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Abstract

Notes taken while studying Commutative Algebra, mostly from Atiyah
& MacDonald book [1I] and Reid’s book [2]. For the exercises, I follow the
assignments listed at [3].

Usually while reading books and papers I take handwritten notes in a
notebook, this document contains some of them re-written to LaTeX.

The proofs may slightly differ from the ones from the books, since I
try to extend them for a deeper understanding.
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1 Ideals

1.1 Definitions

Definition (ideal). I C R (Rring)suchthat0 € JandVax € I, r € R, zr,rx €
1.

ie. I absorbs products in R.

Definition (prime ideal). if a,b € R with ab € P and P # R (P a prime
ideal), implies ainP or b € P.

Definition (principal ideal). generated by a single element, (a).
(a): principal ideal, the set of all multiples za with x € R.

Definition (maximal ideal). m C A (A ring) with m # A and there is no ideal
I strictly between m and A. ie. if m maximal and m C I C A, either m = [ or
I1=A.

Definition (unit). z € A such that zy = 1 for some y € A. ie. element which
divides 1.

Definition (zerodivisor). x € A such that 30 # y € A such that xy =0 € A.
ie. x divides 0..
If a ring does not have zerodivisors is an integral domain.

Definition (prime spectrum - Spec(A)). set of prime ideals of A. ie.

Spec(A) = {P | P C A is a prime ideal}

Definition (integral domain). Ring in which the product of any two nonzero
elements is nonzero.

ie. no zerodivisors.

ie. VO#a, 0£be A, ab#0 € A.

Every field is an integral domain, not the converse.

Definition (principal ideal domain - PID). integral domain in which every
ideal is principal. ie. ie. VI C R, 3 a € I such that I = (a) = {ra | r € R}.

Definition (nilpotent). a € A such that a™ = 0 for some n > 0.
Definition (nilrad A). set of all nilpotent elements of A; is an ideal of A.

if nilradA = 0 — A has no nonzero nilpotents.

nilradA = ﬂ P
PeSpec(A)



Definition (idempotent). e € A such that e? =e.

Definition (radical of an ideal).
radl = {f € A|f™ € I for some n}

radl is an ideal.
nilradA = rad0

radI = ﬂPESpec(A) P
PDI
Definition (local ring). A local ring has a unique maximal ideal.
Notation: local ring A, its maximal ideal m, residue field K = A/m:

ADmor (A,m)or (4,m, K)

1.2 7Z and K[X], two Principal Ideal Domains
Lemma . Zis a PID.

Proof. Let I a nonzero ideal of Z.

Since I # {0}, there is at least one nonzero integer in I. Choose the smallest
element of I, namely d.

Observe that (d) C I, since d € I. Then, every multiple nd € I, since [ is
an ideal.

Take a € I. By the Euclidean division algorithm in Z, a = qd + r, with
¢, r €Zand 0 <r <d.

Then r = a — qd € I, but d was chosen to be the smallest positive element
of I, so the only possibility is 7 = 0.

Hence, a = qd, so a € (d), giving I C (d).

Since we had (d) C I and now we got I C (d), we have I = (d), so every
ideal of Z is principal. Thus Z is a Principal Ideal Domain(PID). O

Lemma . K[X]is a PID.

Proof. This proof follows very similarly to the previous proof.

Let K be a field, K[X] a polynomial ring.

Take {0} # I C K[X].

Since I # {0}, there is at least one non-zero polynomial in I.

Let p(X) € I be of minimal degree among nonzero elements of I.

Observe that (p(X)) C I, because p(X) € I and [ is an ideal.

Let f(X) € I. By Euclidean division algorithm in K[X], 3¢,r € K[X] such
that f(X) = q(X) - p(X) + r(X) with eithr r(X) = 0 or deg(r) < deg(p).

Since f,p € I, then r(X) = f(X) —q¢(X) -p(X) € I

If r(X) # 0, then deg(r) < deg(p), which contradicts the minimality of
deg(p) in I.

Therefore, 7(X) = 0, thus f(X) = ¢(X) - p(X), hence f(X) € (p(X)).
Henceforth, I C (p(X)).



Then, since (p(X)) C I and I C (p(X)), we have that I = (p(X)).
So every ideal of K[X] is principal; thus K[X] is a PID.

1.3 Zorn’s lemma and Jacobson radicals

Let ¥ be a partially orddered set. Given subset S C X, an upper bound of S is
an element u € X such that s < uVs € S.

A mazimal element of 3, is m € ¥ such that m < s does not hold for any
s €.

A subset S C X is totally ordered if for every pair s1,s2 € S, either s7 < s9
or so < §7.

Lemma R.1.7 (Zorn’s lemma). Suppose ¥ a nonempty partially ordered set
(ie. we are given a relation z < y on X), and that any totally ordered subset
S C ¥ has an upper bound in X.

Then ¥ has a maximal element.

Theorem AM.1.3. Every ring A # 0 has at least one maximal ideal.

Proof. By Zorn’s lemma O

Corollary AM.1.4. if [ # (1) an ideal of A, 3 a maximal ideal of A containing
I

Corollary AM.1.5. Every non-unit of A is contained in a maximal ideal.

Definition (Jacobson radical). The Jacobson radical of a ring A is the inter-
section of all the maximal ideals of A.

Denoted Jac(A).

Jac(A) is an ideal of A.

Proposition AM.1.9. z € Jac(A) iff (1 — zy) is a unit in A, Yy € A.

Proof. Suppose 1 — xy not a unit.

By 1 — zy € m for m some maximal ideal.

But x € Jac(A) C m, since Jac(A) is the intersection of all maximal ideals
of A.

Hence zy € m, and therefore 1 € m, which is absurd, thus 1 — zy is a unit.

Conversely:
Suppose z ¢ m for some maximal ideal m.

Then m and x generate the unit ideal (1), so that we have u + xy = 1 for
some u € m and some y € A.

Hence 1 — xy € m, and is therefore not a unit. O



2 Modules

2.1 Modules concepts

Let A be a ring. An A-module is an Abelian group M with a multiplication
map

Ax M — M
(fym) — fm

satisfying V f,g € A, m,n € M.
i. flm*+n)=fm=fn
ii. (ftg)m=fm=Lgm

iii. (fg)m = f(gm)
. 1ym=m

Let ¢ : M — M an A-linear endomorphism of M.
A[Yp] C EndM is the subring geneerated by A and the action of .

e since © is A-linear, A[] is a commutative ring.

e M is a module over A[)], so ¢ beomes multiplication by a ring element.

2.2 Cayley-Hamilton theorem, Nakayama lemma, and corol-
laries

Proposition AM.2.4. (Cayley-Hamilton Theorem) Let M a fingen A-module.
Let a an ideal of A, let 1 an A-module endomorphism of M such that ¢(M) C
alM.

Then v satisfies

1/)”+a1w”*1+...+an_11/)+an =0
with a; € a.

Proof. Since M fingen, let {x1,...,2,} be generators of M.
By hypothesis, ¥(M) C aM; so for any generator x;, it’s image ¥ (z;) € aM.
Any element in aM is a linear combination of the generators with coefficients

in the ideal a, thus
n

D(xi) =) aiz;

j=1

with ai; € a.
Thus, for a module with n generators, we have n different ¢ (z;) equations:



1) =a1121 +a12%2 + ...+ a1,
V() b2 bl elements ¥(z;) € aM which
Y(T2) = 2121 + az o2 + ...+ az ny . ..

are linear combinations of the

n generators of M
V(@n) = an1%1 + Qp2T2 + ..+ AnpTn

Next step: rearrange in order to use matrix algebra.
Observe that each row equals 0, and rearranging the elements at each row

we get
Y(z1) — (@121 +a10z2+ ...+ a1 pty) =0

¢($2) — (a271x1 + agoxo + ...+ Clgmxn) =0

Y(xn) — (ap121 + G222+ ...+ GppTn) =0

Then, group the z; terms together; as example, take the row ¢ = 1:

(Y —a11)r — a1 — ... — a1 Ty =0
(Y —a11)r1 — a1 22 — ... — a1 Ty =0
—ag121 + (Y —agg)re — ... —agnxy =0
—a11%1 — 1282 — ...+ (Y —a1,)x, =0

So, Vi € [n], as a matrix:

1/} —ain —a1,2 . —Q1n X 0

—a21 ’l/) — Q22 N —a2.n T2 0

—0n 1 —0an,2 P — QAnyn Tn 0
Denote the previous matrix by ®. Let m denote the vector (z1,z2,...,2,)7

(ie. the vector of generators of the A-module M).
Then we can write the previous equality as
®-m=0 (1)
We know that

adj(®)® = det(P)I (2)

(aka. fundamental identity for the adjugate matrix).
So if at we multiply both sides by adj(®),
adj(®) - &-m =0
(recall from (2)): adj(®)® = det(®) - I )
=det(®) - I'rm =0



Thus,

det(P) 0 T 0
0 det(P) 0 X9 0
0 0 oo det(®) T, 0
=
det(®) - z; =0 Vi € [n] (3)

ie. det(®) is an annihilator of the generators x; of M, thus is an annihilator
of the entire module M.

So, we're interested into calculating the det(®).

By the Leibniz formula,

det(A) = Y sgn(o) [J aioe
oESy, i=1

thus,
det(®) = (Y —a11)(Y —az2) ... (Y — ann)

diagonal of ®, leading term of the determinant

The determinant trick is that the terms that go after the ”leading term of
the determinant”, will belong to a and their combinations with ¢ will not be
bigger than ™. Furthermore, when expanding it

e highest power is 1 - 9"

e coefficient of Y"1 is —(a11 + age + ... + ann),

ay
where, since each a;; €a, a1 €a

e the rest of coefficients of ¥* are also elements in a

Therefore we have
det(®) =" + arp" t Fag)"E L Fan 1% Fan

with a; € a.

Now, notice that we had det(®) -x; =0V i € [n].
The matrix ® is the characteristic matriz, xI — A, viewed as an operator.
Then,
det(®) = det(xl — A) = p(x)

where p(x) is the characteristic polynomial.



If a linear transformation turns every basis vector (z;) into zero, then that
transformation is the zero transformation. So in our case, det(®) is the zero
transformation, thus det(®) = 0. Therefore,

P+ ar "+ agd™ a1t a, =0

Corollary AM.2.5. Let M a fingen A-module, let a an ideal of A such that
aM = M.
Then, 3 2 =1 (mod a) such that zM = 0.

Proof. take 1 = identity. Then in Cayley-Hamilton (AM.2.4):

P+ " " b apY +an =0
= idpy + aridy + agidpy + ...+ ap—1idpy +a, =0
— (1+a1+...+an)idM:0

apply it to m € M, where since idpys(m) = m (by definition of the identity), we
then have
l+a1+...4a,) -m=0

with a; € a.

part i. M =0:
Thus the scalar = (1 + a1 + ... + a,) annihilates every m € M, ie.
the entire module M.

part ii. x =1 (mod a):
=1 (moda) < (x—1)€a
then fromx = (14+a1+...+a,) €a,set b=as + ...+ an,
—_———

b
so that z = (1 +b) € a.

Thenz—1=(1+b)—-1=b€a
sox—1€a, thus z =1 (mod a) as stated.

O

Proposition AM.2.6 (Nakayama’s lemma). Let M a fingen A-module, let a
an ideal of A such that a C Jac(A).
Then aM = M implies M = 0.

Proof. By|AM.2.5} since aM = M, we have tM = 0 for some z =1 (mod Jac(A)).
(notice that at [AM.2.5|is (mod a) but here we use (mod Jac(A)), since we
have a C Jac(A)).




(recall AM.1.9} = € Jac(A) iff (1 — zy) is a unit in A, Yy € A).
By x is a unit in A (thus 2712 = 1).

Hence M =z~ 1. xz - M =0.
e
=0 (by [AM.2.5)
Thus, if aM = M then M = 0. O

Corollary AM.2.7. Let M a fingen A-module, let N C M a submodule of M,
let a C Jac(A) an ideal.

Then M = aM + N "2 pr — N

Proof. The idea is to apply Nakayama to M/N.
Since M fingen = M/N is fingen and an A-module.
Since a C Jac(A) = Nakayama applies to M /N too.
By definition,

aMZ{Zai-mi ‘ aiea,mieM}

where m; are the generators of M.
Then, for M/N,

a(33) = { e tmi+ N) | as € amie M)

observe that a;(m; + N) = a;m; + N, thus

> ai-(mi+N)= (> ai-mi)+N €aM + N

N————
caM
Hence,
M
a(ﬁ):{x—i—N | t€aM}=aM + N (4)

By definition, if we take w, then

aM + N

= ={y+N | yeaM+N}=aM + N

thus every y € aM + N can be written as

y=z+n, withxeaM, ne N

which comes from .
Thus, y+ N = (x+n)+ N =x + N, since n € N is zero in the quotient.
Hence, every element of w has the form

aM + N

~ ={z+ N | z€aM}



as in .

Thus M MAN
a
Y aM AN = T
(o) = oM + ~ (5)
By the Collorary assumption, M = aM + N; quotient it by N:
M oM+ N
NN ©)
So, from and (@:
M aM+N M
a( N) aM + N N

thus, a(3) = 4.

By Nakayama’s lemma [AM.2.6} if a(4%) = &2 braplies =0

Note that

M
ﬁ:{m+N|m€M}

(the zero element in 4L is the coset N =0+ N)

Then, % = 0 means that the quotient has exactly one element, the zero
coset V.

Thus, every coset m+ N equals the zero coset N;som—0€ N = m & N.

Hence every m € M lies in N, ie. Ym € M, m € N.

So M C N. But notice that by the Corollary, we had N C M, therefore
M = N. o

Thus, if M = aM + N "2 1 — N, O

Proposition AM.2.8. Let z; Vi € [n] be elements of M whose images W%M

from a basis of this vector space. Then the x; generate M.

Proof. Let N submodule M, generated by the z;.

Then the composite map N — M — m% maps N onto m%, hence
N + aM = M, which by [AM.2.7] implies N = M. O

2.3 Sequences
Definition R.2.9.a (Exact Sequence). Let a sequence of homomorphisms
LM N

It is exzact at M if im(a) = ker(f).
ie. foa =0 and a maps surjectively to ker(f).

Definition R.2.9.b (Short Exact Sequence (s.e.s.)).

0—L-%M-2N—0

is exact <= L C M and N = M/L.
Properties:

10



e (« injective

e [3 surjective

e a: L = kerp

e induces M/a(L) — N

Proposition R.2.10 (Split exact sequence). For the previous s.e.s., 3 equiva-
lent conditions:

i. disomorphism M = L @& N, with
a:m— (m,0)
B:(m,n)—n
ii. 3 a section of 8, that is, a map s : N — M such that fos =idy
iii. 3 a retraction of a, that is, a map r : M — L such that r o a = id,
If all i, ii, iii are satisfied, it is a split exact sequence.

Proof. Intuitively, when a s.e.s. splits it means that the middle module M is
the direct sum of the other (outer) two modules, ie. M = L& N.

(itoii, iii) if M = L & N such that a : m +—— (m,0), B: s(m,n) — n, we can

define the maps
for ii:
s: N—L®N
s(n) — (0,n)

Then B(s(n)) = £(0,n), so fos=idy.
for iii:
r: L&EN — L
r(m,n) — m

Then r(a(m)) = r(m,0), so r o a = idy,.

(ii to i) assume s: N — M such that §os =idy
Want to show M = im(a) @ im(s).
VYm € M, consider m — s(8(m)), apply 8 to it:
B(m — s(B(m))) = B(m) — (B0 s)(B(m)) = B(m) — B(m) =0
Since ker(B) = im(a), 3! € L such that a(l) =m — s(B8(m)).
Thus m = «a(l) + s(8(m)).

11



Now, suppose z € im(a) Nim(s), then z = a(l) = s(n), apply B to it:
Bla(l)) = B(s(n)) = 0=n.
If n = 0, then s(n) = 0, so the intersection is {0}.

Define

¢:L&N — M
o(l,n) — a(l) + s(n)

This isomorphism satisfies the required conditions.

(iii to i) similar to the previous one.
Overview:

O—)L%}%%N%N—)()
a:l—(1,0)
r:(m,n) —m

aor =1idy
B:(,n)—n
s:n+— (0,n)

Bos=1idy

3 Noetherian rings (and modules)

Definition (Ascending Chain Condition). A partially orddered set ¥ has the
ascending chain condition (a.c.c.) if every chain

51 <82 <

eventually breaks off, that is, s = sx4+1 = ... for some k.

—> ¥ has the a.c.c. iff every non-empty subset S C ¥ has a maximal
element.
if #.5 C X does not have a maximal element, choose s; € S, and for each
Sk, an element siy1 with sx < sg41, thus contradicting the a.c.c.

12



3.1 Noetherian rings and modules

Definition R.3.2 (Noetherian ring). Let A a ring; 3 equivalent conditions:

i. the set ¥ of ideals of A has the a.c.c.; in other words, every increasing chain
of ideals
LHchLc...Ccl,C...

eventually stops, that is Iy, = Ix41 = ... for some k.
ii. every nonempty set S of ideals has a maximal element
iii. every ideal I C A is finitely generated
If these conditions hold, then A is Noetherian.
Proof. TODO O

Definition R.3.4.D (Noetherian modules). An A-module M is Noetherian if
the submoles of M have the a.c.c.,
that is, ay increasing chain

My CMyC...CMgC...

of submodules eventually stops.
As in with rings, it is equivalent to say that
i. any nonempty set of modulesof M has a maximal element

ii. every submodule of M is finite

Proposition R.3.4.P. Let 0 — L 5 M PN 5 0be ases. (split

exact sequence, [R.2.10f).

Then, M is Noetherian <= L and N are Noetherian.

Proof. = trivial, since ascending chains of submodules in L and N correspond
one-to-one to certain chains in M.

<=: suppose M1 C My C ... C My, C ... is an increasing chain of submod-
ules of M.

Then identifying «(L) with L and taking intersection gives a chain

LNMycLNMyC...CLNMgC...
of submodules of L, and applying 8 gives a chain
B(My) C B(Mz) C ... (M) C ...

of submodules of N.
Each of these two chains eventually stop, by the assumption on L and N, so
that we only need to prove the following lemma which completes the proof. [

13



Lemma R.3.4.L. for submodules M; € My C M,

LAM, = LN M, and B(M;) = B(My) = M, = M,

Proof. if m € My, then S(m) € 8(M1) = B(Mz), so that there is an n € M
such that S(m) = B(n).

Then 8(m —n) =0, so that
m —mn € My Nker(B) = My Nker(B)

Hence m € My, thus My = M. O

Corollary R.3.5 (Properties of Noetherian modules). i. if Vi € [r], M; are

ii.

iii.

iv.

Noetherian modules, then @;_, M; is Noetherian.

if A a Noetherian ring, then an A-module M is Noetherian iff it is finite
over A.

if A a Noetherian ring, M a finite module, then any submodule N C M is
again finite.

if A a Noetherian ring, and v : A — B a ring homomorphism such that
B is a finite A-module, then B is a Noetherian ring.

Proof. 1. a direct sum M; & Ms is a particular case of an exact sequence.

ii.

iii.

Then, Proposition proves this statement when r = 2. The case
r > 2 follows by induction.

if M finite, then 3 surjective homomorphism
A" — M —0
for some r, so that M is a quotient
M= A"/N

for some submodule N C A".

A" is a Noetherian module by i., so M is Noetherian due Proposition

R.34P
Conversely, M Noetherian implies M finite.

item as in previous implications:

M finite and A Noetherian = M is Noetherian,
= since N C M, then N is Noetherian too

= which implies that N is a finite A-module.

B is Noetherian as an A-module; but ideals of B are submodules of B as
an A-submodule, so that B is a Noetherian ring.
O

14



3.2 Hilbert basis

Theorem R.3.6 (Hilbert basis theorem). If A a Noetherian ring, then so is
the polynomial ring A[z].

Proof. Prove that any ideal I C A[x] is fingen.
Define auxiliary sets J, C A by

Jo={ac A|3f cIsth f=ar" +b, 12" ' 4+... by}

ie. J, is the set of leading coeflicients of I of degree n.
J,, is an ideal, since I is an ideal.
Jn C Jpy1, since for f €I also xf € I.
Therefore J; C Jo C ... C Jr C ... is an increasing chain of ideals.
Using the assumption that A is Noetherian, deduce that .J,, = J,11 for some n.
For each m <n, J, C A is fingen, ie.

Im = (@m,1, - Cmr,)

By definition of J,,, for each a,, ; with 1 < j <y,
3 a polynomial f,, ; € I of degree m having the leading coefficient a,, ;.

= {fmjtm<nii<i<rm

the set of elements of I.
Claim: this finite set ({fm,;}) generates I.
Vf € I, if deg f = m, then its leading coefficient is a € J,,,
hence if m > n, then a € J,,, = J,, so that

a = Z biam with b; € A

and
F=Y 0 X

has degree < m.
Similarly, if m < n, then a € J,,, so that

a = ZbiamJ with b; € A

and
F=Y bifni
has degree < m.

By induction on m, f can be written as a linear combination of finitely many
elements.
Thus, any ideal of A[x] is finitely generated. O

15



Corollary R.3.6.C. if A a Noetherian ring, and v : A — B a ring homomor-
phism such that B is a fingen extension ring of ¥)(A), then B is Noetherian.
In particular, any fingen algebra over Z or over a field K is Noetherian.

Proof. the assumption is that B is a quotient of a polynomial ring,
B Alxy,...,x,)/1

for some ideal I.
By the Hilbert basis theorem and induction,
A being Noetherian implies that A[zq,...,x,] is Noetherian.

And by Corollary iv),

Alxy,...,x,] being Noetherian implies that A[zy,...,x,]/I is Noetherian. O

4 Finite ring extensions and Noether normaliza-
tion

4.1 A-algebras and integral domains

Definition (A-algebra). An A-algebra is a ring B with a ring homomorphism
Yv:A— B.
B is an A-module with multiplication defined by ¢(a)-b (a € A,b € B).
When A C B, B is an extenaion ring of A; denoted (A) = A’ C B.

Definition R.4.1. Let B be an A-algebra.

i. Bis a finite A-algebra (finite over A) if it is finite as an A-module.

ii. y € B is integral over A if 3 a monic polynomial
fY)=Y"+a, . Y" ' 4. . +a € AlY]
such that f(y) =0:

f) =y" 4+ an1y" ' +...4ap=0

The algebra B is integral over A if V b € B is integral.

Proposition R.4.2. Let ¢ : A — B be an A-algebra, and y € B. Three
equivalent conditions:

i. y is integral over A

ii. subring A’[y] C B generated by A’ = ¢)(A) and y is finite over A

16



ili. 3 an A-subalgebra C' C B such that A'[y] C C and C is finite over A

Notes: A’ is the image of A in B, ie. A’ =1(A).
A'[y] is the smallest subring of B containing both coefficients from A and the
element y.

Proof. .

(i to ii): since y integral over A = by (ii), y satisfies
F@)=y" +an1y" ' +... +ag=0
So any power y* (k > n) can be expressed in terms of {1,y,%2,...,y" 1}
Thus the set {1,y,y?,...,y" '} spans A’[y] as an A-module.

(iil to i): since A'ly) c C = yeC
since C finite over A, C has finite generators {cy,...,c,} such that C =
A-ci+Aco+...+A ¢,

Thus y - ¢; € C,
Yy G = Z QijCy
j=1
with aij € A.
By the Cayley-Hamilton theorem (AM.2.4)),
V't any" T+t ay+ag=0
Therefore, y is integral (by (ii)).

Proposition R.4.3 (Tower Laws). Let B be an A-algebra.

a. Transitivity of finiteness: if A C B C C are extension rings such that C is a
finite B-algebra and B a finite A-algebra,
then C is finite over A.

b. Finiteness of generated algebras: if y1,...,y, € B are integral over A, then
Aly1, ..., Ym] is finite over A.
In particular, every f € Afyi,...,yn] is integral over A.

c. Transitivity of integrality: if A C B C C with C integral over B, and B
integral over A,
then C is integral over A.

d. Integral closure as a subring: the subset
A= {y e B|yis integral over A} C B
is a subring of B.

Moreover, if y € B is integral over A then y € A, so that A = A.
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Proof. .

a.

d.

if {B1,...,0n} generate B as an A-module and {v1,...,v,} generate C as
an B-module,
then the set of products {8;7;} generates C' as an A-module.

Since there are n x m generators (ie. finite), C' is finite over A.

proof by induction:
base case: if y; integral over A = it satisfies a monic polynomial.

Thus A[y,] is generated as an A-module by {1,v1,¥3,...,y" '}, making it a
finite A-algebra.

inductive step: let Ry = Aly1,...,yk]. Assume Ry is finite over A.
Since yry1 is integral over A = it is also integral over Rj.
Thus Ri+1 = Ri[yk+1] is finite over Ry.

Applying part (a) (transitivity of finiteness), if Ry is finite over Ry and Ry,
finite over A, then Ry; is finite over A.
Consequence: since any f € Alyi,...,ym] belongs to a finite A-algebra, f

must be integral over A (since an element is integral iff it is contained in a
finite extension).

. let x € C, since x integral over B, it satisfies:

x"+bn_1x"71+...+blx+bo:0, bZEB

Let B” = Albo,b1,...,bn—_1]. Since each b, € B and B is integral over A
= each b; is integral over A.

Since all b; are integral over B’ = B’[z] is a finite B’-algebra.
By part (a) (transitivity of finiteness), B’[z] is a finite A-algebra.

Therefore, x is integral over A.

. subring: B
let z,y € A. Want to show = + y,zy € A:

by part (b), the algebra A[z,y] is finite over A.

Since z + y, zy € Alz,y], they are integral over A.

Thus = +y,zy € A, since A = {b € B | b integral over A}.
II. idempotence R

let z € B be integral over A

we have a chain A C A C /Nl[:v]

By definition, A is integral over A, and z is integral over A

thus by part (c), z is integral over A.

Therefore, z € A.
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O

Lemma 4.3.Aux (Integrality implies finiteness). If y integral over A then A[y]
is finite over A.
This extends on point (b) from the previous proposition

Proof. Suppose y is integral over A. By definition 3 f € A[T], with f monic,
such that f(y) = 0.
Let deg(f) = d, so that for f(y) =0 we have

d—1

yd—|—ad_1y +...+ay+ap=0 a; €A

Since it is monic (leading coefficient is 1), we can rearrange it to isolate the
highest power:

d—1

ydz —(ad_ly —|—...+a1y+ao) (7)

Thus y? can be written using lower powers of y with coefficients in A.

Consider any element p € Aly], p = cny™ + cm_1y™ L + ... + co.
if m < d, leave it as it is.
if m > d, use the monic equation to replace y¢ with lower powers.
Repeating this process, can reduce any power of y down to a linear combi-
nation of {1,y,%2,...,y% 1}
Thus every element in A[y] can be expressed as

Moy M Ayt Al N EA

Henceforth, the set {1,,%2,...,y% !} generates A[y] as a finite A-module.
O

Definition 4.4 (Integral closure). Given the ring A from (d)7 ie. A=
{y € B | y integral over A} C B, A is the integral closure of A in B.
If A=A, then A is integrally closed in B.
An integral domain A is normal if it is integrally closed in its field of frac-
tions, that is if
A=AcC K = Frac(A)

For any integral domain A, the integral closure of A in its field of fractions
K = Frac(A) is also called the normalization of A.
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4.2 Noether normalization

Definition 4.6 (Algebraically independent). yi,...,y, € A are algebraically
independent over K if the natural surjection K[Y1,...,Y,] — Kly1,...,yn] is
an isomorphism.

= 3 F(yi,...,yn) = 0 (F nonzero) with coefficients in K.

Recall: a K-algebra A is fingen over K if A = K|y, ...,yy] for some finite
set y1,...,Yn-

Lemma R.4.6.L. Let A= K|yi,...,yn] and 0 # F € K|[Y7,...,Y,] such that

F(y1,---,yn) = 0.
Then 3 y7,...,y;_; € A such that y, is integral over

A*=Klyf,...,ys_q] and A= A"[y,]

Proof. Set yf =y, —yli fori € n—1] and rq,...,7p—1 > 1 € Z.

(ie. yi =y +yn')
Define G € A by

GYis s Yn_1,Yn) = F(y; +y5'syn) =0

viewed as a relation for y, over K[yy,...,y5_4].
Since F'is a polynomial in yi,...,y:_4, can write it as a sum of monomials

where m = (my,...,m,) and each a,, # 0.

Therefore,
G=> am [ +yi)™

which when expanding out, each summand a,, [[(y} 4+ y5)™ has a unique term
. . (32 rims)
of highest order in y,,, namely a,y .

Suppose we can arrange so that
m#m = Zrimi # Zrim;

Then max{>_ r;m; | m s.th. a,, # 0} is achieved in only one summand, so
that here is no cancellation; thus the highest order term in G is amy§LZ rimi) (ie.

a, times a pure power of yy,). O

Theorem R.4.6 (Noether normalization lemma). Let K a field, A a fingen
K-algebra.
Then 3 21, ..., 2z, € A such that
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i. z1,...,2zn are algebraically independent over K
ii. A is finite over B = K|z1,. .., zm]
That is, a fingen extension K C A can be written as a composite
KCB=Klz,...,2m] CA
where K C B is a polynomial extension, and B C A is finite.

Proof. Let yi,...,yn be generators of A = K[yi,...,yn]-

if n = 0, nothing to prove since A is generated by 0 elements — A = K,
and K is finite.

if n > 0 we have two cases:

- Y1,...,Yn are algebraically independent over K, then by definition
A2 K[y1,...,Yn], so that A is a finite module over itself, with m = n.

- Y1,...,Yn are algebraically dependent over K,
30#4 feKy,...,yn] sth f(y1,...,yn) =0

Want f to be monic, so that y, is integral over new defined variables
Yi,--.,yr_1. In other words, want some polynomial like

yfﬁ—i—ad,lyz_l—l—...—&—alyn—i—ao:0 a; € K[yy,.. ., y5_1]

ie. monic, so that by definition (R.4.1)), y,, is integral over K[yj,...,y5_1].
— Change variables so that f becomes monic in one of the variables (yy);
this allows to express one generator (y,) as an integral element over the others.

Following from Lemma [R-4.6.T} define the new variables yi,...,y;_; € A
such that y,, is integral over

A*=Kly,...,yi_1], and A = A™[y,]

Setting ¥ = y; —yli, so that y; = yf +yli Vi € [n—1], r1,...,rp—1 > 1€ Z.
Use those new variables at f(y1,...,yn) = 0:

FOr +unt s + 002, Y U yn) =0

(> airi)

Then the highest power of y, in each term of f will look like yy; , and
with r; growing fast enough we ensure that each monomial in f produces a
unique power of y,,.

Then we have c-y2 + (terms with lower powers of y,,) = 0 with ¢ € K \ {0}.
So that dividing by ¢ we get the shape y? + ... = 0, thus y,, is integral over

A* =Kyt ..., yi_4]-

Induction:
Since y,, integral over A* = A = A*[y,] is finite over A* = K[y],...,y}_4]

(by F3-Awd).
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By inductive hypothesis on A*, 3 z1,..., 2z, € A* algebraically independent

over K and with A* finite over B = K|[z1,...,2m].
Therefore, each step of B C A* C A*[y,| = A is finite, and A is finite over
B as required. O

Example . A= K[X,Y]/(XY —1). Y is algebraic over K[X], but not integral
over K[Y].

This corresponds to the fact that the hyperbola XY = 1 has the line X =0
as an asymptotic line (so that its projection to the X-axis misses a root over
X =0).

Take X' = X — €Y as the element of A instead of X; then the relation
becomes (X’ +€Y)Y = 1, monic in YV if € # 0.

This corresponds geometrically to tilting the hyperbola a little before pro-
jecting, so that no longer has a vertical asymptotic line.

4.3 Weak Nullstellensatz

Proposition R.4.9. let A C B be an integral extension of integral domain,
then A is a field <= B is a field.

Proof. =
let 0#£x € B,then3 z"+ap_12" ' +...4+ap=0 a; € A, monic.

Since A is a field, 3 inverse, observe that:

"+ ap 12" P4+ +axz+arg=0
x(m"‘l tan 12" 4.+ ay) = —ap
—aal(mnfl +ap_12" 4+ .+ ay) = z'eB

thus there exists inverse in B, so B is a field too.

—:
if Bis a field and 0 # x € A, then 27! € B, so ™! is integral over A.

So there is a relation of the form

(™" +ap_1(z7H" P+ +ap=0

Therefore
()" + a1z P+ +ap=0
(™" = —ap_1(z7H" = —ag
" = —an, 17" — .. —ap (mult by 2"71)
R B e D Y.
tl=—an_1—...—apx" €A
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thus there exists inverse in A, so A is a field too. O

Theorem R.4.10 (Weak Nullstellensatz - Zariski’s lemma). let k a field, K a
k-algebra which

1. is finitely generated as a k-algebra
2. is a field

Then K is algebraic over k, so that k& C K is a finite field extension. That is,
[K : k] < c0.

Proof. K =k[z1,...,2ny)] a field; want to show that K is algebraic over k.

Since K is a fingen k-algebra, by Noether normalization lemma (R.4.6)),
d21,...,2m € K such that

e are algebraically independent

e K is integral over the polynomial ring A = k[z1,. .., z;] (which by
is finite)

Now we’re at the situation of [R.4.9]
A C K is integral, K is a field == therefore A is a field.

Since 21, ..., 2z, € K are algebraically independent,
= A =k[z1,...,2n] is a polynomial ring in m indeterminates, and this

is a field only if m =0

(since in k[z1] the element z; is not invertible, since 1/z; is a rational func-
tion, not a polynomial).

So A = k; which by Noether normalization we saw that K is integral over
A =k, and by that it is finite, thus K is finite over k, ie. [K : k], 00,
and K is algebraic over k. O

5 Nullstellensatz

Note: for k a field, k[Xy,...,X,], m maximal ideal; the residue field K =
k[X1,...,X,]/m satisfies the Zariski’s lemma (R.4.10)), thus K is a finite alge-
braic extension of k.

Corollary 5.2. k algebraically closed. Then every maximal ideal of A =
E[X1,...,Xy] is of the form

m=(X;—a,...,Xn —an), a; €k
The map k[X1,...,X,] — k[X1,...,X,]/m = k is the natural evaluation
map f(Xy,...,Xn) — fa1,...,an).
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Thus

k™ <— m — SpecA

(at,...,ap) +— f(a1,...,an)

Proof. let m C k[X1,...,X,] be a maximal ideal.

By fundamental property of maximal ideals, K = A/m is a field.

Since A is a fingen k-algebra (generated by Xi,...,X,,), then K = A/m is
also a fingen k-algebra, generated by residues x} = z; + m.

By Zariski’s lemma , K = A/m is algeraic over k.

Since by hypothesis k is algebraically closed, it has no proper algebraic
extensions

= K=k = kX A/m.
So, Vz; € k, its image in the quotient field A/m must be an element of k.

=z, =a; €k, Vi€ [n]

— T, —a; €M
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6 Exercises

For the exercises, I follow the assignments listed at [3].
The exercises that start with R are the ones from the book [2], and the ones
starting with AM are the ones from the book [I].

6.1 Exercises Chapter 1

Exercise R.1.1. Ring A and ideals I, J such that IUJ is not an ideal. What’s
the smallest ideal containing I and J7

Proof. Take ring A =7. Set I =27, J = 3Z.
I, J are ideals of A (=Z). And TU J =27 U 3Z.

Observe that for2 € I, 3e€J = 2,3€lUJ,but2+3=5¢1UJ.
Thus I U J is not closed under addition; thus is not an ideal.
Smallest ideal of Z (= A) containing I and J is their sum:

I+J={a+blael,be J}
gced(2,3) =1,80 I +J =Z.
Therefore, smallest ideal containing I and J is the whole ring Z. O

Exercise R.1.5. let ¢ : A — B a ring homomorphism. Prove that 1~ takes
prime ideals of B to prime ideals of A.

In particular if A C B and P a prime ideal of B, then AN P is a prime ideal of
A.

Proof. (Recall: prime ideal is if a,b € R and a-b € P (with R # P), implies
a€ PorbeP).
Let
v I (P)={ac Ap(a) e Py =ANP

The claim is that ¢»~1(P) is prime ideal of A.
i. show that ¢)~1(P) is an ideal of A:
04 € Y 1(P), since ¥(04) = 0p € P (since every ideal contains 0).
If a,b € =1 (P), then v (a),¥(b) € P, so

Pla—b) =9(a) —¢(b) € P

hence a — b € »~1(P).

If a € p~1(P) and r € A, then ¢(ra) = 1 (r)y(a) € P, since P is an ideal.
Thus ra € Yp~1(P).

= 50 ¢~ ! is an ideal of A.

ii. show that ¢»~1(P) is prime:
p~1(P) # A, since if ~1(P) = A, then 14 € ¥~ }(P), so ¢(14) = 15 € P,
which would mean that P = B, a contradiction since P is prime ideal of B.
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Take a,b € A with ab € ¢»~1(P); then ¥(ab) € P, and since 1 is a ring
homomorphism, ¢(ab) = ¥ (a)p(b).

Since P prime ideal, then ¢(a)y(b) € P implies either ¢)(a) € P or ¢(b) € P.
Thus a € »~1(P) or b € = 1(P).

Hence 1~ 1(P) (= AN P) is a prime ideal of A.

Exercise R.1.6. prove or give a counter example:

a.
b.

C.

the intersection of two prime ideals is prime
the ideal P; + P» generated by 2 prime ideals Py, P is prime

if ¢ : A — B ring homomorphism, then ~! takes maximal ideals of B to
maximal ideals of A

. the map ¥~! of Proposition 1.2 takes maximal ideals of A/I to maximal

ideals of A

Proof. a. let I =27 = (2), J = 3Z = (3) be ideals of Z, both prime.

Then INJ =(2)N(3) = (6).
The ideal (6) is not prime in Z, since 2 - 3 € (6), but 2 # (6) and 3 # (6).
Thus the intersection of two primes can not be prime.
P, =(2), P, = (3), both prime.
Then,
Pl+P,=(2)+3)={a+blac P,be P}
— in a principal ideal domain (like Z), the sum of two principal ideals is
again principal, and given by (m) + (n) = (ged(m, n)).
(recall: principal= generated by a single element)
So, Pi + P> = (2) + (3) = (9cd(2,3)) = (1) = Z.

The whole ring is not a prime ideal (by the definition of the prime ideal), so
P, + P, is not a prime ideal.

Henceforth, the sum of two prime ideals is not necessarily prime.
let A=7Z, B=Q, v: A— B.

Since Q is a field, its only maximal ideal is (0).

Then

v7H(0) = (0) CzZ
ie. ¢~ (mp) = (mp) C A

But (0) is not maximal in Z, because Z/(0) = Z is not a field.

Thus the preimages of maximal ideals under arbitrary ring homomorphisms
need not be maximal.
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d. ¢ : A — A/I quotient homomorphism, I C A an ideal.
Let M a maximal ideal of A/I, then % is a field (Proposition 1.3).

By the isomorphism theorems,

wn ., A
Mo T H(M)

Since % is a field, the quotient w*%(M) is a field, so 9 ~1(M) is a maximal

ideal of A.

—> under 1, preimages of maximal ideals are maximal.

Exercise R.1.12.a. if I, J ideals and P prime ideal, prove that
IJCP <= INJCP <= ITorJCP

Proof. assume I C P (for J C P will be the same, symmetric), take x € IJ,

then
n
xr = Z akbk
k=1

with ap € I, b, € J.
Each a € I C P. Since P an ideal,

i apby € P
k=1

thus z € P, hence I.J C P.
SolICPorJCP —1JCP.

Conversely,
assume P prime and IJ C P.
Suppose by contradiction that I € P and J € P.

- since I Z P, Ja € I witha & P
- since J L P, 3be J withb g P

Sincea € I, be J, abe IJ C P, but P is prime, so ab € P implies that a € P
or b € P. This contradicts a, b being taken outside of P.
Thus I € P and J € P are false.

So both directions are proven, hence

IJCP = ICPorJCP
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Exercise R.1.18. Use Zorn’s lemma to prove that any prime ideal P contains
a minimal prime ideal.

Proof. Let P prime ideal of R.

S =1{Q C R| Q aprime ideal AND Q C P}

Goal: show that S has a minimal element, the minimal ideal contained in

P C S, so S is nonempty.
Let C C S be a chain (= totally ordered subset) with respect to inclusion.
Define

Q=)@

QeC

Clearly Q¢ C P, since each Q € C'is Q C P.
Since C' is ordered by inclusion, it is a decreasing chain of prime ideals.
Intersection of a decreasing chain of prime ideals is again a prime ideal:

- if ab € Q¢, then ab € Q VQ € C
- since @ prime, V@ € C either a € Q or b € @

If there were some @1, Q2 € C with a € @1 and b € 2, then by total
ordering, either Q1 C Q2 or Q2 C Q1.

In either case: contradiction, since the smaller one would have to contain
the element that was assumed to be excluded.

Thus VQ € C the same element a,b must lie in all Q. = lies in the
intersection of them, Q¢.

Henceforth, Q¢ is a prime ideal and lies in S, and its a lower bound of C' in
S.

Now, S is nonempty, and every chain in S has a lower bound in S (its
intersection).
Therefore, S has a minimal element P,,;,,.

By construction, P,,;, is a prime ideal P,,;, C P, and by minimality there
are no strictly smaller prime ideals inside P.

So P,,i, is a minimal prime ideal, contained in P. O

Exercise R.1.10.

Proof. O
Exercise R.1.11.

Proof. O
Exercise R.1.4.

Proof. O
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6.2 Exercises Chapter 2

Exercise R.2.9. 0 — L — M SN 0 is a s.e.s. of A-modules. Prove
that if N, L are finite over A, then M is finite over A.

Proof. Denote the generators of L and IV respectively as

(h,....L,} CL
{’I’Lh...,’l’Lp}gN

By s.e.s. definition,
- « is injective (one-to-one), so

Vi, € L, 3x; € M s.th. a(l;) = z;

- [ is surjective (onto), so

Vn; € N, 3 y; € M s.th. ﬂ(yj) =n;

We will show that {x1,..., 2k, ¥1,...,yp} generate M, and thus M is finite:
Let m € M, then 8(m) € N, and

P
B(m) = Zajnj with a; € A
j=1
Take m' € M, with m’ =" a;y;, then
Bm) =D _a;Bly;) = D agng = B(m)
Then, since S(m) = g(m’) = B(m —m’') =0, thus
(m—m') € ker(B)

By ezactness property, since o : L — ker(3), we have ker(8) = im(«).
Therefore, 3 [ € L such that «(l) =m —m/’.

Since {l;}1, generate L,
k
1= bil;

m — m' = a(l) = a(z blll) = Z bz Oé(lz) = Z bl,TZ
\T_/ D

thus

—~—

i

Rearrange,

p k
m:m’—l—Zbixi:Zajyj—i—Zbixi Ym e M
j=1 i—1

So, L provides k generators for the kernel part of M, N provides p ”lifts”
for the quotient part of M; thus M is generated by k + p elements.
Thus M is finitely generated over A. O
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6.3 Exercises Chapter 3

Exercise R.3.2. K a field, A D K a ring which is finite dimensional as a
K-vector space. Prove that A is Noetherian and Artinian.

Proof. dim(A) =n < oo, so every ideal a of A is a K-subspace of A, because if
r€aandce€ K, thenc-x € a.

1. Noetherian:
let I; C I, C ... be an ascending chain of ideals in A.

Since each I; is a subspace, we have
dimg (1) <dimg(l2) <...<n

where at some i = m we have dimg(I;,) = dimg(Iny1); then since
I, C I41, we have I,, = I,,11. So A is Noetherian.

2. Artinian:
Similarly, if I O Iy O ... a descending chain of ideals in A.
then
n > dimg(l1) > dimg(lz) > ... >0

where at some ¢ = m we have dimg (I,) = dimg(l,41); then since
I, C I,,41, we have I,, = I;,11. So A is Artinian.

O

Exercise R.3.5. Let 0 — L —— M i> N — 0 an exact sequence. Let
My, My C M be submodules of M.
Prove if the following holds or not:

B(My) = B(Mz) and o' (My) = o' (M) = My = M,

Proof. Counterexample showing that it does not hold:
Let Kafield M=K®&K ,L=K, N=K.
Set, for I € L, (my,ma) € M,

a:l—(1,0)
B (mi,ma) — ma
So we have
0— K- K> 2 K50
Then,

My ={(z,z) |z € K}  ~ (diagonal line)
My, ={(0,z) |z € K} ~ (y-axis)

(Geometric interpretation: My, Ms are the diagonal line and y-axis respec-
tively; and «, B capture information about the wvertical components (x-axis,

30



y-axis respectively), but not about the diagonal way a submodule is embedded
in M).
Then,
B(M)={z|ze K} =K
B(My) = {o |z € K} = K
thus, B(M1) = B(M2).
For My, (1,0) € M iff I =0, thus a~1(M;) = {0},
for My, (1,0) € M iff | =0, thus o~ (Ms) = {0},

thus a1 (M;) = a1 (My).
So we've seen that

B(My) = B(Ma)
Oéil(Ml) = ail(Mz)

while having M7 # M. O

Exercise R.3.3. Let A aring, I1,..., I} ideals such that each A/I; is a Noethe-
rian ring. Prove that @ A/I; is a Noetherian A-module, and deduce that if
() I; = 0 then A is also Noetherian.

Proof. i. by Corollary (i), if M; Noetherian modules, then € M; is
Noetherian. = thus € A/I; is Noetherian.

ii. Take the canonical homomorphism

n
¢: A— @A/
i=1
by ¢(a) =(a+ I,a+ Is,...,a+ I,).
¢ is injective: ker(¢) = {a € Ala € I,Vi}.
Since we'’re given NI; = 0, then ker(¢) = NI;, and ¢ is injective.
Thus, ¢ is the isomorphism A 2 im(¢), where im(¢) is an A-submodule of
P A/IL.
We know that any submodule of a Noetherian module is Noetherian, thus,
since

e A/I; is Noetherian by hypothesis of the exercise
o« A= im()
e im(¢) is an A-submodule of P A/I;

then, A is Noetherian.
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Exercise R.3.4. Prove that if A is a Noetherian ring and M a finite A-module,

then there exists an exact sequence A7 —— AP Lo — 0. That is, M has a
presentation as an A-module in terms of finitely many generators and relations.

Proof. since M fingen = generators {my,...,ma} C M span M.
Let 8 be a surjective A-linear map, which forms a free A-module of rank p
onto M:

B8: AP — M
p

(a1,...,ap) »—>Zaimi
=1

Let K = ker(5). By the 1st Isomorphism Theorem,
M= APJK

Since A is a Noetherian ring, then every free A-module of finite rank (eg.
AP) is a Noetherian module.

Every submodule of a Noetherian module is fingen.

= since K C AP, — K (= ker(8)) is fingen.

Since K fingen, let {k1,...,l,} be generators of K.

Define ¢ : A9 — K.

Compose it with the inclusion map i : K — AP,

a=io1: AT — AP

So we have the whole sequence A7 —*5 AP Lo — 0, where
e (3 is surjective
e im(a) = ker(B)

so that it is a exact sequence, thus, M has a finite presentation. O

6.4 Exercises Chapter 4

Exercise R.4.1.a. k[X?] C k[X] is a finite extension, hence integral. Find the
integral dependence relation for any f € k[X].

Proof. Vf(X) € k[X] can be uniquely decomposed into its even and odd parts:
FX) =p(X?) + X - q(X?)

with p(X?), ¢(X?) € k[X?], and
p(X?): sum of all terms with even exponents
q(X?): sum of all terms with odd exponents, and then factoring out X.

(Observation: this is used in FRI cryptographic protocol
https://github.com/arnaucube/math /blob/master /notes_fri_stir.pdf)
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Rearrange it

f(X)—p(X?) =X -q(X?), square:
(F(X) = p(X?)? = X? . q(X?)?
F(X)? = 2p(X?) f(X) + p(X?)* = X? - ¢(X?)?
FX)? =[2p(X?)] F(X) + [p(X*)? = X* - q(X?)*] = 0

Denote the last polynomial as P(T') € k[X?], where f(X) is a root of P(T).

The integral dependence relation for any f € k[X] is given by the monic
polynomial from i, in this case 7% + a1 T + ag = 0 with a; € k[X?].
We have that
[ —Qp(XQ)
ag = p(X2)2 o X2q(X2)2
So for example, for f(X) = X2+ X2+ X + 1:
fFX)=(X?+1)+X(X*+1)
(f(X) = (X2 +1))* = X*(X? +1)°
(f(X) = p(X))? = X*(¢(X))?
O

Exercise R.4.5. Let A = k[X,Y]/(Y? — X2 — X?). Prove that the normaliza-
tion of A is k[t] where t = Y/X.

Proof. A=k[X,Y]/(Y? - X? — X3), express X and Y in terms of ¢:
Since t = Y/X then Y = tX, and combined with Y? = X2 + X3, then
(tX)* = X2+ x3
t2X?% = X? + X3, assuming X #0:
t2 =14 X, thus
X =1 —1¢€k[X]
Then, Y = tX = t(t

Hence X,Y € k[X].

—1) =1 —tek[X].
Therefore, k[X,Y]/(Y? — X2 — X3) C k[t].

By (Noether normalization lemma), to show that k[t] is the normal-
ization, must show that k[t] is integral over A.

From X =t-1 = #-1-X=0 = t*-(1+X)=0.

(14 X) € A, so t satisfies the monic polynomial

P(T)=T*—-(1+X) € A[T]
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Thus t is integral over A.

Since k[t] is generated by ¢ over k, and k C A, then the entire ring k[t] is
integral over A.

Since k[t] is a polynomial ring over a field, which is a UFD, it is integrally
closed (since all UFD are integrally closed).

FracA=k(X,Y),since X =t -1, Y =3 -t = k(X,Y) Ck()

and ¢ = Y/X € k(X,Y), thus k(X,Y) = k(t).

Since k[t] is integrally closed and is the integral closure of A in its fraction
field k(t), we conclude that the normalization of A is k[t]. O

Exercise R.4.9. k a field, A = k[X,Y, Z]/(X?-Y?®-1,XZ —1),find o, € k
such that A is integral over B = k[X + aY + (z], and write a set of generators
of A as a B-module.

Proof. (want to find a linear combination of the coordinates such that the orig-
inal variables satisfy monic polynomials over the new ring B)
The relations defining A are

X?-Y3-1=0 = Y?’=X?-1 (¥
XZ-1=0 = Z=1/X=X"!

Thus A can be denoted as A = k[X,Y, X~1]/(Y3 - X2 —1).

Now, Y is inegral over k[X], since Y? — (X2 — 1) = 0 is monic in Y with
coefficients in k[X].

Z is not integral over k[X], since Z =1/X and X is not a unit in k[X].

Choose a, 8 € k such that X (and thus Z) becomes integral over B:
seta=0, =1 = B=k[X+aoY +pZ]=k[X+Z].

Let w = X 4+ Z; since XZ =1, we have

1
w=X+5 = Xw=X"4+1 = X?—wX+1=0 (*%)

which is monic with coefficients in k[w], thus X is integral over B.
Since Z = w — X, Z is also integral.

Generators of A as a B-module:
we hadd B = k[w] with w = X + Z.
From (#x) we have X? —wX +1=0,s0 X2 =wX — 1.
Thus any polynomial in X can be reduced to a linear form b X + by with
b; € k[w]. Hence it’s partial basis is {1, X'}.
Fitting X? into (x),
X?-Y?-1=0
Y3=Xx%-1
YV3=wX -2
thus any power of Y higher than 2 can be reduced (eg. Y* =Y (wX —2) =
w(XY) —2Y).
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So its partial basis is {1,Y,Y?}.
For Z,since XZ =1and w=X+7 — Z =w — X, thus Z is a B-linear
combination of {1, X}.

Combining the previous partial basis, the generators are

{1, X} x {1,Y,Y?} = {1,Y,Y?, X, XY, XV?}
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