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Abstract

Notes taken while studying Commutative Algebra, mostly from Atiyah
& MacDonald book [1I] and Reid’s book [2]. For the exercises, I follow the
assignments listed at [3].

Usually while reading books and papers I take handwritten notes in a
notebook, this document contains some of them re-written to LaTeX.

The proofs may slightly differ from the ones from the books, since I
try to extend them for a deeper understanding.
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1 Ideals

1.1 Definitions

Definition . ideal I C R (Rring) suchthat0 € TandVz € I, r € R, zr,rz € I.
ie. I absorbs products in R.

Definition . prime ideal if a,b € R with ab € P and P # R (P a prime ideal),
implies ainP or b € P.

Definition . principal ideal generated by a single element, (a).
(a): principal ideal, the set of all multiples za with x € R.

Definition . maximal ideal m C A (A ring) with m # A and there is no ideal
I strictly between m and A. ie. if m maximal and m C I C A, either m = I or
I=A

Definition . unit x € A such that zy = 1 for some y € A. ie. element which
divides 1.

Definition . zerodivisor x € A such that 30 # y € A such that zy = 0 € A.
ie. x divides 0..
If a ring does not have zerodivisors is an integral domain.

Definition . prime spectrum - Spec(A) set of prime ideals of A. ie.

Spec(A) = {P | P C Ais a prime ideal}

Definition . integral domain Ring in which the product of any two nonzero
elements is nonzero.

ie. no zerodivisors.

ie. VO#a, 0#£be A, ab#0 € A.

Every field is an integral domain, not the converse.

Definition . principal ideal domain - PID integral domain in which every ideal
is principal. ie. ie. VI C R, 3 a € I such that I = (a) = {ra | r € R}.

Definition . nilpotent a € A such that a™ = 0 for some n > 0.

Definition . nilrad A set of all nilpotent elements of A; is an ideal of A.
if nilradA =0 = A has no nonzero nilpotents.

nilradA = ﬂ P
PeSpec(A)
Definition . idempotent e € A such that e? = e.
Definition . radical of an ideal

radl = {f € A|f™ € I for somen}

radl is an ideal.
nilradA = rad0

radl = ﬂPESpec(A) P
PDI



Definition . local ring A local ming has a unique maximal ideal.
Notation: local ring A, its maximal ideal m, residue field K = A/m:

ADmor (A,m)or (4,m, K)

1.2 Z and K[X], two Principal Ideal Domains
Lemma . Z is a PID.

Proof. Let I a nonzero ideal of Z.

Since I # {0}, there is at least one nonzero integer in I. Choose the smallest
element of I, namely d.

Observe that (d) C I, since d € I. Then, every multiple nd € I, since [ is
an ideal.

Take a € I. By the Euclidean division algorithm in Z, a = ¢d + r, with
q,r € Z and 0 <r <d.

Then r = a — qd € I, but d was chosen to be the smallest positive element
of I, so the only possibility is r = 0.

Hence, a = qd, so a € (d), giving I C (d).

Since we had (d) C I and now we got I C (d), we have I = (d), so every
ideal of Z is principal. Thus Z is a Principal Ideal Domain(PID). O

Lemma . K[X]is a PID.

Proof. This proof follows very similarly to the previous proof.

Let K be a field, K[X] a polynomial ring.

Take {0} # I C K[X].

Since I # {0}, there is at least one non-zero polynomial in I.

Let p(X) € I be of minimal degree among nonzero elements of I.

Observe that (p(X)) C I, because p(X) € I and [ is an ideal.

Let f(X) € I. By Euclidean division algorithm in K[X], 3¢,r € K[X] such
that f(X) = q(X) - p(X) + r(X) with eithr r(X) = 0 or deg(r) < deg(p).

Since f,p € I, then r(X) = f(X) —¢(X) -p(X) € I

If r(X) # 0, then deg(r) < deg(p), which contradicts the minimality of
deg(p) in I.

Therefore, r(X) = 0, thus f(X) = ¢(X) - p(X), hence f(X) € (p(X)).
Henceforth, I C (p(X)).

Then, since (p(X)) C I and I C (p(X)), we have that I = (p(X)).

So every ideal of K[X] is principal; thus K[X] is a PID.

1.3 Zorn’s lemma and Jacobson radicals

Let ¥ be a partially orddered set. Given subset S C 3, an upper bound of S is
an element u € ¥ such that s < uVs € S.



A mazimal element of 3, is m € X such that m < s does not hold for any
s €.

A subset S C X is totally ordered if for every pair s1,s2 € S, either 1 < s
or s9 < s7.

Lemma R.1.7. Zorn’s lemma. Suppose ¥ a nonempty partially ordered set
(ie. we are given a relation z < y on X), and that any totally ordered subset
S C ¥ has an upper bound in X.

Then ¥ has a maximal element.

Theorem AM.1.3. Every ring A # 0 has at least one maximal ideal.

Proof. By Zorn’s lemma O

Corollary AM.1.4. if [ # (1) an ideal of A, 3 a maximal ideal of A containing
1.

Corollary AM.1.5. Every non-unit of A is contained in a maximal ideal.

Definition . Jacobson radical The Jacobson radical of a ring A is the intersec-
tion of all the maximal ideals of A.

Denoted Jac(A).

Jac(A) is an ideal of A.

Proposition AM.1.9. = € Jac(A) iff (1 — zy) is a unit in A, Yy € A.

Proof. Suppose 1 — xy not a unit.

By 1 — zy € m for m some maximal ideal.

But « € Jac(A) C m, since Jac(A) is the intersection of all maximal ideals
of A.

Hence zy € m, and therefore 1 € m, which is absurd, thus 1 — zy is a unit.

Conversely:
Suppose z ¢ m for some maximal ideal m.

Then m and z generate the unit ideal (1), so that we have v + 2y = 1 for
some u € m and some y € A.

Hence 1 — xy € m, and is therefore not a unit. O

2 Modules

2.1 Modules concepts

Let A be a ring. An A-module is an Abelian group M with a multiplication
map

AxM — M
(fym) — fm

satisfying V f,g € A, m,n € M.



i flm£n)=fm+fn
i (f £g9)m = fm+gm
iii. (fg)m = f(gm)

iv. 1am=m

Let ¢ : M — M an A-linear endomorphism of M.
Al] C EndM is the subring geneerated by A and the action of .

e since ¢ is A-linear, A[] is a commutative ring.

e M is a module over A[i)], so ¢ beomes multiplication by a ring element.

2.2 Cayley-Hamilton theorem, Nakayama lemma, and corol-
laries

Proposition AM.2.4. (Cayley-Hamilton Theorem) Let M a fingen A-module.

Let a an ideal of A, let ¢ an A-module endomorphism of M such that ¢(M) C

aM.
Then ) satisfies

P 4+ a " Lt an1Y +an =0
with a; € a.

Proof. Since M fingen, let {z1,...,z,} be generators of M.

By hypothesis, ¥(M) C aM; so for any generator x;, it’s image ¥ (x;) € aM.
Any element in aM is a linear combination of the generators with coefficients

in the ideal a, thus

b)) = i,
j=1

with ai; € a.
Thus, for a module with n generators, we have n different ¢ (x;) equations:

Y(r1) = @121 + a1 202 + ...+ a1 0T,

N n elements ¥ (x;) € aM which

are linear combinations of the
n generators of M
¢(x7l) = 0p,1T1 + @p2T2 + ... + QpnnTn

Next step: rearrange in order to use matrix algebra.
Observe that each row equals 0, and rearranging the elements at each row
we get



Y(x1) — (1121 +a1222+ ...+ a1 p2,) =0
'l/)(l’g) — (a2,1.’£1 —+ 04272.’52 + ...+ agynéﬂn) = O

Y(xp) — (apiT1 + an2Z2+ ...+ app®y) =0

Then, group the x; terms together; as example, take the row i = 1:

(Y —a11)r — a1 — ... — a1 Ty =0
(Y —ar11)r1 —a1222 — ... —a1p%y =0
— Q2171 + (w — 0,2,2)%2 — . T 2Ty = 0
— 1,171 —A12T2 — ... + (Qb - al,n)xn =0

So, Vi € [n], as a matrix:

Y—a1  —ar2 ... —ain T 0
—a21 w — a2 . —a2.n To 0
—an,1 —Qp2 o Y —apg Tn 0

Denote the previous matrix by ®. Let m denote the vector (x1,zo, ...

(ie. the vector of generators of the A-module M).
Then we can write the previous equality as

d-m=0

‘We know that
adj(P)P = det(P)I

(aka. fundamental identity for the adjugate matriz).
So if at we multiply both sides by adj(®),

adj(®) - &-m =0
(recall from (2)): adj(®)® = det(®) - I )
=det(®) - I'rm =0

Thus,

det(®)-I-m=0:

det(®) 0 0 X 0
0 det(®) 0 @ 0
0 0 .. det(®) T 0



det(®) - x; =0 Vi € [n] (3)

ie. det(®) is an annihilator of the generators x; of M, thus is an annihilator
of the entire module M.

So, we're interested into calculating the det(®).

By the Leibniz formula,

det(A) = > sgn(o) [ aioq)
=1

oESy

thus,
det(q)) = (w—all)(w—agg)...(d)—am) — ...

diagonal of ®, leading term of the determinant

The determinant trick is that the terms that go after the ”leading term of
the determinant”, will belong to a and their combinations with ¢ will not be
bigger than ™. Furthermore, when expanding it

e highest power is 1 - 9™

e coefficient of Y"1 is —(ay + age + ... + ann),

ay
where, since each a;; €a, a1 €a

e the rest of coefficients of 1/* are also elements in a

Therefore we have
det(®) =Y + a1 " F a4+ A a1+ ap

with a; € a.

Now, notice that we had det(®) - x; =0V i € [n].
The matrix ® is the characteristic matriz, xI — A, viewed as an operator.
Then,
det(®) = det(zl — A) = p(x)

where p(z) is the characteristic polynomial.

If a linear transformation turns every basis vector (z;) into zero, then that
transformation is the zero transformation. So in our case, det(®) is the zero
transformation, thus det(®) = 0. Therefore,

P+ a1+ agd P+ a1t Fan =0



Corollary AM.2.5. Let M a fingen A-module, let a an ideal of A such that
aM = M.
Then, 3z =1 (mod a) such that M = 0.

Proof. take 1 = identity. Then in Cayley-Hamilton (AM.2.4):

P+ a1+ agy" P+ a1 an =0
= idpyr + aridpy + agidpy + ...+ ap_1tdy +a, =0
= (14+a1+...+ap)idy =0

apply it to m € M, where since idp;(m) = m (by definition of the identity), we
then have
l14+a1+...+a,) -m=0

with a; € a.

part i. M = 0:
Thus the scalar x = (1 + a3 + ... + a,) annihilates every m € M, ie.
the entire module M.

part ii. z =1 (mod a):
z=1(moda) < (z—-1)€a
then from x = (14 a1+ ... +ap) €a,set b=a1 + ...+ ay,
—_———

b
so that z = (1 +b) € a.

Thenz—1=(14b)—1=b€ca
sox — 1€ a, thus x =1 (mod a) as stated.

O

Proposition AM.2.6. Nakayama’s lemma. Let M a fingen A-module, let a
an ideal of A such that a C Jac(A).
Then aM = M implies M = 0.

Proof. By AM.Z.SF since aM = M, we have M = 0 for some z = 1 (mod Jac(A)).

(notice that at [AM.2.5|is (mod a) but here we use (mod Jac(A)), since we
have a C Jac(A)).

(recall x € Jac(A) iff (1 — zy) is a unit in A4, Vy € A).
By x is a unit in A (thus 2712 = 1).

Hence M =z~1'- - -M =0.
e
—0 (by [AM.2.9)
Thus, if aM = M then M = 0. O

Corollary AM.2.7. Let M a fingen A-module, let N C M a submodule of M,
let a C Jac(A) an ideal.

Then M = aM + N "2 pr — N



Proof. The idea is to apply Nakayama (AM.2.6) to M/N.
Since M fingen = M/N is fingen and an A-module.

Since a C Jac(A) = Nakayama applies to M /N too.
By definition,

CIM:{ZCLi-m,‘ ‘ ai€a7mi€M}

where m,; are the generators of M.
Then, for M/N,

a(%)z{Zai~(mi+N) | aiea,mieM}

observe that a;(m; + N) = a;m; + N, thus

—_———
caM
Hence,
M
a(ﬁ)z{x—i—N | x€eaM} =aM + N (4)
By definition, if we take w, then
M+ N
%:{yﬁ—N | yeaM + N} =aM + N

thus every y € aM + N can be written as
y=z+n, withxeaM, ne N

which comes from .
Thus, y+ N = (x+n)+ N =x + N, since n € N is zero in the quotient.
Hence, every element of w has the form

M+ N
%:{HN | € al}
as in (4).
Thus M M+ N
a
TV aM 4+ N = =T
() = oM + n )
By the Collorary assumption, M = aM + N; quotient it by N:
M aM+ N
- 6
So, from and @:
M aM+N M
a(N) aM + ~ N



thus, a(3) = 4.

By Nakayama’s lemma |AM.2.6} if a(4) = 42 raplfes =0

Note that
M
v = {m+ N |me M}
(the zero element in &L is the coset N =0+ N)
Then, % = 0 means that the quotient has exactly one element, the zero
coset N.
Thus, every coset m+ N equals the zero coset N;som—0€ N = m € N.
Hence every m € M lies in N, ie. Vm € M, m € N.
So M C N. But notice that by the Corollary, we had N C M, therefore
M = N.

Thus, if M = aM + N "2 0 — N, O
Proposition AM.2.8. Let z; Vi € [n] be elements of M whose images %
from a basis of this vector space. Then the x; generate M.

Proof. Let N submodule M, generated by the z;.

Then the composite map N — M — m% maps N onto %, hence

N + aM = M, which by [AM.2.7] implies N = M. U

2.3 Sequences

Definition R.2.9.a. Exact Sequence Let a sequence of homomorphisms
LM N

It is exact at M if im(a) = ker(f).
ie. foa =0 and a maps surjectively to ker(f).

Definition R.2.9.b. Short Exact Sequence (s.e.s.)

0—L-%M2N—0

is exact <= L C M and N = M/L.
Properties:

e (« injective

e [3 surjective

e a: L = kerp

e [ induces M/a(L) — N

Proposition R.2.10. Split exact sequence For the previous s.e.s., 3 equivalent
conditions:

10



i. disomorphism M = L & N, with
a:m+— (m,0)
B:(m,n)—n
ii. 3 a section of 8, that is, a map s : N — M such that 8o s =1idy
iii. 3 a retraction of «, that is, a map r : M — L such that r o a = idy,
If all i, ii, iii are satisfied, it is a split exact sequence.

Proof. Intuitively, when a s.e.s. splits it means that the middle module M is
the direct sum of the other (outer) two modules, ie. M = L& N.

(i to ii, iil) if M =2 L & N such that « : m — (m,0), 8: s(m,n) — n, we can
define the maps
for ii:
s: N—L&N
s(n) — (0,n)

Then B(s(n)) = B(0,n), so Bos=1idy.
for iii:
r: LGN — L
r(m,n) — m
Then r(a(m)) = r(m,0), so roa =idy.
(ii to i) assume s : N — M such that o s =idy,

Want to show M 2 im(a) & im(s).

VYm € M, consider m — s(3(m)), apply 8 to it:

B(m —s(B(m))) = B(m) — (Bos)(B(m)) = f(m) — f(m) =0

Since ker(B) = im(a), 3! € L such that a(l) =m — s(B8(m)).

Thus m = «a(l) + s(B8(m)).

Now, suppose z € im(«) Nim(s), then x = «a(l) = s(n), apply S to it:
Bla(l)) = B(s(n)) = 0=n.

If n = 0, then s(n) = 0, so the intersection is {0}.

Define

b:LON — M
o(l,n) — a(l) + s(n)

This isomorphism satisfies the required conditions.

11



(iii to i) similar to the previous one.

Overview:

OHL%}%%N%NHO
a:l—(1,0)
r:(m,n) —m
aor =1idy
B:(,n)—mn
s:n+— (0,n)

Bos=1idy

3 Noetherian rings (and modules)

Definition . Ascending Chain Condition A partially orddered set ¥ has the
ascending chain condition (a.c.c.) if every chain

51 <52 <

eventually breaks off, that is, s = sx4+1 = ... for some k.

—> Y has the a.c.c. iff every non-empty subset S C ¥ has a maximal
element.

if 25 C ¥ does not have a maximal element, choose s; € S, and for each
Sk, an element siy1 with sx < sg41, thus contradicting the a.c.c.

Definition R.3.2. Noetherian ring Let A a ring; 3 equivalent conditions:

i. the set ¥ of ideals of A has the a.c.c.; in other words, every increasing chain
of ideals

Lchc...Ccl,C...

eventually stops, that is I, = Iy41 = ... for some k.
ii. every nonempty set S of ideals has a maximal element
iii. every ideal I C A is finitely generated
If these conditions hold, then A is Noetherian.

Proof. TODO O

12



Definition R.3.4.D. Noetherian modules An A-module M is Noetherian if
the submoles of M have the a.c.c.,
that is, ay increasing chain

MiCcM,C...CM,C...

of submodules eventually stops.
As in with rings, it is equivalent to say that
i. any nonempty set of modulesof M has a maximal element

ii. every submodule of M is finite

Proposition R.3.4.P. Let 0 — L 5 M LY N —5 0be ases. (split

exact sequence, [R.2.10)).

Then, M is Noetherian <= L and N are Noetherian.

Proof. = trivial, since ascending chains of submodules in L and N correspond
one-to-one to certain chains in M.

<=: suppose M1 C My C ... C M} C ... is an increasing chain of submod-
ules of M.

Then identifying «(L) with L and taking intersection gives a chain

LNMycCcLNMyC...CLNMgC...
of submodules of L, and applying 8 gives a chain
B(My) C B(Mz) C ... B(M) C ...

of submodules of N.
Fach of these two chains eventually stop, by the assumption on L and N, so
that we only need to prove the following lemma which completes the proof. [

Lemma R.3.4.L. for submodules M; C My C M,
LNM; =LnNMs; and B(Ml) = B(Mg) = M = M,

Proof. if m € Ms, then f(m) € (M) = B(Mz), so that there is an n € M,
such that S(m) = B(n).

Then B(m —n) =0, so that

m—mn € MyNker(8) = My Nker(S)

Hence m € My, thus My = Ms. O

Corollary R.3.5. Properties of Noetherian modules.

i. if Vi € [r], M, are Noetherian modules, then @;_, M; is Noetherian.

13



ii. if A a Noetherian ring, then an A-module M is Noetherian iff it is finite
over A.

iii. if A a Noetherian ring, M a finite module, then any submodule N C M is
again finite.

iv. if A a Noetherian ring, and ¥ : A — B a ring homomorphism such that
B is a finite A-module, then B is a Noetherian ring.
Proof. i. a direct sum M; & M, is a particular case of an exact sequence.
Then, Proposition proves this statement when r = 2. The case
r > 2 follows by induction.
ii. if M finite, then 3 surjective homomorphism
A" — M —0
for some r, so that M is a quotient

M = A" /N

for some submodule N C A".

A" is a Noetherian module by i., so M is Noetherian due Proposition

R.34.P
Conversely, M Noetherian implies M finite.

item as in previous implications:

M finite and A Noetherian = M is Noetherian,
= since N C M, then N is Noetherian too

= which implies that N is a finite A-module.

iii. B is Noetherian as an A-module; but ideals of B are submodules of B as
an A-submodule, so that B is a Noetherian ring.
O

Theorem R.3.6. Hilbert basis theorem if A a Noetherian ring, then so is the
polynomial ring A[z].

Proof. Prove that any ideal I C A[z] is fingen.
Define auxiliary sets J, C A by
Jo={ac A|3fcIsth f=ar" +b, 12" ' 4+... by}

ie. J, is the set of leading coefficients of I of degree n.
J, is an ideal, since I is an ideal.
Jn C Jpy1, since for f €T also xf € I.
Therefore J; C Jo C ... C Jx C ... is an increasing chain of ideals.
Using the assumption that A is Noetherian, deduce that J,, = J,1 for some n.

14



For each m <n, J, C A is fingen, ie.

Im = (am,h cee am,rm)

By definition of J,,, for each @, ; with 1 < j <1y,
3 a polynomial f,, ; € I of degree m having the leading coefficient a,, ;.

= {fmjtm<ni<i<r,

the set of elements of 1.
Claim: this finite set ({fm,;}) generates I.
Vf € I, if deg f = m, then its leading coefficient is a € J,,,
hence if m > n, then a € J,,, = J,, so that

a = Z biam with b; € A
and
F= Do biX™T f

has degree < m.
Similarly, if m < n, then a € J,,, so that

a = Zbi&nm with b; € A

and
=Y bifni
has degree < m.

By induction on m, f can be written as a linear combination of finitely many
elements.
Thus, any ideal of Alz] is finitely generated. O

Corollary R.3.6.C. if A a Noetherian ring, and v : A — B a ring homomor-
phism such that B is a fingen extension ring of ¥(A), then B is Noetherian.
In particular, any fingen algebra over Z or over a field K is Noetherian.

Proof. the assumption is that B is a quotient of a polynomial ring,
B> Alxy,...,x,)/1

for some ideal I.
By the Hilbert basis theorem [R-3.6] and induction,
A being Noetherian implies that A[xy,...,z,] is Noetherian.

And by Corollary iv),

Alxy,...,xz,] being Noetherian implies that A[zy,...,x,]/I is Noetherian. O

15



4 Finite ring extensions and Noether normali-
sation

4.1 A-algebras and integral domains

Definition . A-algebra. An A-algebra is a ring B with a ring homomorphism
Yv:A— B.
B is an A-module with multiplication defined by ¥(a)-b (a € A,b € B).
When A C B, B is an extenaion ring of A; denoted ¢(A4) = A’ C B.

Definition R.4.1. Let B be an A-algebra.
i. Bis a finite A-algebra (finite over A) if it is finite as an A-module.
ii. y € B is integral over A if 3 a monic polynomial
fV)=Y"4a, Y™ ' +.. . +ay € A[Y]
such that f(y) =0:

f@)=y"+an 19" t+...4+a=0

The algebra B is integral over A if V b € B is integral.

Proposition R.4.2. Let ¢y : A — B be an A-algebra, and y € B. Three
equivalent conditions:

i. y is integral over A
ii. subring A’[y] C B generated by A’ = )(A) and y is finite over A
iii. 3 an A-subalgebra C' C B such that A’[y] C C and C'is finite over A

Notes: A’ is the image of A in B, ie. A’ = 1)(A).
A'[y] is the smallest subring of B containing both coefficients from A and the
element y.

Proof. .

(i to ii): since y integral over A = by (ii), y satisfies

f@)=y"+an—1y" ' +...+a=0

So any power y* (k > n) can be expressed in terms of {1,y,v%,...,y" "'}

Thus the set {1,y,y?,...,y" '} spans A’[y] as an A-module.

16



(iii to i): since A'ly) c C = yeC

since C' finite over A, C has finite generators {cy,...,c,} such that C =
A-cit+Aco+...+A ¢,
Thus y - ¢; € C,

Yy G = Z QijCy
j=1
with a;; € A.
By the Cayley-Hamilton theorem (AM.2.4)),

V't any" T+ ay+ag =0

Therefore, y is integral (by (ii)).

Proposition R.4.3. Tower Laws.
Let B be an A-algebra.

a. Transitivity of finiteness: if A C B C C are extension rings such that C' is a
finite B-algebra and B a finite A-algebra,
then C' is finite over A.
b. Finiteness of generated algebras: if y1,...,y,, € B are integral over A, then
Aly1, ..., Ym] is finite over A.
In particular, every f € Afyi,...,yn] is integral over A.
¢. Transitivity of integrality: if A C B C C with C integral over B, and B
integral over A,
then C is integral over A.
d. Integral closure as a subring: the subset
A ={y e B|yis integral over A} C B
is a subring of B.
Moreover, if y € B is integral over A then Yy € A, so that 4 = A.
Proof. .
a. if {f1,...,Bn} generate B as an A-module and {v1,...,7,} generate C as

an B-module,
then the set of products {8;7;} generates C' as an A-module.

Since there are n x m generators (ie. finite), C' is finite over A.
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b.

d.

proof by induction:
base case: if y; integral over A — it satisfies a monic polynomial.

Thus Aly;] is generated as an A-module by {1,y1,47,...,y] '}, making it a
finite A-algebra.

inductive step: let Ry, = Aly1,...,yx]. Assume Ry is finite over A.

Since y+1 is integral over A = it is also integral over Rj.

Thus Ri+1 = Ri[yk+1] is finite over Ry.

Applying part (a) (transitivity of finiteness), if Ry is finite over Ry, and Ry,
finite over A, then Ry; is finite over A.

Consequence: since any f € Alyi,...,ym] belongs to a finite A-algebra, f
must be integral over A (since an element is integral iff it is contained in a
finite extension).

let z € C, since x integral over B, it satisfies:

x"+bn_1x"71+...+blx+bo:0, bZEB

Let B"” = Albo,b1,...,bn—1]. Since each b; € B and B is integral over A
= each b; is integral over A.

Since all b; are integral over B’ = B’[z] is a finite B’-algebra.
By part (a) (transitivity of finiteness), B’[z] is a finite A-algebra.
Therefore, x is integral over A.
L. subring: B
let z,y € A. Want to show = + y, zy € A:
by part (b), the algebra Az, y] is finite over A.
Since x + y, xy € Alz,y], they are integral over A.
Thus z + y, zy € A, since A = {b € B | b integral over A}.
II. idempotence R
let z € B be integral over A
we have a chain A C A C Afz].

By definition, A is integral over A, and z is integral over A
thus by part (c), z is integral over A.

Therefore, z € A.

O

Definition 4.4. Integral closure. Given the ring A from (d), ie. A =
{y € B | y integral over A} C B, A is the integral closure of Ain B.

If A= A, then A is integrally closed in B.
An integral domain A is normal if it is integrally closed in its field of frac-

tions, that is if

A=AC K = Frac(A)
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For any integral domain A, the integral closure of A in its field of fractions
K = Frac(A) is also called the normalization of A.

4.2 Noether normalization

Definition 4.6. Algebraically independent. wi,...,y, € A are algebraically
independent over K if the natural surjection K[Y1,...,Y,] — K[y1,...,yn] is
an isomorphism.

= P F(yi,...,yn) = 0 (F nonzero) with coefficients in K.

Recall: a K-algebra A is fingen over K if A = Ky, ...,y,] for some finite
set y1,...,Yn-

Lemma R.4.6.L. Let A= K[yi1,...,yn] and 0 # F' € K[Y3,...,Y,] such that

F(y1,...,yn) = 0.
Then 3 y7,...,y5:_; € A such that y, is integral over

A*=Klyf,...,yi_q] and A= A"[y,]
Proof. (todo) O

Theorem R.4.6. Noether normalization lemma. Let K a field, A a fingen
K-algebra.
Then 3 z1, ..., 2, € A such that

i. z1,...,2zn are algebraically independent over K
ii. A is finite over B = K|z1,..., zm]
That is, a fingen extension K C A can be written as a composite
KCB=K[z,...,2m] CA
where K C B is a polynomial extension, and B C A is finite.

Proof. induction on n.

if n = 0, nothing to prove since A is generated by 0 elements — A = K,
and K is finite.

if n > 0 we have two cases:

® y1,...,yn are algebraically independent over K, then A = Klyi,...,yn],
so that A is a finite module over itself.

® yi,...,Y, are algebraically dependent over K,

30¢f€K[y177yn] Sthf(ylaayn)zo
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Goal: is to change variables so that f becomes monic in one of the variables;
this allows to express one generator as an integral element over the others.

Following from Lemma [R.4.6.T} define new variables y7,...,y;_; € A such
that y,, is integral over

A" =Kyl,...,yn_1] and A = A*[y,]

By inductive hypothesis on A*, 3 z1,..., 2z, € A* algebraically independent
over K and with A* finite over B = K|z1,...,2m].

Since y,, integral over A* — A*[y,] is finite over A*.
Therefore, each step of B C A* C A*[y,] = A is finite, and A is finite over B as
required. O

Example . A= K[X,Y]/(XY —1). Y is algebraic over K[X], but not integral
over K[Y].

This corresponds to the fact that the hyperbola XY = 1 has the line X =0
as an asymptotic line (so that its projection to the X-axis misses a root over
X =0).

Take X' = X — €Y as the element of A instead of X; then the relation
becomes (X' 4+ €Y)Y = 1, monic in Y if € # 0.

This corresponds geometrically to tilting the hyperbola a little before pro-
jecting, so that no longer has a vertical asymtotic line.
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5 Exercises

For the exercises, I follow the assignments listed at [3].
The exercises that start with R are the ones from the book [2], and the ones
starting with AM are the ones from the book [I].

5.1 Exercises Chapter 1

Exercise R.1.1. Ring A and ideals I, J such that IUJ is not an ideal. What’s
the smallest ideal containing I and J7

Proof. Take ring A =7. Set I =27, J = 3Z.
I, J are ideals of A (=Z). And TU J =27 U 3Z.

Observe that for2 € I, 3e€J = 2,3€lUJ,but2+3=5¢1UJ.
Thus I U J is not closed under addition; thus is not an ideal.
Smallest ideal of Z (= A) containing I and J is their sum:

I+J={a+blael,be J}
gced(2,3) =1,80 I +J =Z.
Therefore, smallest ideal containing I and J is the whole ring Z. O

Exercise R.1.5. let ¢ : A — B a ring homomorphism. Prove that 1~ takes
prime ideals of B to prime ideals of A.

In particular if A C B and P a prime ideal of B, then AN P is a prime ideal of
A.

Proof. (Recall: prime ideal is if a,b € R and a-b € P (with R # P), implies
a€ PorbeP).
Let
v I (P)={ac Ap(a) e Py =ANP

The claim is that ¢»~1(P) is prime ideal of A.
i. show that ¢)~1(P) is an ideal of A:
04 € Y 1(P), since ¥(04) = 0p € P (since every ideal contains 0).
If a,b € =1 (P), then v (a),¥(b) € P, so

Pla—b) =9(a) —¢(b) € P

hence a — b € »~1(P).

If a € p~1(P) and r € A, then ¢(ra) = 1 (r)y(a) € P, since P is an ideal.
Thus ra € Yp~1(P).

= 50 ¢~ ! is an ideal of A.

ii. show that ¢»~1(P) is prime:
p~1(P) # A, since if ~1(P) = A, then 14 € ¥~ }(P), so ¢(14) = 15 € P,
which would mean that P = B, a contradiction since P is prime ideal of B.
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Take a,b € A with ab € ¢»~1(P); then ¥(ab) € P, and since 1 is a ring
homomorphism, ¢(ab) = ¥ (a)p(b).

Since P prime ideal, then ¢(a)y(b) € P implies either ¢)(a) € P or ¢(b) € P.
Thus a € »~1(P) or b € = 1(P).

Hence 1~ 1(P) (= AN P) is a prime ideal of A.

Exercise R.1.6. prove or give a counter example:

a.
b.

C.

the intersection of two prime ideals is prime
the ideal P; + P» generated by 2 prime ideals Py, P is prime

if ¢ : A — B ring homomorphism, then ~! takes maximal ideals of B to
maximal ideals of A

. the map ¥~! of Proposition 1.2 takes maximal ideals of A/I to maximal

ideals of A

Proof. a. let I =27 = (2), J = 3Z = (3) be ideals of Z, both prime.

Then INJ =(2)N(3) = (6).
The ideal (6) is not prime in Z, since 2 - 3 € (6), but 2 # (6) and 3 # (6).
Thus the intersection of two primes can not be prime.
P, =(2), P, = (3), both prime.
Then,
Pl+P,=(2)+3)={a+blac P,be P}
— in a principal ideal domain (like Z), the sum of two principal ideals is
again principal, and given by (m) + (n) = (ged(m, n)).
(recall: principal= generated by a single element)
So, Pi + P> = (2) + (3) = (9cd(2,3)) = (1) = Z.

The whole ring is not a prime ideal (by the definition of the prime ideal), so
P, + P, is not a prime ideal.

Henceforth, the sum of two prime ideals is not necessarily prime.
let A=7Z, B=Q, v: A— B.

Since Q is a field, its only maximal ideal is (0).

Then

v7H(0) = (0) CzZ
ie. ¢~ (mp) = (mp) C A

But (0) is not maximal in Z, because Z/(0) = Z is not a field.

Thus the preimages of maximal ideals under arbitrary ring homomorphisms
need not be maximal.
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d. ¢ : A — A/I quotient homomorphism, I C A an ideal.
Let M a maximal ideal of A/I, then % is a field (Proposition 1.3).

By the isomorphism theorems,

wn ., A
Mo T H(M)

Since % is a field, the quotient w*%(M) is a field, so 9 ~1(M) is a maximal

ideal of A.

—> under 1, preimages of maximal ideals are maximal.

Exercise R.1.12.a. if I, J ideals and P prime ideal, prove that
IJCP <= INJCP <= ITorJCP

Proof. assume I C P (for J C P will be the same, symmetric), take x € IJ,

then
n
xr = Z akbk
k=1

with ap € I, b, € J.
Each a € I C P. Since P an ideal,

i apby € P
k=1

thus z € P, hence I.J C P.
SolICPorJCP —1JCP.

Conversely,
assume P prime and IJ C P.
Suppose by contradiction that I € P and J € P.

- since I Z P, Ja € I witha & P
- since J L P, 3be J withb g P

Sincea € I, be J, abe IJ C P, but P is prime, so ab € P implies that a € P
or b € P. This contradicts a, b being taken outside of P.
Thus I € P and J € P are false.

So both directions are proven, hence

IJCP = ICPorJCP
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Exercise R.1.18. Use Zorn’s lemma to prove that any prime ideal P contains
a minimal prime ideal.

Proof. Let P prime ideal of R.

S =1{Q C R| Q aprime ideal AND Q C P}

Goal: show that S has a minimal element, the minimal ideal contained in

P C S, so S is nonempty.
Let C C S be a chain (= totally ordered subset) with respect to inclusion.
Define

Q=)@

QeC

Clearly Q¢ C P, since each Q € C'is Q C P.
Since C' is ordered by inclusion, it is a decreasing chain of prime ideals.
Intersection of a decreasing chain of prime ideals is again a prime ideal:

- if ab € Q¢, then ab € Q VQ € C
- since @ prime, V@ € C either a € Q or b € @

If there were some @1, Q2 € C with a € @1 and b € 2, then by total
ordering, either Q1 C Q2 or Q2 C Q1.

In either case: contradiction, since the smaller one would have to contain
the element that was assumed to be excluded.

Thus VQ € C the same element a,b must lie in all Q. = lies in the
intersection of them, Q¢.

Henceforth, Q¢ is a prime ideal and lies in S, and its a lower bound of C' in
S.

Now, S is nonempty, and every chain in S has a lower bound in S (its
intersection).
Therefore, S has a minimal element P,,;,,.

By construction, P,,;, is a prime ideal P,,;, C P, and by minimality there
are no strictly smaller prime ideals inside P.

So P,,i, is a minimal prime ideal, contained in P. O

Exercise R.1.10.

Proof. O
Exercise R.1.11.

Proof. O
Exercise R.1.4.

Proof. O
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5.2 Exercises Chapter 2

Exercise R.2.9. 0 — L — M SN 0 is a s.e.s. of A-modules. Prove
that if N, L are finite over A, then M is finite over A.

Proof. Denote the generators of L and IV respectively as

(h,....L,} CL
{’I’Lh...,’l’Lp}gN

By s.e.s. definition,
- « is injective (one-to-one), so

Vi, € L, 3x; € M s.th. a(l;) = z;

- [ is surjective (onto), so

Vn; € N, 3 y; € M s.th. ﬂ(yj) =n;

We will show that {x1,..., 2k, ¥1,...,yp} generate M, and thus M is finite:
Let m € M, then 8(m) € N, and

P
B(m) = Zajnj with a; € A
j=1
Take m' € M, with m’ =" a;y;, then
Bm) =D _a;Bly;) = D agng = B(m)
Then, since S(m) = g(m’) = B(m —m’') =0, thus
(m—m') € ker(B)

By ezactness property, since o : L — ker(3), we have ker(8) = im(«).
Therefore, 3 [ € L such that «(l) =m —m/’.

Since {l;}1, generate L,
k
1= bil;

m — m' = a(l) = a(z blll) = Z bz Oé(lz) = Z bl,TZ
\T_/ D

thus

—~—

i

Rearrange,

p k
m:m’—l—Zbixi:Zajyj—i—Zbixi Ym e M
j=1 i—1

So, L provides k generators for the kernel part of M, N provides p ”lifts”
for the quotient part of M; thus M is generated by k + p elements.
Thus M is finitely generated over A. O
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5.3 Exercises Chapter 3

Exercise R.3.2. K a field, A D K a ring which is finite dimensional as a
K-vector space. Prove that A is Noetherian and Artinian.

Proof. dim(A) =n < oo, so every ideal a of A is a K-subspace of A, because if
r€aandce€ K, thenc-x € a.

1. Noetherian:
let I; C I, C ... be an ascending chain of ideals in A.

Since each I; is a subspace, we have
dimg (1) <dimg(l2) <...<n

where at some i = m we have dimg(I;,) = dimg(Iny1); then since
I, C I41, we have I,, = I,,11. So A is Noetherian.

2. Artinian:
Similarly, if I O Iy O ... a descending chain of ideals in A.
then
n > dimg(l1) > dimg(lz) > ... >0

where at some ¢ = m we have dimg (I,) = dimg(l,41); then since
I, C I,,41, we have I,, = I;,11. So A is Artinian.

O

Exercise R.3.5. Let 0 — L —— M i> N — 0 an exact sequence. Let
My, My C M be submodules of M.
Prove if the following holds or not:

B(My) = B(Mz) and o' (My) = o' (M) = My = M,

Proof. Counterexample showing that it does not hold:
Let Kafield M=K®&K ,L=K, N=K.
Set, for I € L, (my,ma) € M,

a:l—(1,0)
B (mi,ma) — ma
So we have
0— K- K> 2 K50
Then,

My ={(z,z) |z € K}  ~ (diagonal line)
My, ={(0,z) |z € K} ~ (y-axis)

(Geometric interpretation: My, Ms are the diagonal line and y-axis respec-
tively; and «, B capture information about the wvertical components (x-axis,
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y-axis respectively), but not about the diagonal way a submodule is embedded
in M).
Then,
B(M)={z|ze K} =K
B(My) = {o |z € K} = K
thus, B(M1) = B(M2).
For My, (1,0) € M iff I =0, thus a~1(M;) = {0},
for My, (1,0) € M iff | =0, thus o~ (Ms) = {0},

thus a1 (M;) = a1 (My).
So we've seen that

B(My) = B(Ma)
Oéil(Ml) = ail(Mz)

while having M7 # M. O

Exercise R.3.3. Let A aring, I1,..., I} ideals such that each A/I; is a Noethe-
rian ring. Prove that @ A/I; is a Noetherian A-module, and deduce that if
() I; = 0 then A is also Noetherian.

Proof. i. by Corollary (i), if M; Noetherian modules, then € M; is
Noetherian. = thus € A/I; is Noetherian.

ii. Take the canonical homomorphism

n
¢: A— @A/
i=1
by ¢(a) =(a+ I,a+ Is,...,a+ I,).
¢ is injective: ker(¢) = {a € Ala € I,Vi}.
Since we'’re given NI; = 0, then ker(¢) = NI;, and ¢ is injective.
Thus, ¢ is the isomorphism A 2 im(¢), where im(¢) is an A-submodule of
P A/IL.
We know that any submodule of a Noetherian module is Noetherian, thus,
since

e A/I; is Noetherian by hypothesis of the exercise
o« A= im()
e im(¢) is an A-submodule of P A/I;

then, A is Noetherian.
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Exercise R.3.4. Prove that if A is a Noetherian ring and M a finite A-module,

then there exists an exact sequence A7 —— AP Lo — 0. That is, M has a
presentation as an A-module in terms of finitely many generators and relations.

Proof. since M fingen = generators {my,...,ma} C M span M.
Let 8 be a surjective A-linear map, which forms a free A-module of rank p
onto M:

B: AP — M
P

(a1,...,ap) »—>Zaimi
i=1

Let K = ker(B). By the 1st Isomorphism Theorem,
M= AP/K

Since A is a Noetherian ring, then every free A-module of finite rank (eg.
AP) is a Noetherian module.

Every submodule of a Noetherian module is fingen.

= since K C A?, = K (= ker(B)) is fingen.

Since K fingen, let {k1,...,l,} be generators of K.

Define ¢ : A7 — K.

Compose it with the inclusion map i : K — AP,

a=iot: A1 — AP

So we have the whole sequence A9 —=5 AP Lo — 0, where
e [ is surjective
o im(a) = ker(p)

so that it is a exact sequence, thus, M has a finite presentation. O
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