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Abstract

Notes taken while studying Commutative Algebra, mostly from Atiyah
& MacDonald book [1] and Reid’s book [2]. For the exercises, I follow the
assignments listed at [3].

Usually while reading books and papers I take handwritten notes in a
notebook, this document contains some of them re-written to LaTeX.

The proofs may slightly differ from the ones from the books, since I
try to extend them for a deeper understanding.
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1 Ideals

1.1 Definitions

Definition . ideal I ⊂ R (R ring) such that 0 ∈ I and ∀x ∈ I, r ∈ R, xr, rx ∈ I.
ie. I absorbs products in R.

Definition . prime ideal if a, b ∈ R with ab ∈ P and P ̸= R (P a prime ideal),
implies ainP or b ∈ P .

Definition . principal ideal generated by a single element, (a).
(a): principal ideal, the set of all multiples xa with x ∈ R.

Definition . maximal ideal m ⊂ A (A ring) with m ̸= A and there is no ideal
I strictly between m and A. ie. if m maximal and m ⊆ I ⊆ A, either m = I or
I = A.

Definition . unit x ∈ A such that xy = 1 for some y ∈ A. ie. element which
divides 1.

Definition . zerodivisor x ∈ A such that ∃0 ̸= y ∈ A such that xy = 0 ∈ A.
ie. x divides 0..

If a ring does not have zerodivisors is an integral domain.

Definition . prime spectrum - Spec(A) set of prime ideals of A. ie.

Spec(A) = {P | P ⊂ A is a prime ideal}
Definition . integral domain Ring in which the product of any two nonzero
elements is nonzero.

ie. no zerodivisors.
ie. ∀ 0 ̸= a, 0 ̸= b ∈ A, ab ̸= 0 ∈ A.
Every field is an integral domain, not the converse.

Definition . principal ideal domain - PID integral domain in which every ideal
is principal. ie. ie. ∀I ⊂ R, ∃ a ∈ I such that I = (a) = {ra | r ∈ R}.
Definition . nilpotent a ∈ A such that an = 0 for some n > 0.

Definition . nilrad A set of all nilpotent elements of A; is an ideal of A.
if nilradA = 0 =⇒ A has no nonzero nilpotents.

nilradA =
⋂

P∈Spec(A)

P

Definition . idempotent e ∈ A such that e2 = e.

Definition . radical of an ideal

radI = {f ∈ A|fn ∈ I for somen}

radI is an ideal.
nilradA = rad0
radI =

⋂
P∈Spec(A)

P⊃I
P
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Definition . local ring A local ring has a unique maximal ideal.
Notation: local ring A, its maximal ideal m, residue field K = A/m:

A ⊃ m or (A,m) or (A,m,K)

1.2 Z and K[X], two Principal Ideal Domains

Lemma . Z is a PID.

Proof. Let I a nonzero ideal of Z.
Since I ̸= {0}, there is at least one nonzero integer in I. Choose the smallest

element of I, namely d.
Observe that (d) ⊆ I, since d ∈ I. Then, every multiple nd ∈ I, since I is

an ideal.
Take a ∈ I. By the Euclidean division algorithm in Z, a = qd + r, with

q, r ∈ Z and 0 ≤ r ≤ d.
Then r = a − qd ∈ I, but d was chosen to be the smallest positive element

of I, so the only possibility is r = 0.
Hence, a = qd, so a ∈ (d), giving I ⊆ (d).
Since we had (d) ⊆ I and now we got I ⊆ (d), we have I = (d), so every

ideal of Z is principal. Thus Z is a Principal Ideal Domain(PID).

Lemma . K[X] is a PID.

Proof. This proof follows very similarly to the previous proof.

Let K be a field, K[X] a polynomial ring.
Take {0} ≠ I ⊆ K[X].
Since I ̸= {0}, there is at least one non-zero polynomial in I.
Let p(X) ∈ I be of minimal degree among nonzero elements of I.
Observe that (p(X)) ⊆ I, because p(X) ∈ I and I is an ideal.
Let f(X) ∈ I. By Euclidean division algorithm in K[X], ∃q, r ∈ K[X] such

that f(X) = q(X) · p(X) + r(X) with eithr r(X) = 0 or deg(r) < deg(p).
Since f, p ∈ I, then r(X) = f(X)− q(X) · p(X) ∈ I
If r(X) ̸= 0, then deg(r) < deg(p), which contradicts the minimality of

deg(p) in I.
Therefore, r(X) = 0, thus f(X) = q(X) · p(X), hence f(X) ∈ (p(X)).

Henceforth, I ⊆ (p(X)).
Then, since (p(X)) ⊆ I and I ⊆ (p(X)), we have that I = (p(X)).
So every ideal of K[X] is principal; thus K[X] is a PID.

1.3 Zorn’s lemma and Jacobson radicals

Let Σ be a partially orddered set. Given subset S ⊂ Σ, an upper bound of S is
an element u ∈ Σ such that s < u∀s ∈ S.
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A maximal element of Σ, is m ∈ Σ such that m < s does not hold for any
s ∈ Σ.

A subset S ⊂ Σ is totally ordered if for every pair s1, s2 ∈ S, either s1 ≤ s2
or s2 ≤ s1.

Lemma R.1.7. Zorn’s lemma. Suppose Σ a nonempty partially ordered set
(ie. we are given a relation x ≤ y on Σ), and that any totally ordered subset
S ⊂ Σ has an upper bound in Σ.

Then Σ has a maximal element.

Theorem AM.1.3. Every ring A ̸= 0 has at least one maximal ideal.

Proof. By Zorn’s lemma R.1.7.

Corollary AM.1.4. if I ̸= (1) an ideal of A, ∃ a maximal ideal of A containing
I.

Corollary AM.1.5. Every non-unit of A is contained in a maximal ideal.

Definition . Jacobson radical The Jacobson radical of a ring A is the intersec-
tion of all the maximal ideals of A.

Denoted Jac(A).
Jac(A) is an ideal of A.

Proposition AM.1.9. x ∈ Jac(A) iff (1− xy) is a unit in A, ∀y ∈ A.

Proof. Suppose 1− xy not a unit.
By AM.1.5, 1− xy ∈ m for m some maximal ideal.
But x ∈ Jac(A) ⊆ m, since Jac(A) is the intersection of all maximal ideals

of A.
Hence xy ∈ m, and therefore 1 ∈ m, which is absurd, thus 1− xy is a unit.
Conversely:

Suppose x ̸∈ m for some maximal ideal m.
Then m and x generate the unit ideal (1), so that we have u + xy = 1 for

some u ∈ m and some y ∈ A.
Hence 1− xy ∈ m, and is therefore not a unit.

2 Modules

2.1 Modules concepts

Let A be a ring. An A-module is an Abelian group M with a multiplication
map

A×M −→M

(f,m) 7−→ fm

satisfying ∀ f, g ∈ A, m, n ∈M .
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i. f(m± n) = fm± fn

ii. (f ± g)m = fm± gm

iii. (fg)m = f(gm)

iv. 1Am = m

Let ψ :M −→M an A-linear endomorphism of M .
A[ψ] ⊂ EndM is the subring geneerated by A and the action of ψ.

• since ψ is A-linear, A[ψ] is a commutative ring.

• M is a module over A[ψ], so ψ beomes multiplication by a ring element.

2.2 Cayley-Hamilton theorem, Nakayama lemma, and corol-
laries

Proposition AM.2.4. (Cayley-Hamilton Theorem) LetM a fingen A-module.
Let a an ideal of A, let ψ an A-module endomorphism of M such that ψ(M) ⊆
aM .

Then ψ satisfies

ψn + a1ψ
n−1 + . . .+ an−1ψ + an = 0

with ai ∈ a.

Proof. Since M fingen, let {x1, . . . , xn} be generators of M .
By hypothesis, ψ(M) ⊆ aM ; so for any generator xi, it’s image ψ(xi) ∈ aM .

Any element in aM is a linear combination of the generators with coefficients
in the ideal a, thus

ψ(xi) =

n∑
j=1

aijxj

with aij ∈ a.
Thus, for a module with n generators, we have n different ψ(xi) equations:

ψ(x1) = a1,1x1 + a1,2x2 + . . .+ a1,nxn

ψ(x2) = a2,1x1 + a2,2x2 + . . .+ a2,nxn

. . .

ψ(xn) = an,1x1 + an,2x2 + . . .+ an,nxn


n elements ψ(xi) ∈ aM which

are linear combinations of the

n generators of M

Next step: rearrange in order to use matrix algebra.
Observe that each row equals 0, and rearranging the elements at each row

we get
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ψ(x1)− (a1,1x1 + a1,2x2 + . . .+ a1,nxn) = 0

ψ(x2)− (a2,1x1 + a2,2x2 + . . .+ a2,nxn) = 0

. . .

ψ(xn)− (an,1x1 + an,2x2 + . . .+ an,nxn) = 0


Then, group the xi terms together; as example, take the row i = 1:

(ψ − a1,1)x1 − a1,2x2 − . . .− a1,nxn = 0

(ψ − a1,1)x1 − a1,2x2 − . . .− a1,nxn = 0

− a2,1x1 + (ψ − a2,2)x2 − . . .− a2,nxn = 0

. . .

− a1,1x1 − a1,2x2 − . . .+ (ψ − a1,n)xn = 0


So, ∀i ∈ [n], as a matrix:

ψ − a1,1 −a1,2 . . . −a1,n
−a2,1 ψ − a2,2 . . . −a2,n

...
−an,1 −an,2 . . . ψ − an,n



x1
x2
...
xn

 =


0
0
...
0


Denote the previous matrix by Φ. Let m denote the vector (x1, x2, . . . , xn)

T

(ie. the vector of generators of the A-module M).
Then we can write the previous equality as

Φ ·m = 0 (1)

We know that
adj(Φ)Φ = det(Φ)I (2)

(aka. fundamental identity for the adjugate matrix ).
So if at (1) we multiply both sides by adj(Φ),

adj(Φ) · Φ·m = 0

(recall from (2): adj(Φ)Φ = det(Φ) · I )

= det(Φ) · I·m = 0

Thus,

det(Φ) · I·m = 0 :
det(Φ) 0 . . . 0

0 det(Φ) . . . 0
...
0 0 . . . det(Φ)

 ·


x1
x2
...
xn

 =


0
0
...
0


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=⇒
det(Φ) · xi = 0 ∀i ∈ [n] (3)

ie. det(Φ) is an annihilator of the generators xi of M , thus is an annihilator
of the entire module M .

So, we’re interested into calculating the det(Φ).
By the Leibniz formula,

det(A) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

ai,σ(i)

thus,
det(Φ) = (ψ − a11)(ψ − a22) . . . (ψ − ann)︸ ︷︷ ︸

diagonal of Φ, leading term of the determinant

− . . .

The determinant trick is that the terms that go after the ”leading term of
the determinant”, will belong to a and their combinations with ψ will not be
bigger than ψn. Furthermore, when expanding it

• highest power is 1 · ψn

• coefficient of ψn−1 is −(a11 + a22 + . . .+ ann︸ ︷︷ ︸
a1

),

where, since each aii ∈ a, a1 ∈ a

• the rest of coefficients of ψk are also elements in a

Therefore we have

det(Φ) = ψn + a1ψ
n−1 + a2ψ

n−2 + . . .+ an−1ψ + an

with ai ∈ a.

Now, notice that we had det(Φ) · xi = 0 ∀ i ∈ [n].
The matrix Φ is the characteristic matrix, xI − A, viewed as an operator.

Then,
det(Φ) = det(xI −A) = p(x)

where p(x) is the characteristic polynomial.
If a linear transformation turns every basis vector (xi) into zero, then that

transformation is the zero transformation. So in our case, det(Φ) is the zero
transformation, thus det(Φ) = 0. Therefore,

ψn + a1ψ
n−1 + a2ψ

n−2 + . . .+ an−1ψ + an = 0
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Corollary AM.2.5. Let M a fingen A-module, let a an ideal of A such that
aM =M .

Then, ∃ x ≡ 1 (mod a) such that xM = 0.

Proof. take ψ = identity. Then in Cayley-Hamilton (AM.2.4):

ψn + a1ψ
n−1 + a2ψ

n−2 + . . .+ an−1ψ + an = 0

=⇒ idM + a1idM + a2idM + . . .+ an−1idM + an = 0

=⇒ (1 + a1 + . . .+ an)idM = 0

apply it to m ∈M , where since idM (m) = m (by definition of the identity), we
then have

(1 + a1 + . . .+ an) ·m = 0

with ai ∈ a.

part i. xM = 0:
Thus the scalar x = (1 + a1 + . . . + an) annihilates every m ∈ M , ie.
the entire module M .

part ii. x ≡ 1 (mod a):
x ≡ 1 (mod a) ⇐⇒ (x− 1) ∈ a
then from x = (1 + a1 + . . .+ an︸ ︷︷ ︸

b

) ∈ a, set b = a1 + . . .+ an,

so that x = (1 + b) ∈ a.

Then x− 1 = (1 + b)− 1 = b ∈ a
so x− 1 ∈ a, thus x ≡ 1 (mod a) as stated.

Proposition AM.2.6. Nakayama’s lemma. Let M a fingen A-module, let a
an ideal of A such that a ⊆ Jac(A).

Then aM =M implies M = 0.

Proof. By AM.2.5: since aM =M , we have xM = 0 for some x ≡ 1 (mod Jac(A)).
(notice that at AM.2.5 is (mod a) but here we use (mod Jac(A)), since we
have a ⊆ Jac(A)).

(recall AM.1.9: x ∈ Jac(A) iff (1− xy) is a unit in A, ∀y ∈ A).
By AM.1.9, x is a unit in A (thus x−1 · x = 1).

Hence M = x−1 · x ·M︸ ︷︷ ︸
=0 (by AM.2.5)

= 0.

Thus, if aM =M then M = 0.

Corollary AM.2.7. Let M a fingen A-module, let N ⊆M a submodule ofM ,
let a ⊆ Jac(A) an ideal.

Then M = aM +N
implies
=⇒ M = N .
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Proof. The idea is to apply Nakayama (AM.2.6) to M/N .
Since M fingen =⇒ M/N is fingen and an A-module.
Since a ⊆ Jac(A) =⇒ Nakayama applies to M/N too.
By definition,

aM =
{∑

ai ·mi | ai ∈ a,mi ∈M
}

where mi are the generators of M .
Then, for M/N ,

a(
M

N
) =

{∑
ai · (mi +N) | ai ∈ a,mi ∈M

}
observe that ai(mi +N) = aimi +N , thus∑

i

ai · (mi +N) = (
∑
i

ai ·mi)︸ ︷︷ ︸
∈aM

+N ∈ aM +N

Hence,

a(
M

N
) = {x+N | x ∈ aM} = aM +N (4)

By definition, if we take aM+N
N , then

aM +N

N
= {y +N | y ∈ aM +N} = aM +N

thus every y ∈ aM +N can be written as

y = x+ n, with x ∈ aM, n ∈ N

which comes from (4).
Thus, y +N = (x+ n) +N = x+N , since n ∈ N is zero in the quotient.
Hence, every element of aM+N

N has the form

aM +N

N
= {x+N | x ∈ aM}

as in (4).
Thus

a(
M

N
) = aM +N =

aM +N

N
(5)

By the Collorary assumption, M = aM +N ; quotient it by N :

M

N
=

aM +N

N
(6)

So, from (5) and (6):

a(
M

N
) = aM +N =

aM +N

N
=
M

N
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thus, a(MN ) = M
N .

By Nakayama’s lemma AM.2.6, if a(MN ) = M
N

implies
=⇒ M

N = 0
Note that

M

N
= {m+N | m ∈M}

(the zero element in M
N is the coset N = 0 +N)

Then, M
N = 0 means that the quotient has exactly one element, the zero

coset N .
Thus, every coset m+N equals the zero coset N , so m−0 ∈ N =⇒ m ∈ N .
Hence every m ∈M lies in N , ie. ∀m ∈M, m ∈ N .
So M ⊆ N . But notice that by the Corollary, we had N ⊆ M , therefore

M = N .

Thus, if M = aM +N
implies
=⇒ M = N .

Proposition AM.2.8. Let xi ∀i ∈ [n] be elements of M whose images M
mM

from a basis of this vector space. Then the xi generate M .

Proof. Let N submodule M , generated by the xi.
Then the composite map N −→ M −→ M

mM maps N onto M
mM , hence

N + aM =M , which by AM.2.7 implies N =M .

2.3 Sequences

Definition R.2.9.a. Exact Sequence Let a sequence of homomorphisms

L
α−→M

β−→ N

It is exact at M if im(α) = ker(β).
ie. β ◦ α = 0 and α maps surjectively to ker(β).

Definition R.2.9.b. Short Exact Sequence (s.e.s.)

0 −→ L
α−→M

β−→ N −→ 0

is exact ⇐⇒ L ⊂M and N =M/L.
Properties:

• α injective

• β surjective

• α : L =⇒ kerβ

• β induces M/α(L) −→ N

Proposition R.2.10. Split exact sequence For the previous s.e.s., 3 equivalent
conditions:
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i. ∃ isomorphism M ∼= L⊕N , with

α : m 7−→ (m, 0)

β : (m,n) 7−→ n

ii. ∃ a section of β, that is, a map s : N −→M such that β ◦ s = idN

iii. ∃ a retraction of α, that is, a map r :M −→ L such that r ◦ α = idL

If all i, ii, iii are satisfied, it is a split exact sequence.

Proof. Intuitively, when a s.e.s. splits it means that the middle module M is
the direct sum of the other (outer) two modules, ie. M = L⊕N .

(i to ii, iii) if M ∼= L ⊕ N such that α : m 7−→ (m, 0), β : s(m,n) 7−→ n, we can
define the maps

for ii:

s : N −→ L⊕N

s(n) 7−→ (0, n)

Then β(s(n)) = β(0, n), so β ◦ s = idN .

for iii:

r : L⊕N −→ L

r(m,n) 7−→ m

Then r(α(m)) = r(m, 0), so r ◦ α = idL.

(ii to i) assume s : N −→M such that β ◦ s = idM

Want to show M ∼= im(α)⊕ im(s).

∀m ∈M , consider m− s(β(m)), apply β to it:
β(m− s(β(m))) = β(m)− (β ◦ s)(β(m)) = β(m)− β(m) = 0

Since ker(β) = im(α), ∃!l ∈ L such that α(l) = m− s(β(m)).

Thus m = α(l) + s(β(m)).

Now, suppose x ∈ im(α) ∩ im(s), then x = α(l) = s(n), apply β to it:
β(α(l)) = β(s(n)) =⇒ 0 = n.

If n = 0, then s(n) = 0, so the intersection is {0}.

Define

ϕ : L⊕N −→M

ϕ(l, n) 7−→ α(l) + s(n)

This isomorphism satisfies the required conditions.
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(iii to i) similar to the previous one.

Overview:

0 −→ L
α−→
←−
r

M
∼=L⊕N

β−→
←−
s
N −→ 0

α : l 7−→ (l, 0)

r : (m,n) 7−→ m

α ◦ r = idL

β : (l, n) 7−→ n

s : n 7−→ (0, n)

β ◦ s = idN

3 Noetherian rings (and modules)

Definition . Ascending Chain Condition A partially orddered set Σ has the
ascending chain condition (a.c.c.) if every chain

s1 ≤ s2 ≤ . . . ≤ sk ≤ . . .

eventually breaks off, that is, sk = sk+1 = . . . for some k.

=⇒ Σ has the a.c.c. iff every non-empty subset S ⊂ Σ has a maximal
element.

if ̸= S ⊂ Σ does not have a maximal element, choose s1 ∈ S, and for each
sk, an element sk+1 with sk < sk+1, thus contradicting the a.c.c.

Definition R.3.2. Noetherian ring Let A a ring; 3 equivalent conditions:

i. the set Σ of ideals of A has the a.c.c.; in other words, every increasing chain
of ideals

I1 ⊂ I2 ⊂ . . . ⊂ Ik ⊂ . . .

eventually stops, that is Ik = Ik+1 = . . . for some k.

ii. every nonempty set S of ideals has a maximal element

iii. every ideal I ⊂ A is finitely generated

If these conditions hold, then A is Noetherian.

Proof. TODO
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Definition R.3.4.D. Noetherian modules An A-module M is Noetherian if
the submoles of M have the a.c.c.,
that is, ay increasing chain

M1 ⊂M2 ⊂ . . . ⊂Mk ⊂ . . .

of submodules eventually stops.

As in with rings, it is equivalent to say that

i. any nonempty set of modulesof M has a maximal element

ii. every submodule of M is finite

Proposition R.3.4.P. Let 0 −→ L
α−−→ M

β−−→ N −→ 0 be a s.e.s. (split
exact sequence, R.2.10).

Then, M is Noetherian ⇐⇒ L and N are Noetherian.

Proof. =⇒: trivial, since ascending chains of submodules in L andN correspond
one-to-one to certain chains in M .

⇐=: suppose M1 ⊂M2 ⊂ . . . ⊂Mk ⊂ . . . is an increasing chain of submod-
ules of M .

Then identifying α(L) with L and taking intersection gives a chain

L ∩M1 ⊂ L ∩M2 ⊂ . . . ⊂ L ∩Mk ⊂ . . .

of submodules of L, and applying β gives a chain

β(M1) ⊂ β(M2) ⊂ . . . β(Mk) ⊂ . . .

of submodules of N .
Each of these two chains eventually stop, by the assumption on L and N , so

that we only need to prove the following lemma which completes the proof.

Lemma R.3.4.L. for submodules M1 ⊂M2 ⊂M ,

L ∩M1 = L ∩M2 and β(M1) = β(M2) =⇒ M1 =M2

Proof. if m ∈ M2, then β(m) ∈ β(M1) = β(M2), so that there is an n ∈ M1

such that β(m) = β(n).
Then β(m− n) = 0, so that

m− n ∈M2 ∩ ker(β) =M1 ∩ ker(β)

Hence m ∈M1, thus M1 =M2.

Corollary R.3.5. Properties of Noetherian modules.

i. if ∀i ∈ [r], Mi are Noetherian modules, then
⊕r

i=1Mi is Noetherian.
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ii. if A a Noetherian ring, then an A-module M is Noetherian iff it is finite
over A.

iii. if A a Noetherian ring, M a finite module, then any submodule N ⊂ M is
again finite.

iv. if A a Noetherian ring, and ψ : A −→ B a ring homomorphism such that
B is a finite A-module, then B is a Noetherian ring.

Proof. i. a direct sum M1 ⊕M2 is a particular case of an exact sequence.

Then, Proposition R.3.4.P proves this statement when r = 2. The case
r > 2 follows by induction.

ii. if M finite, then ∃ surjective homomorphism

Ar −→M −→ 0

for some r, so that M is a quotient

M ∼= Ar/N

for some submodule N ⊂ Ar.

Ar is a Noetherian module by i., so M is Noetherian due Proposition
R.3.4.P.

Conversely, M Noetherian implies M finite.

item as in previous implications:
M finite and A Noetherian =⇒ M is Noetherian,
=⇒ since N ⊆M , then N is Noetherian too
=⇒ which implies that N is a finite A-module.

iii. B is Noetherian as an A-module; but ideals of B are submodules of B as
an A-submodule, so that B is a Noetherian ring.

Theorem R.3.6. Hilbert basis theorem if A a Noetherian ring, then so is the
polynomial ring A[x].

Proof. Prove that any ideal I ⊂ A[x] is fingen.
Define auxiliary sets Jn ⊂ A by

Jn = {a ∈ A | ∃f ∈ I s.th. f = axn + bn−1x
n−1 + . . . b0}

ie. Jn is the set of leading coefficients of I of degree n.
Jn is an ideal, since I is an ideal.
Jn ⊂ Jn+1, since for f ∈ I also xf ∈ I.
Therefore J1 ⊂ J2 ⊂ . . . ⊂ Jk ⊂ . . . is an increasing chain of ideals.

Using the assumption that A is Noetherian, deduce that Jn = Jn+1 for some n.

14



For each m ≤ n, Jm ⊂ A is fingen, ie.

Jm = (am,1, . . . am,rm)

By definition of Jm, for each am,j with 1 ≤ j ≤ rm,
∃ a polynomial fm,j ∈ I of degree m having the leading coefficient am,j .

=⇒ {fm,j}m<n;1≤j≤rm
the set of elements of I.

Claim: this finite set ({fm,j}) generates I.
∀f ∈ I, if deg f = m, then its leading coefficient is a ∈ Jm,
hence if m ≥ n, then a ∈ Jm = Jn, so that

a =
∑

bian,i with bi ∈ A

and
f −

∑
biX

m−n · fn,i

has degree < m.
Similarly, if m ≤ n, then a ∈ Jm, so that

a =
∑

biam,i with bi ∈ A

and
f −

∑
bifn,i

has degree < m.

By induction on m, f can be written as a linear combination of finitely many
elements.

Thus, any ideal of A[x] is finitely generated.

Corollary R.3.6.C. if A a Noetherian ring, and ψ : A −→ B a ring homomor-
phism such that B is a fingen extension ring of ψ(A), then B is Noetherian.

In particular, any fingen algebra over Z or over a field K is Noetherian.

Proof. the assumption is that B is a quotient of a polynomial ring,

B ∼= A[x1, . . . , xn]/I

for some ideal I.
By the Hilbert basis theorem R.3.6 and induction,

A being Noetherian implies that A[x1, . . . , xn] is Noetherian.
And by Corollary R.3.5(iv),

A[x1, . . . , xn] being Noetherian implies that A[x1, . . . , xn]/I is Noetherian.
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4 Finite ring extensions and Noether normali-
sation

4.1 A-algebras and integral domains

Definition . A-algebra. An A-algebra is a ring B with a ring homomorphism
ψ : A −→ B.

B is an A-module with multiplication defined by ψ(a) · b (a ∈ A, b ∈ B).
When A ⊂ B, B is an extenaion ring of A; denoted ψ(A) = A′ ⊂ B.

Definition R.4.1. Let B be an A-algebra.

i. B is a finite A-algebra (finite over A) if it is finite as an A-module.

ii. y ∈ B is integral over A if ∃ a monic polynomial

f(Y ) = Y n + an−1Y
n−1 + . . .+ a0 ∈ A′[Y ]

such that f(y) = 0 :

f(y) = yn + an−1y
n−1 + . . .+ a0 = 0

The algebra B is integral over A if ∀ b ∈ B is integral.

Proposition R.4.2. Let ψ : A −→ B be an A-algebra, and y ∈ B. Three
equivalent conditions:

i. y is integral over A

ii. subring A′[y] ⊂ B generated by A′ = ψ(A) and y is finite over A

iii. ∃ an A-subalgebra C ⊂ B such that A′[y] ⊂ C and C is finite over A

Notes: A′ is the image of A in B, ie. A′ = ψ(A).
A′[y] is the smallest subring of B containing both coefficients from A and the
element y.

Proof. .

(i to ii): since y integral over A =⇒ by R.4.1 (ii), y satisfies

f(y) = yn + an−1y
n−1 + . . .+ a0 = 0

So any power yk (k ≥ n) can be expressed in terms of {1, y, y2, . . . , yn−1}.
Thus the set {1, y, y2, . . . , yn−1} spans A′[y] as an A-module.
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(iii to i): since A′[y] ⊂ C =⇒ y ∈ C
since C finite over A, C has finite generators {c1, . . . , cn} such that C =
A · c1 +A · c2 + . . .+A · cn
Thus y · ci ∈ C,

y · ci =
n∑
j=1

aijcj

with aij ∈ A.

By the Cayley-Hamilton theorem (AM.2.4),

yn + an−1y
n−1 + . . .+ a1y + a0 = 0

Therefore, y is integral (by R.4.1 (ii)).

Proposition R.4.3. Tower Laws.
Let B be an A-algebra.

a. Transitivity of finiteness: if A ⊂ B ⊂ C are extension rings such that C is a
finite B-algebra and B a finite A-algebra,
then C is finite over A.

b. Finiteness of generated algebras: if y1, . . . , ym ∈ B are integral over A, then
A[y1, . . . , ym] is finite over A.
In particular, every f ∈ A[y1, . . . , ym] is integral over A.

c. Transitivity of integrality: if A ⊂ B ⊂ C with C integral over B, and B
integral over A,
then C is integral over A.

d. Integral closure as a subring: the subset

Ã = {y ∈ B | y is integral over A} ⊂ B

is a subring of B.

Moreover, if y ∈ B is integral over Ã then y ∈ Ã, so that ˜̃A = Ã.

Proof. .

a. if {β1, . . . , βn} generate B as an A-module and {γ1, . . . , γn} generate C as
an B-module,
then the set of products {βiγj} generates C as an A-module.

Since there are n×m generators (ie. finite), C is finite over A.
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b. proof by induction:

base case: if y1 integral over A =⇒ it satisfies a monic polynomial.

Thus A[y1] is generated as an A-module by {1, y1, y21 , . . . , yn−1
1 }, making it a

finite A-algebra.

inductive step: let Rk = A[y1, . . . , yk]. Assume Rk is finite over A.

Since yk+1 is integral over A =⇒ it is also integral over Rk.

Thus Rk+1 = Rk[yk+1] is finite over Rk.

Applying part (a) (transitivity of finiteness), if Rk+1 is finite over Rk and Rk
finite over A, then Rk+1 is finite over A.

Consequence: since any f ∈ A[y1, . . . , ym] belongs to a finite A-algebra, f
must be integral over A (since an element is integral iff it is contained in a
finite extension).

c. let x ∈ C, since x integral over B, it satisfies:

xn + bn−1x
n−1 + . . .+ b1x+ b0 = 0, bi ∈ B

Let B′′ = A[b0, b1, . . . , bn−1]. Since each bi ∈ B and B is integral over A
=⇒ each bi is integral over A.

Since all bi are integral over B′ =⇒ B′[x] is a finite B′-algebra.

By part (a) (transitivity of finiteness), B′[x] is a finite A-algebra.

Therefore, x is integral over A.

d. I. subring:
let x, y ∈ Ã. Want to show x+ y, xy ∈ Ã:

by part (b), the algebra A[x, y] is finite over A.

Since x+ y, xy ∈ A[x, y], they are integral over A.

Thus x+ y, xy ∈ Ã, since Ã = {b ∈ B | b integral over A}.
II. idempotence

let z ∈ B be integral over Ã

we have a chain A ⊆ Ã ⊆ Ã[x].

By definition, Ã is integral over A, and z is integral over Ã
thus by part (c), z is integral over A.

Therefore, z ∈ Ã.

Definition 4.4. Integral closure. Given the ring Ã from R.4.3.(d), ie. Ã =
{y ∈ B | y integral over A} ⊂ B, Ã is the integral closure of A in B.

If A = Ã, then A is integrally closed in B.
An integral domain A is normal if it is integrally closed in its field of frac-

tions, that is if
A = Ã ⊂ K = Frac(A)
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For any integral domain A, the integral closure of A in its field of fractions
K = Frac(A) is also called the normalization of A.

4.2 Noether normalization

Definition 4.6. Algebraically independent. y1, . . . , yn ∈ A are algebraically
independent over K if the natural surjection K[Y1, . . . , Yn] −→ K[y1, . . . , yn] is
an isomorphism.

=⇒ ∄ F (y1, . . . , yn) = 0 (F nonzero) with coefficients in K.

Recall: a K-algebra A is fingen over K if A = K[y1, . . . , yn] for some finite
set y1, . . . , yn.

Lemma R.4.6.L. Let A = K[y1, . . . , yn] and 0 ̸= F ∈ K[Y1, . . . , Yn] such that
F (y1, . . . , yn) = 0.

Then ∃ y∗1 , . . . , y∗n−1 ∈ A such that yn is integral over

A∗ = K[y∗1 , . . . , y
∗
n−1] and A = A∗[yn]

Proof. (todo)

Theorem R.4.6. Noether normalization lemma. Let K a field, A a fingen
K-algebra.

Then ∃ z1, . . . , zm ∈ A such that

i. z1, . . . , zm are algebraically independent over K

ii. A is finite over B = K[z1, . . . , zm]

That is, a fingen extension K ⊂ A can be written as a composite

K ⊂ B = K[z1, . . . , zm] ⊂ A

where K ⊂ B is a polynomial extension, and B ⊂ A is finite.

Proof. induction on n.
if n = 0, nothing to prove since A is generated by 0 elements =⇒ A = K,

and K is finite.
if n > 0 we have two cases:

• y1, . . . , yn are algebraically independent over K, then A ∼= K[y1, . . . , yn],
so that A is a finite module over itself.

• y1, . . . , yn are algebraically dependent over K,

∃0 ̸= f ∈ K[y1, . . . , yn] s.th f(y1, . . . , yn) = 0
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Goal: is to change variables so that f becomes monic in one of the variables;
this allows to express one generator as an integral element over the others.

Following from Lemma R.4.6.L, define new variables y∗1 , . . . , y
∗
n−1 ∈ A such

that yn is integral over

A∗ = K[y∗1 , . . . , y
∗
n−1] and A = A∗[yn]

By inductive hypothesis on A∗, ∃ z1, . . . , zm ∈ A∗ algebraically independent
over K and with A∗ finite over B = K[z1, . . . , zm].

Since yn integral over A∗ =⇒ A∗[yn] is finite over A∗.
Therefore, each step of B ⊂ A∗ ⊂ A∗[yn] = A is finite, and A is finite over B as
required.

Example . A = K[X,Y ]/(XY −1). Y is algebraic over K[X], but not integral
over K[Y ].

This corresponds to the fact that the hyperbola XY = 1 has the line X = 0
as an asymptotic line (so that its projection to the X-axis misses a root over
X = 0).

Take X ′ = X − ϵY as the element of A instead of X; then the relation
becomes (X ′ + ϵY )Y = 1, monic in Y if ϵ ̸= 0.

This corresponds geometrically to tilting the hyperbola a little before pro-
jecting, so that no longer has a vertical asymtotic line.
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5 Exercises

For the exercises, I follow the assignments listed at [3].
The exercises that start with R are the ones from the book [2], and the ones

starting with AM are the ones from the book [1].

5.1 Exercises Chapter 1

Exercise R.1.1. Ring A and ideals I, J such that I ∪J is not an ideal. What’s
the smallest ideal containing I and J?

Proof. Take ring A = Z. Set I = 2Z, J = 3Z.
I, J are ideals of A (= Z). And I ∪ J = 2Z ∪ 3Z.

Observe that for 2 ∈ I, 3 ∈ J =⇒ 2, 3 ∈ I ∪ J , but 2 + 3 = 5 ̸∈ I ∪ J .
Thus I ∪ J is not closed under addition; thus is not an ideal.
Smallest ideal of Z (= A) containing I and J is their sum:

I + J = {a+ b|a ∈ I, b ∈ J}

gcd(2, 3) = 1, so I + J = Z.
Therefore, smallest ideal containing I and J is the whole ring Z.

Exercise R.1.5. let ψ : A −→ B a ring homomorphism. Prove that ψ−1 takes
prime ideals of B to prime ideals of A.
In particular if A ⊂ B and P a prime ideal of B, then A∩ P is a prime ideal of
A.

Proof. (Recall: prime ideal is if a, b ∈ R and a · b ∈ P (with R ̸= P ), implies
a ∈ P or b ∈ P ).

Let
ψ−1(P ) = {a ∈ A|ψ(a) ∈ P} = A ∩ P

The claim is that ψ−1(P ) is prime ideal of A.

i. show that ψ−1(P ) is an ideal of A:
0A ∈ ψ−1(P ), since ψ(0A) = 0B ∈ P (since every ideal contains 0).

If a, b ∈ ψ−1(P ), then ψ(a), ψ(b) ∈ P , so

ψ(a− b) = ψ(a)− ψ(b) ∈ P

hence a− b ∈ ψ−1(P ).

If a ∈ ψ−1(P ) and r ∈ A, then ψ(ra) = ψ(r)ψ(a) ∈ P , since P is an ideal.
Thus ra ∈ ψ−1(P ).

=⇒ so ψ−1 is an ideal of A.

ii. show that ψ−1(P ) is prime:
ψ−1(P ) ̸= A, since if ψ−1(P ) = A, then 1A ∈ ψ−1(P ), so ψ(1A) = 1B ∈ P ,
which would mean that P = B, a contradiction since P is prime ideal of B.
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Take a, b ∈ A with ab ∈ ψ−1(P ); then ψ(ab) ∈ P , and since ψ is a ring
homomorphism, ψ(ab) = ψ(a)ψ(b).

Since P prime ideal, then ψ(a)ψ(b) ∈ P implies either ψ(a) ∈ P or ψ(b) ∈ P .
Thus a ∈ ψ−1(P ) or b ∈ ψ−1(P ).

Hence ψ−1(P ) (= A ∩ P ) is a prime ideal of A.

Exercise R.1.6. prove or give a counter example:

a. the intersection of two prime ideals is prime

b. the ideal P1 + P2 generated by 2 prime ideals P1, P2 is prime

c. if ψ : A −→ B ring homomorphism, then ψ−1 takes maximal ideals of B to
maximal ideals of A

d. the map ψ−1 of Proposition 1.2 takes maximal ideals of A/I to maximal
ideals of A

Proof. a. let I = 2Z = (2), J = 3Z = (3) be ideals of Z, both prime.

Then I ∩ J = (2) ∩ (3) = (6).

The ideal (6) is not prime in Z, since 2 · 3 ∈ (6), but 2 ̸= (6) and 3 ̸= (6).

Thus the intersection of two primes can not be prime.

b. P1 = (2), P2 = (3), both prime.

Then,
P1 + P2 = (2) + (3) = {a+ b|a ∈ P1, b ∈ P2}

−→ in a principal ideal domain (like Z), the sum of two principal ideals is
again principal, and given by (m) + (n) = (gcd(m,n)).

(recall: principal= generated by a single element)

So, P1 + P2 = (2) + (3) = (gcd(2, 3)) = (1) = Z.
The whole ring is not a prime ideal (by the definition of the prime ideal), so
P1 + P2 is not a prime ideal.

Henceforth, the sum of two prime ideals is not necessarily prime.

c. let A = Z, B = Q, ψ : A −→ B.

Since Q is a field, its only maximal ideal is (0).

Then

ψ−1((0)) = (0) ⊂ Z
ie. ψ−1(mB) = (mB) ⊂ A

But (0) is not maximal in Z, because Z/(0) ∼= Z is not a field.

Thus the preimages of maximal ideals under arbitrary ring homomorphisms
need not be maximal.
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d. ψ : A −→ A/I quotient homomorphism, I ⊆ A an ideal.

Let M a maximal ideal of A/I, then (A/I)
M is a field (Proposition 1.3).

By the isomorphism theorems,

(A/I)

M
∼=

A

ψ−1(M)

Since (A/I)
M is a field, the quotient A

ψ−1(M) is a field, so ψ−1(M) is a maximal

ideal of A.

=⇒ under ψ, preimages of maximal ideals are maximal.

Exercise R.1.12.a. if I, J ideals and P prime ideal, prove that

IJ ⊂ P ⇐⇒ I ∩ J ⊂ P ⇐⇒ I or J ⊂ P

Proof. assume I ⊆ P (for J ⊆ P will be the same, symmetric), take x ∈ IJ ,
then

x =

n∑
k=1

akbk

with ak ∈ I, bk ∈ J .
Each ak ∈ I ⊆ P . Since P an ideal,

n∑
k=1

akbk ∈ P

thus x ∈ P , hence IJ ⊆ P .
So I ⊆ P or J ⊆ P =⇒ IJ ⊆ P .

Conversely,
assume P prime and IJ ⊆ P .

Suppose by contradiction that I ̸⊆ P and J ̸⊆ P .

- since I ̸⊆ P, ∃a ∈ I with a ̸∈ P

- since J ̸⊆ P, ∃b ∈ J with b ̸∈ P

Since a ∈ I, b ∈ J, ab ∈ IJ ⊆ P , but P is prime, so ab ∈ P implies that a ∈ P
or b ∈ P . This contradicts a, b being taken outside of P .

Thus I ̸⊆ P and J ̸⊆ P are false.

So both directions are proven, hence

IJ ⊆ P =⇒ I ⊆ P or J ⊆ P
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Exercise R.1.18. Use Zorn’s lemma to prove that any prime ideal P contains
a minimal prime ideal.

Proof. Let P prime ideal of R.

S = {Q ⊆ R | Q a prime ideal AND Q ⊆ P}

Goal: show that S has a minimal element, the minimal ideal contained in
P .

P ⊂ S, so S is nonempty.
Let C ⊆ S be a chain (= totally ordered subset) with respect to inclusion.
Define

QC =
⋂
Q∈C

Q

Clearly QC ⊆ P , since each Q ∈ C is Q ⊆ P .
Since C is ordered by inclusion, it is a decreasing chain of prime ideals.
Intersection of a decreasing chain of prime ideals is again a prime ideal:

- if ab ∈ QC , then ab ∈ Q ∀Q ∈ C

- since Q prime, ∀Q ∈ C either a ∈ Q or b ∈ Q

If there were some Q1, Q2 ∈ C with a ∈ Q1 and b ̸∈ Q2, then by total
ordering, either Q1 ⊆ Q2 or Q2 ⊆ Q1.

In either case: contradiction, since the smaller one would have to contain
the element that was assumed to be excluded.

Thus ∀Q ∈ C the same element a, b must lie in all Q. =⇒ lies in the
intersection of them, QC .

Henceforth, QC is a prime ideal and lies in S, and its a lower bound of C in
S.

Now, S is nonempty, and every chain in S has a lower bound in S (its
intersection).
Therefore, S has a minimal element Pmin.

By construction, Pmin is a prime ideal Pmin ⊆ P , and by minimality there
are no strictly smaller prime ideals inside P .

So Pmin is a minimal prime ideal, contained in P .

Exercise R.1.10.

Proof.

Exercise R.1.11.

Proof.

Exercise R.1.4.

Proof.
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5.2 Exercises Chapter 2

Exercise R.2.9. 0 −→ L
α−→ M

β−→ N −→ 0 is a s.e.s. of A-modules. Prove
that if N,L are finite over A, then M is finite over A.

Proof. Denote the generators of L and N respectively as

{l1, . . . , lk} ⊆ L

{n1, . . . , np} ⊆ N

By s.e.s. definition,

- α is injective (one-to-one), so

∀li ∈ L, ∃ xi ∈M s.th. α(li) = xi

- β is surjective (onto), so

∀nj ∈ N, ∃ yj ∈M s.th. β(yj) = nj

We will show that {x1, . . . , xk, y1, . . . , yp} generate M , and thus M is finite:
Let m ∈M , then β(m) ∈ N , and

β(m) =

p∑
j=1

ajnj with aj ∈ A

Take m′ ∈M , with m′ =
∑
ajyj , then

β(m′) =
∑

ajβ(yj) =
∑

ajnj = β(m)

Then, since β(m) = β(m′) =⇒ β(m−m′) = 0, thus

(m−m′) ∈ ker(β)

By exactness property, since α : L −→ ker(β), we have ker(β) = im(α).
Therefore, ∃ l ∈ L such that α(l) = m−m′.
Since {li}k generate L,

l =

k∑
bili

thus
m−m′ = α(l) = α(

∑
bili︸ ︷︷ ︸
l

) =
∑

bi α(li)︸︷︷︸
xi

=
∑

bixi

Rearrange,

m = m′ +
∑

bixi =

p∑
j=1

ajyj +

k∑
i=1

bixi ∀m ∈M

So, L provides k generators for the kernel part of M , N provides p ”lifts”
for the quotient part of M ; thus M is generated by k + p elements.
Thus M is finitely generated over A.
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5.3 Exercises Chapter 3

Exercise R.3.2. K a field, A ⊃ K a ring which is finite dimensional as a
K-vector space. Prove that A is Noetherian and Artinian.

Proof. dim(A) = n <∞, so every ideal a of A is a K-subspace of A, because if
x ∈ a and c ∈ K, then c · x ∈ a.

1. Noetherian:
let I1 ⊆ I2 ⊆ . . . be an ascending chain of ideals in A.

Since each Ii is a subspace, we have

dimK(I1) ≤ dimK(I2) ≤ . . . ≤ n

where at some i = m we have dimK(Im) = dimK(Im+1); then since
Im ⊆ Im+1, we have Im = Im+1. So A is Noetherian.

2. Artinian:
Similarly, if I1 ⊇ I2 ⊇ . . . a descending chain of ideals in A.

then
n ≥ dimK(I1) ≥ dimK(I2) ≥ . . . ≥ 0

where at some i = m we have dimK(Im) = dimK(Im+1); then since
Im ⊆ Im+1, we have Im = Im+1. So A is Artinian.

Exercise R.3.5. Let 0 −→ L
α−→ M

β−→ N −→ 0 an exact sequence. Let
M1,M2 ⊆M be submodules of M .

Prove if the following holds or not:

β(M1) = β(M2) and α
−1(M1) = α−1(M2) =⇒ M1 =M2

Proof. Counterexample showing that it does not hold:
Let K a field, M = K ⊕K ,L = K, N = K.
Set, for l ∈ L, (m1,m2) ∈M ,

α : l 7−→ (l, 0)

β : (m1,m2) 7−→ m2

So we have

0 −→ K
α−→ K2 β−→ K −→ 0

Then,

M1 = {(x, x) | x ∈ K} ∼ (diagonal line)

M2 = {(0, x) | x ∈ K} ∼ (y-axis)

(Geometric interpretation: M1, M2 are the diagonal line and y-axis respec-
tively; and α, β capture information about the vertical components (x-axis,
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y-axis respectively), but not about the diagonal way a submodule is embedded
in M).

Then,

β(M1) = {x | x ∈ K} = K

β(M2) = {x | x ∈ K} = K

thus, β(M1) = β(M2).
For M1, (l, 0) ∈M iff l = 0, thus α−1(M1) = {0},

for M2, (l, 0) ∈M iff l = 0, thus α−1(M2) = {0},
thus α−1(M1) = α−1(M2).

So we’ve seen that

β(M1) = β(M2)

α−1(M1) = α−1(M2)

while having M1 ̸=M2.

Exercise R.3.3. Let A a ring, I1, . . . , Ik ideals such that each A/Ii is a Noethe-
rian ring. Prove that

⊕
A/Ii is a Noetherian A-module, and deduce that if⋂

Ii = 0 then A is also Noetherian.

Proof. i. by Corollary R.3.5 (i), if Mi Noetherian modules, then
⊕
Mi is

Noetherian. =⇒ thus
⊕
A/Ii is Noetherian.

ii. Take the canonical homomorphism

ϕ : A −→
n⊕
i=1

A/Ii

by ϕ(a) = (a+ I1, a+ I2, . . . , a+ In).

ϕ is injective: ker(ϕ) = {a ∈ A|a ∈ Ii∀i}.
Since we’re given ∩Ii = 0, then ker(ϕ) = ∩Ii, and ϕ is injective.

Thus, ϕ is the isomorphism A ∼= im(ϕ), where im(ϕ) is an A-submodule of⊕
A/Ii.

We know that any submodule of a Noetherian module is Noetherian, thus,
since

• A/Ii is Noetherian by hypothesis of the exercise

• A ∼= im(ϕ)

• im(ϕ) is an A-submodule of
⊕
A/Ii

then, A is Noetherian.
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Exercise R.3.4. Prove that if A is a Noetherian ring and M a finite A-module,

then there exists an exact sequence Aq
α−→ Ap

β−→ M −→ 0. That is, M has a
presentation as an A-module in terms of finitely many generators and relations.

Proof. since M fingen =⇒ generators {m1, . . . ,m2} ⊆M span M .
Let β be a surjective A-linear map, which forms a free A-module of rank p

onto M :

β : Ap −→M

(a1, . . . , ap) 7−→
p∑
i=1

aimi

Let K = ker(β). By the 1st Isomorphism Theorem,

M ∼= Ap/K

Since A is a Noetherian ring, then every free A-module of finite rank (eg.
Ap) is a Noetherian module.

Every submodule of a Noetherian module is fingen.
=⇒ since K ⊆ Ap, =⇒ K (= ker(β)) is fingen.
Since K fingen, let {k1, . . . , lq} be generators of K.
Define ψ : Aq −→ K.
Compose it with the inclusion map i : K −→ Ap,

α = i ◦ ψ : Aq −→ Ap

So we have the whole sequence Aq
α−→ Ap

β−→M −→ 0, where

• β is surjective

• im(α) = ker(β)

so that it is a exact sequence, thus, M has a finite presentation.
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