S \text { by } S+P_{1}\right) \\
=\frac{g\left(P_{2}+P_{1}+S\right)}{g(S)}=e_{n}\left(P_{1}+P_{2}, Q\right)
\end{gathered}
$$

iii. Alternating

$$
e_{n}(P, P)=1 \forall P \in E[n]
$$

iv. Nondegenerate

$$
\text { if } e_{n}(P, Q)=1 \forall Q \in E[n] \text {, then } P=0
$$

6 Exercises

An Introduction to Mathematical Cryptography, 2nd Edition - Section 6.8. Bilinear pairings on elliptic curves
6.29. $\operatorname{div}(R(x) \cdot S(x))=\operatorname{div}(R(x))+\operatorname{div}(S(x))$, where $R(x), S(x)$ are rational functions.
proof:
Norm of $f: N_{f}=f \cdot \bar{f}$, and we know that $N_{f g}=N_{f} \cdot N_{g} \forall \mathbb{k}[E]$,
then

$$
\operatorname{deg}(f)=\operatorname{deg}_{x}\left(N_{f}\right)
$$

and

$$
\operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g)
$$

Proof:

$$
\begin{gathered}
\operatorname{deg}(f \cdot g)=\operatorname{deg}_{x}\left(N_{f g}\right)=\operatorname{deg}_{x}\left(N_{f} \cdot N_{g}\right) \\
=\operatorname{deg}_{x}\left(N_{f}\right)+\operatorname{deg}_{x}\left(N_{g}\right)=\operatorname{deg}(f)+\operatorname{deg}(g)
\end{gathered}
$$

So, $\forall P \in E(\mathbb{k}), \operatorname{ord}_{P}(r s)=\operatorname{ord}_{P}(r)+\operatorname{ord}_{P}(s)$.
As $\operatorname{div}(r)=\sum_{P \in E(\mathbb{k})} \operatorname{ord}_{P}(r)[P], \operatorname{div}(s)=\sum \operatorname{ord}_{P}(s)[P]$.

So,

$$
\begin{gathered}
\operatorname{div}(r s)=\sum \operatorname{ord}_{P}(r s)[P] \\
=\sum \operatorname{ord}_{P}(r)[P]+\sum \operatorname{ord}_{P}(s)[P]=\operatorname{div}(r)+\operatorname{div}(s)
\end{gathered}
$$

6.31.

$$
e_{m}(P, Q)=e_{m}(Q, P)^{-1} \forall P, Q \in E[m]
$$

Proof: We know that $e_{m}(P, P)=1$, so:

$$
1=e_{m}(P+Q, P+Q)=e_{m}(P, P) \cdot e_{m}(P, Q) \cdot e_{m}(Q, P) \cdot e_{m}(Q, Q)
$$

and we know that $e_{m}(P, P)=1$, then we have:

$$
\begin{gathered}
1=e_{m}(P, Q) \cdot e_{m}(Q, P) \\
\Longrightarrow e_{m}(P, Q)=e_{m}(Q, P)^{-1}
\end{gathered}
$$

