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Abstract

Notes taken while studying Galois Theory, mostly from Ian Stewart’s
book ”Galois Theory” [IJ.

Usually while reading books and papers I take handwritten notes in a
notebook, this document contains some of them re-written to LaTeX.

The notes are not complete, don’t include all the steps neither all the
proofs.
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1 Galois Theory notes

1.1 Chapters 4-12

(Definitions, theorems, lemmas, corollaries and examples enumeration follows
from Tan Stewart’s book [I]).

Definition 4.10. A simple extension is L : K such that L = K(«) for some
a€ L.

Example 4.11. Beware, L = Q(i, —i,v/5, —5) = Q(4,v5) = Q(i + /5).

Definition 5.5. Let L : K, suppose a € L is algebraic over K. Then, the
minimal polynomial of o over K is the unique monic polynomial m over K,
m(t) € K[t], of smallest degree such that m(a) = 0.

eg.: i € C is algebraic over R. The minimal polynomial of 7 over R is m(t) =
t? + 1, so that m(i) = 0.

Lemma 5.9. Every polynomial a € K[t] is congruent modulo m to a unique
polynomial of degree < dm.

Proof. Divide a/m with remainder, a = gm + r, with ¢,r € K[t] and dr < dm.
Then, a — r = gm, so a = r (mod m).

It remains to prove uniqueness.

Suppose 3 r = s (mod m), with dr, s < dm. Then, r — s is divisible by m,
but has smaller degree than m.

Therefore, r — s = 0, so r = s, proving uniqueness. O

Theorem 5.10. V0 # f € 2l 3£-1iff m is irreducible in K[t].

<m>"
Then <Kn£f]> is a field.

Theorem 5.12. Let K(«) : K simple algebraic extension, let m minimal poly-
nomial of o over K.

K(a) : K is isomorphic to
Kt]
<m>
Corollary 5.13. Let K(«): K and K(f) : K be simple algebraic extensions.

If «, 8 have same minimal polynomial m over K, then the two extensions are
isomorphic, and the isomorphism of the larger fields map « to 5.

Proof. By both extensions are isomorphic to K] O

<m>"

K[t]
<m>"

— K(a) can be chosen to map ¢ to a.

The isomorphism

Lemma 5.14. Let K(«) : K be a simple algebraic extension, let m be the
minimal polynomial of a over K, let dm = n.

Then {1,a,0?,...,a" 1} is a basis for K(a) over K. In particular, [K () :
K] =n.

Definition 6.2. The degree [L : K] of a field extension L : K is the dimension
of L considered as a vector space over K.

Equivalently, the dimension of L as a vector space over K is the number of
terms in the expression for a general element of L using coeflicients from K.



Example 6.3. 1. C elements are 2-dimensional over R (p + ¢i € C, with
p,q € R), because a basis is {1,¢}, hence [C: R] = 2.

2. [Q(i,v/5) : Q] = 4, since the elements {1,v/5,4,iv/5} form a basis for
Q(i,v/5) over Q.
Theorem 6.4. (Short Tower Law) If K,L,M C C, and K C L C M, then
[M:K]|=[M:L]-[L:K].

Proof. Let (z;)icr be a basis for L over K, let (y;);jes be a basis for M over L.
Viel,jeJ, wehave x; € Lyu; € M.
Want to show that (z;y;)ier,jes is a basis for M over K.

i. prove linear independence:
Suppose that

Zkijxiyj =0 (kU c K)

ij

Z(Z kijai)y; =0 (ki; € K)

rearrange

J
——

€L

Since ), kijz; € L, and the y; € M are linearly independent over L, then

Repeating the argument inside L — k;; =0 Vie I, j € J.
So the elements x;; are linearly independent over K.

ii. prove that x;y; span M over K:
Any x € M can be written
=Y Ay
J

for \; € L, because y; spans M over L. Similarly,
Vied, A= Ay

for )‘ij e K.
Putting the pieces together,

T = Z AijTiY;
j

as required.

Corollary 6.6. (Tower Law)
If Ko C K; C...C K, are subfields of C, then

[Kn : Ko] = [Kn : Kn—l] . [Kn—l : Kn_g] Ceeat [Kl : Ko]



Proof. From O
Theorem 6.7. if K(a): K

e transcendental = [K(«) : K] = inf

e algebraic = [K(«): K] =0m
(where m is the minimal polynomial of « over K).

Definition 8.1. L : K, a K-automorphism of L is an automorphism « of L
such that a(k) =k Vk € K.
ie. a fizes k.

Theorem 8.2, 8.3. The set of all K-automorphisms of L forms a group, I'(L :
K), the Galois group of L : K.

Definition 8.12. (Radical Extension) L : K is radical if L = K(aq,...,am)
where for each j = 1,...,m, 3 n; such that oz;” € K(a,...,a;-1) (j>1)

Lemma 8.18. Let ¢ € L. The minimal polynomial of ¢ over K splits into
linear factors over L.

Exercise E.8.7. TODO

Definition 9.1. For K C C, and f € K][t], f splits over K if it can be expressed
as a product of linear factors

FO) =k-(t—a1) ... (t—an)

where k, o; € K.
= (Thm 9.3) if f splits over X, X is the splitting field.
If K CY C X and f splits over ¥/, then ¥/ = X.

Theorem 9.6. TODO

Definition 9.8. L : K is normal if every irreducible polynomial f € K[t] that
has at least one zero in L, splits in L.

Theorem 9.9. TODO

Theorem 9.10. An irreducible polynomial f € K[t] (K C C) is separable over
K if it has simple zeros in C, or equivalently, simple zeros in its splitting field.

Lemma 9.13. f € K[t] with splitting field ¥. f has multiple zeros (in X or C)
iff f and Df have a common factor of degree > 1 in X[t].
More details at Rolle’s theorem ([2.7)) section.

Theorem 10.5. |I'(K : Ky)| = [K : Ko, where K| is the fixed field of T'(K :
Ky).



Definition 11.1. K C L, K C L. A K-monomorphism of M into L is a field
monomorphism
¢: M — L

such that ¢(k) =k Vk € K.

Theorem 11.3. L : K normal, K C M C L. Let 7 any K-monomorphism
T: M — L.

Then, 3 a K-automorphism ¢ of L such that o| =7.
M

Proof. L : K normal = by Thm L splitting field for some poly f € K[t].
Hence, L is splitting field over M for f and over 7(M) for 7(f).

Since 7| is the identity, 7(f) = f.
K

‘We have
M——1L

JT
T(M) — [
with o yet to be formed.

=T.

By Theorem %I, 3 isomorphism o : L — L such that o

Therefore, o is an automorphism of L, and since o

K K
K-automorphism of L. O

Proposition 11.4. L : K finite normal, o, [ are zeros in L of the irreducible
polynomial p € K[t].
Then, 3 a K-automorphism o of L such that o(a) = S.

Proof. By Corollary [5.13 3 isomorphism 7 : K(a) — K(8) such that 7| is

K

the identity, and 7(«) = 3.
By Theorem [I1.3] 7 extends to a K-automorphism o of L. O

Lemma 11.8. K CLC N C M, L: K finite, N normal closure of L : K.
Let 7 any K-monomorphism 7: L — M.
Then 7(L) C N.

Proof. a € L, m minimal polynomial of « over K.
= m(a) =0, s0 7(m(a)) =0
(since T is a K-automorphism, ie. maps the zeros of m(t)).

Since 7 is a K-monomorphism, 7(m(«)) = m(r(a)) =0
= 7(«) is a zero of m.



Therefore, 7(«) lies in N, since N : K is normal.
Henceforth, 7(L) C N. O

Theorem 11.9. The following are equivalent:
1. L: K normal

2. d finite normal extension N of K containing L,
such that every K-monomorphism 7 : L — N is a K-automorphism of
L.

3. for every finite extension M of K containing L,
every K-monomorphism 7 : L — M is a K-automorphism of L.

Theorem 11.10. [L: N] =1, N normal closure of L : K. Then,
3 n K-monomorphisms L. — N.
(the ones proven by Lemma, [11.8).

Corollary 11.11. |I'(L: K)|=[L: K] (if L : K is normal).
ie. there are precisely [L : K| distinct K-automorphisms of L.

Theorem 11.12. T'(L : K) = G. If L : K normal, then K is the fixed field of
G.

Proof. let Ky be the fixed field of G. Let [L : K] = n.
By[11.11} |G| =[L : K] = n.
By E[L : Kol = n (K fixed field).
Since K C K, we must have K = K.
= thus K is the fixed field of G. O

Theorem 11.14. if L any field, G any finite group of automorphisms of L, and
K its fixed field,
then L : K is finite and normal, with Galois group G.

Theorem 12.2. (Fundamental Theorem of Galois Theory) if L : K finite and
normal inside C, with I'(L : K) = G, then:

1. (L : K)| =L : K] (by Corollary [L1.11)

2. the maps * and { are mutual inverses, and setup an order-reversing one-
to-one correspondence between F and G.

3. if M an intermediate field, then

Gl
| M|

[L:M]=|M*| [M:K]=

4. for M an intermediate field, M : K normal iff

I'(M: K)<T(L: K)
—— T
=M= =



5. for M intermediate, if M : K normal, then

I'M:K)= ]5*
ie. oL K
I'M:K)= P((L :' M))
Proof. TODO O

1.2 Chapter 13 - Full example

(Chapter 13 is basically a full example. More examples can be found at section

31)

1.3 Detour: Isomorphism Theorems

Theorem i.1. (First Isomorphism Theorem)

i

4)H

If ¢ : G — H a group homomorphism, then ker(y) < G.

Let ¢ : G — G/ker(y) be the canonical homomorphism.

Then 3 unique isomorphism 71 : G/ker(v)) — ¥ (G) such

that ¢ = n¢. ) n
< ie. G/ker(y) = ¢(G).

G/ ker(v)
Proof. (proof from Thomas W. Judson book ”Abstract Algebra” [])

Let K = ker(¢). Since
n:G/K — ¢(G)

let
n:gK — ¥(g)
ie. 7(gK) = 1(g).
i. show that 7 is a well defined map:

if we have two representatives of the same coset, ie. g1 K = goK, we want
to show that 7(g1 K) = n(g2K), so that 7 is a well-defined map.

By the coset properties for some k € K, g1 = g2k, so

n(g1K) = P(g1) = ¥(g2k) = n(g2kK) = 1(g2K)

Thus, 1 does not depend on the choice of coset representatives, and the
map 7 : G/ker(¢¥) — ¥(G) is uniquely defined since 1) = n¢.



ii. show that 7 is a homomorphism:

Observe:

(91K g2 K) = n(g192K) = 1(g192) = ¥(91)¢(92) = (91 K)n(g2K)

= so 7 is a homomorphism.

iii. show that n is an isomorphism:
Since each element of H = ¢)(G) has at least a preimage, then 7 is surjective
(onto P(Q)).
Show that it is also injective (onet-to-one):
Suppose 2 different preimatges lead to the same image in ) (G), ie. n(g1 K) =
n(g2K)
then,
¥(g1) = ¥(92)

which implies 1(g; ' g2) = e, ie. g7 ‘g2 € ker(z), hence
91 ‘2K =K
G K =gK
so 7 is injective.
Since 7 is injective and surjective = 7 is a bijective homomorphism,
ie. n is an isomorphism. O
Theorem i.2. (Second Isomorphism Theorem) Let H C G, N <G. Then
i. HNC G
ii. HNN<H

H ~ HN
AN — N

iii.

Proof. (proof from Thomas W. Judson book ”Abstract Algebra” [F])

i. show HN C G:
Note that HN = {hn: h € H,n € N}. Let hyny, hang € HN.

Since N normal — h;lnlhg € N, so

(h1n1>(h2n2) = hlhg(hglnlhg) ‘Mo € HN

[Recall: since N <G, gN = Ng Vg € G = gn = n'g for some n’ € N .|

To see that (hn)~! € HN:
since (hn)™' = h=tn=! = A= (hn='h™1), thus (hn)~' € HN.

Thus HN C G.



In fact,
HN = U hN
heH

(TODO: diagram)

ii. show that H NN < H:
Let he Hyne HNN (recal:. HNN C H).
Then h~'nh € H <— since h=,n,h € H.
Since N <G, h™'nh € N.
Therefore, h"'nh€e HNN = HNN<H

H ~ HN.
iii. show that AN = N

Define a map

HN
N

by ¢ :h — hN

¢ :H—

¢ is surjective (onto), since any coset hnN = hN is the image of h € H, ie.
¢(h)

¢ is a homomorphism, since
é(hh') = hh/N = hNIW N = ¢(h)p(h')

By the First Isomorphism Theorem

HN _ H
N ker(¢)

and since

ker(¢p)={h € H:he N}
then ker(¢p)=HNN

so then,

HN H H
N )= ker(9)  HNN
thus

Theorem i.3. (Third Isomorphism Theorem)
Let HC K and K <G, H<«G.
Then % < % and
G/H G
K/H K



Proof. (proof from Dummit and Foote book “Abstract Algebra” [6])

Fasy to see that % < %
Define

G
K
by ¢ :gH — gK
To show that i is well defined:
suppose g1 H = g2 H, then g; = g2h for some h € H.
Since H C K = h € K, hence 1 K = g2 K,
ie. ¥(g1H) = ¥(g2H), which shows that v is well defined.
Since g € G may be chosen arbitrarily in G, v is a surjective homomorphism.
Finally,

w:%—>

ker(y) = (gH € 7 | (gH) = 1K)
={9H€%|9K=1K}

G
:{gHeﬁlgeK}

K
H
By the First Isomorphism Theorem ,
Y
G G
H K
10} n
G/H _ G/H
ker(¢) — K/H
So, by
G/H G
"K/HT K

since 7 is bijective (we know it by the First Isomorphism Theorem), 7 it is the
isomorphism:

G/ G
K/H K

1.4 Chapter 14

Definition 14.1. a group G is soluble if it has a finite series of subgroups

1=GoCG1 C...CG, =C(

10



such that
i. Gi<9Giyq fori=0,...,n—1
ii. g% is Abelian for for i =0,...,n— 1
(Note: G; < Gi41 <1 Giy2 does not imply G; <1 Giy2)
Theorem 14.4. H C G, N <G, then
1. if G soluble = H soluble
2. if G soluble = G/N soluble
3. if N and G/N soluble = G soluble

Proof. 1. Since G soluble, by definition: 3 1= Go<G1<4...4G,. = G with

Abelian quotients % .

Let H; = G; N H, then H has a series 1 = Hy<H;<...<H, = H, next
we show that the quotients % are Abelian (so that H is soluble):

Hiyn  GipiNH (% GiyiNH (

*g*) Gi(Giy1 N H) c Giy1

H; G,NH Giﬂ(GiHﬂH) G; - Gy

(*): tosee why, H; =G, NH =G; N H; =G; N Hi = G; N (Gi+1 n H)
(**): by the 2nd Isomorphism Theorem (f.3).

[TODO: diagram of subgroups]

Notice that Ggl is Abelian, thus the left-hand-side of the congruence is

also Abelian. Therefore, Hg;l is Abelian, thus H is soluble.

2. For G/N to be soluble, (by definition) it would have the series & =

. . G X
GO% qu% <1...<1GT% = %, and any quotient being ~=-*

The series clearly exists, so now we show that the quotients are Abelian,
so that G/N is soluble:

Git1 ~ Git1/Gi

GiiN  Gi1(GiN)

G;N G;N Git1N(GiN)  (Git1 N (GiN))/G;

—
R

(*): by the 2nd Isomorphism Theorem (i.3).

The last quotient is a quotient of the Abelian group G;41/G;, so it is
Abelian.

GH,lN
G;N

is also Abelian; so % is soluble.

Hence,

11



3. By the definition of N and G/N being soluble,

Nsoluble= 1= Ny<Ny<...<N,. =N

N—@qiq <1G——
N N N TN

-

G/Nsoluble = 1 =

=1

both with Abelian quotients.

Consider the series of G given by combining the two previous series:

1=Ng<N1<...<N, =N=Gp<1G14...<G, =G

the quotients are either

N; .
e —HL  Abelian

N;
° Ggfl, isomorphic to Gg}]/\,N, which is Abelian.
Therefore, the quotients are always Abelian; hence G is soluble. O

Definition 14.5. G is simple if it’s nontrivial and it’s only normal subgroups
are 1 and G.

Theorem 14.6. A soluble group is simple iff it is cyclic of prime order.
Theorem 14.7. if n > 5, then A,, is simple.
Corollary 14.8. S,, is not soluble if n > 5.

Proof. if S,, were soluble, then A,, would be soluble by Theorem [I4.1](i), and
simple by Theorem hence of prime order by Theorem [14.6]

But observe: |A,| = 1(n!) is not prime if n > 5.
Thus S,, is not soluble if n > 5. O

Lemma 14.14. if A finite and abelian group with p||A| (p prime), then A has
an element of order p.

Proof.  i. if |A] prime and Abelian = then A is cyclic.
Since p||A] = 3! B C A such that |B| = p, where B =< b > with
ord(b) = p. So the lemma is proven.
ii. if |A| non-prime:
take M C A with |M| = m, m maximal. Then

a. if plm = I B =< ¥ >, b € A with |B'| = p and ord(b') = p.
b. if pfm: Let be A M and B =<b >.

Then M B D M, and by maximility must be M B = A.

By the 1st Isomorphism Theorem ,

|M] - |B|

Al=|MB|=+—7—+

12



both |A| and |B| are divisible by p (but recall that p { m = |M|), since
B is cyclic and p||B|

= thus, B has an element of order p.
So, if |[B| =r, and p|lr == ord(b’/?) = p.

Hence, in all cases i, ii.a, ii.b, A contains an element of order p.

O

Theorem 14.15. (Cauchy’s Theorem) if p||G| (p prime), then 3 2 € G such
that ord(z) = p.

Proof. (induction on |G|)
For |G| = 1,2, 3, trivial.
Induction step: class equation

Gl =14|Ca|+...+|C
since p‘G|, must have p 1 |C;| for some j > 2.
If z € C; :>p‘|Cg(a:)| (since |C;| = |G|/|Cq(z)]|, recall p||G|).

i. if Ca(z) # G-
(by induction) since p

|Ca(x)],

Jda € Cg(x) with ord(a) = p, and a € G (since Cg(x) C G).

ii. otherwise, Cg(x) = G:
implies x € Z(G), by choice = # 1, so Z(G) # 1.
Then either

I p‘|Z(G) — Abelian case, Lemma [14.14

II. p VZ(G)L by induction, 3z € G such that & € G/Z(QG), with ord(z) =

p. (where Z is the image of z).
= 2P € Z(G), but x & Z(G).
Let X =< z >, cyclic.

XZ(G) is Abelian, and p||X Z(Q))|

= by Lemma [14.14] it has an element of order p, and this element
belongs to G.

O

13



Definition 15.1. (Soluble by radicals) let f € K[t], K C C, and ¥ a splitting
field of f over K.

f is soluble by radicals if
d a field M with ¥ C M such that M : K is a radical extension .

Note: not required X : K to be radical.

Lemma 15.3. L : K radical extension C, and M normal enclosure of L : K,
then M : K is radical.

Proof. let L = K(ov,...,a,) witha;" € K(ai,...,o;-1) (by definition of L : K
being a radical extension).
Let f; be the minimal polynimal of «; over K.
Then, M D L is splitting field of |_, f;, since M is normal enclosure of L : K.
For every zero f8;; of f; in M,
3 an isomorphism o : K(a;) — K(B;;) by Corollary
By Proposition[I1.4} since K (), K(B:;) C M, o extends to a K-automorphism

T M — M
since M is splitting field (ie. contains the zeros of f;).

Since « is a member of radical sequence for a subfield of M, so it is 3;;.
By combining the sequences for M, M : K is a radical extension. O

The next two lemmas show that certain Galois groups are Abelian.
Lemma 15.4.

Proof. O

14



2 Tools

This section contains tools that I found useful to solve Galois Theory related
problems, and that don’t appear in Stewart’s book.

2.1 De Moivre’s Theorem and Euler’s formula

Useful for finding all the roots of a polynomial.
Euler’s formula: .
e = costh + i - sina)

The n-th roots of a complex number z = x + iy = r(cosh +1i - sinf) are given
by

0+ 2k 0+ 2k
2= R/r- (cos( + 7T)—l—i~sin( + 7T))
for k=0,...,n—1.
So, by Euler’s formula:

27i

» , and find the Q-automorphisms

Usually we will set « = {/r and ( = e
from there (see for examples).

2.2 Einsenstein’s Criterion

reference: Stewart’s book
Let f(t) = ag + a1t + ...+ a,t™, suppose there is a prime ¢ such that

L gta,
2. gqla; fori=0,...,n—1
3. ¢*fao
Then, f is irreducible over Q.
TODO proof € Gauss lemma.
2.3 Elementary symmetric polynomials

TODO from orange notebook, page 36

2.4 Cyclotomic polynomials
2.4.1 From Elmyn Berlekamp’s ” Algebraic Coding Theory” book

The notes in this section are from the book ”Algebraic Coding Theory” by
Elmyn Berlekamp [3].

15



Some times we might find polynomials that have the shape of " — 1, those
are cyclotomic polynomials, and have some properties that might be useful.
Observe that in a finite field of order ¢, factoring z? — x gives

2! -z =z(xit - 1)
The factor z9~! — 1 is a special case of ™ — 1: if we assume that the field
contains an element « of order n, then the roots of ™ — 1 = 0 are

La,o?,a%, ..., 0"t
and deg(z™ — 1) = n, thus 2™ — 1 has at most n roots in any field, henceforth
the powers of @ must include all the n-th roots of unity.

There fore, in any field which contains a primitive n-th root of unity we
have:

Theorem 4.31.

n—1 n
" —1= H(x—o/'):H(xfozi)
i=0 i=1
If n =k-d, then o, a?*, 0%, ..., a% are all roots of ¥ —1 =0

Every element with order dividing n, must be a power of «, since an element
of order d is a d-th root of unity.

Every power of a has order which divides n, and every field element whose
order divides n is a power of . This suggests that we partition the powers of
« according to their orders:

o =1=[][-5)
a, B
d|n

where at each iteration, 3 is a field element of order d for each d.
The polynomial whose roots are the field elements of order d is called the
cyclotomic polynomial, denoted by QD ().

Theorem 4.32.
v —1= [ ()
d,
d|n
2.4.2 From Ian Stewart’s “Galois Theory” book

Notes from Tan Stewart’s book [1].

Consider the case n = 12, let ¢ = e™/6 be a primitive 12-th root of unity.
Classify its powers (¢7) according to their minimal power d such that (¢7)¢ =1
(ie. when they are primitive d-th roots of unity).

d=1, 1
d=2, (¢

16



d=3, (4¢3
d=4, 3,09
d=6, (2,C10
d=12, ¢, ¢5,¢7, ¢l
Observe that we can factorize 12 — 1 by grouping the corresponding zeros:
12 _1=(t-1)x
(t—¢%)x
(t = ¢t = ¢®)x
(t— )t — )
(t =)t = ¢1)x
(t= Q=)= ¢t —¢M)

which simplifies to
R A=t-D)t+D)E+t+D)(E+ 1) -t +1)F(t)

where F(t) = (t — )(t — ®)(t — ¢7)(t — ¢) = t* — ¢? + 1 (this last step can
be obtained either by multiplying (t — ¢)(t — ¢?)(t — ¢7)(t — (') together, or by
dividing t'2 — 1 by all the other factors).
Let ®4(t) be the factor corresponding to primitive d-th roots of unity, then
we have proved that
2 -1 = 010,30, D P10

Definition 21.5. The polynomial ®4(t) defined by
MOEE | ()
a€Ln,(a,n)=1
is the n-th cyclotomic polynomial over C.

Corollary 21.6. Vn € N, the polynomial ®,(t) lies in Z[t] and is monic and
irreducible.

Theorem 21.9. 1. The Galois group I'(Q(¢) : Q) consists of the Q-automorphisms
1); defined by

¥;(¢) = ¢
where 0 < j <n — 1 and j is prime to n.
2. T(Q(¢) : Q) E Z?, and is an abelian group.
3. its order is ¢(n)

4. if n is prime, Z;, is cyclic

17



2.4.3 Examples

Examples of cyclotomic polynomials:

n—1
Pp(r)=a" 42" 2+ 4ttt l= Zmi
i=0
p—1
Pop(x) =aP t+ .+t —r+ 1= Z:(—ac)Z
=0

B, (x) = ™2 4+ 1, when m is a power of 2

2.5 Lemma 1.42 from J.S.Milne’s book

Lemma from J.S.Milne’s book [2].
Useful for when dealing with 2P — 1 with p prime.
Observe that

P —1=(z— 1)@ +aP 24 ... +1)

Notice that
by(z)=aP 4P 2+ 41

is the p-th Cyclotomic polynomial.

Lemma 1.42. If p prime, then zP~' 4 ... 41 is irreducible; hence Q[e*>"*/?] has
degree p — 1 over Q.

Proof. Let f(z) = (2P —1)/(x —1) =a2P~1 + ... + 1 then

r+1)P -1 (z+1)P -1 _ 4
(x+1)_1 _ x) =P 4. 4aat 4. 4D

fla+1) =

P
with a; = (l + l).
We know that pla; for i = 1,...,p — 2, therefore f(z + 1) is irreducibe by
Einsenstein’s Criterion.
This implies that f(x) is irreducible. O
2.6 Dihedral groups - Groups of symmetries

Source: Wikipedia and [4].
Dihedral groups (D,,) represent the symmetries of a regular n-gon.
Properties:

e are non-abelian (for n > 2), ie. rs # sr
e order 2n

e generated by a rotation r and a reflection s
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o r"=s2=1id, (rs)’=id
Subgroups of D,,:

e rotation form a cyclic subgroup of order n, denoted as < r >

for each d such that d|n, 3 Dy with order 2d
e normal subgroups

— for n odd: D,, and < r? > for every d|n

— for n even: 2 additional normal subgroups
e Klein four-groups: Zs X Zs, of order 4
Total number of subgroups in D,,: d(n) + s(n), where d(n) is the number of
positive disivors of n, and s(n) is the sum of those divisors.
Example . For Dg, we have {1,2,3,6}|6, so d(n) = d(6) =4, and s(6) = 1+2+
3+6 = 12; henceforth, the total amount of subgroups is d(n)+s(n) = 4+12 = 16.

For n >3, D, CS, (subgroup of the Symmetry group).

2.7 Rolle’s theorem

Theorem . (Rolle’s Theorem) if a real-valued function f is
e continuous on a proper closed interval [a, b]
e differentiable on the open interval (a,b)
. fla)= 1)

then, 3 at least one ¢ in (a,b) such that Df(c) = 0.

Proof. (proof source: cue math website) Notice that when D f(x;) = 0 occurs, is
a maximum or minimum (extrema) value of f. = if a function is continuous,
it is guaranteed to have both a maximum and a minimum point in the interval.

Two possibilities:

i. f is constant
= ie. a horizontal line (f(a) = f(b)), ie. no slope = D f = 0 everywhere
in [a, b].

ii. f is not constant:
since f not constant, must change directions in ordder to start and end at
the same y-value (f(a) = f(b)).
Thus at some point between a and b it will either have a minimum, maxi-
mum or both.
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a. does the maximum occur at a point where Df > 07
No, because if Df > 0, then f is increasing, but it can not increase since
we're at its maximum point.

b. does the maximum occur at a point where D f < 07
No, because if Df < 0, then f is deccreasing, which means that at our
left it was larger, but we’re at a maximum point, so a contradiction.

Same with minimus.
= Hence, since Df £ 0 and Df # 0, and D f exists, then Df = 0.

Thus, f must have extrema (either max or min or both), and at that extrema
D f must be zero. O

Consequence of Rolle’s Theorem:

Corollary . (Zero separation property) Between any two distinct consecutive
zeros of f, there lies at least one zero of Df.

Example . If f(t) has zeros t1,ts, with ¢; < t2, and f is derivable, then by
Rolle’z theorem:

Je € (t1,t2) such that Df(¢) = 0.

Hence, the zeros of Df separate the zeros of f.
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3

Exercises

3.1 Galois groups
3.1.1 5—-7€Q

This exercise comes from a combination of exercises 12.4 and 13.7 from [IJ.

First let’s find the roots. By De Moivre’s Theorem lb ty = T e 5",
From which we denote o« = ¥/7, and ¢ = e%, so that the roots of the

polynomial are {a, a(, a¢?, a¢®, al*, al®}, ie. {aC*}3.

Hence the splitting field is Q(«, ¢).
Degree of the extension
In order to find [Q(«, () : Q, we're going to split it in tow parts. By the

Tower Law ,

[Q(a,¢) : Q] = [Q(e, ) : Q)] - [Q(e) = Q)

To find each degree, we will find the minimal polynomial of the adjoined

term over the base field of the extension:

i.

i.

minimal polynomial of o over Q
By Einsenstein’s Criterion (2.2)), with ¢ = 7 we have that ¢ 1 1, 7|—7,0,0, .. .,
and 721 —7, hence f(t) is irreducibe over Q, thus is the minimal polynomial

which has roots {a¢*}3.

minimal polynomial of ¢ over Q(«)
Since ( is the primitive 6th root of unity, we know that the minimal poly-
nomial will be the 6th cyclotomic polynomial (2.4):

mi(t) = ®g(t) =t —t 41

which has roots ¢, —C.

Since Q(a) C R, and the roots of ®¢(t) =t? —t+ 1 are in C, ®g(t) remains
irreducible over Q(«).

Therefore, by the tower of law,

[Q(ar,¢) : Q] = deg P (t) - deg f(t) =2-6 = 12

and by the Fundamental Theorem of Galois Theory, we know that

IT(Q(e,¢) : Q)] = [Q(ar,¢) : Q] = 12

which tells us that there exist 12 Q-automorphisms of the Galois group.
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Let’s find the 12 Q-automorphisms. Start by defining o which fixes ¢ and
acts on «, sending it to another of the roots of the minimal polynomial of «
over Q, f(t), choose a(.

Now define 7 which fixes o and acts on (, sending it into another root of the
minimal polynomial of ¢ over Q(«), choose —(.

cra—al Tia—

¢ ¢ (s —(¢=¢"
In other words, we have 12 Q-automorphisms, which are the combination of
o and T:

ofri s a oz(k

¢

for 0 <k <5andj==l.
al? alt
o
a(?) 0
-
| o

4 5

NOTE: WIP diagram. ag aq

Observe, that T is generated by the combination of o and 7, and it is isomor-
phic to the group of symmetries of order 12, the dihedral group (2.6|) of order
12, D67 ie. I' = Dﬁ.

Let’s find the subgroups of T', and the fixed fields of Q(«, ¢).

We know that I' 2 Dg, and we know from the properties of the dihedral
group that the number of subgroups of Dg will be d(6)+s(6) = 44+12 =16
subgroups.
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generators order group fixed field notes (check fixed field)
() = (%) = (%) 1 id Q(a,¢)
(o) = (o) 6 Zg Q(¢)
(0?) = (%) 3 Zs Q(a?,¢) o2(0%) = 33?2 = a3 = a? 1= a?
(0%) 2 Zs Q(e?,¢) o’(a?) = (a®)? = a?¢® = a®
(1) 2 Zs Q(a)
(o7) 2 Zey Qe + () o¢(atac) =olataC!) = aC+a( ¢ = al+a
(o7) 2 Lo Qo+ ac?),Q(aC) | o*r(a+a?) =o(a+a(™?) =a® +a(?(* =
al?+a
(o%7) 2 Z, Qo+ ac?) r(a+ac®) = o(a+al?) = al® + a¢ =3¢ =
al3® + o
(o%T) 2 Z Qe+ ac*),Q(a¢?) | o'r(a+al!) =c(a+a¢™) =a¢! +a("(! =
al* + «
(o0°7) 2 Zo Q(ar + a¢?) 052(@+@C5) =o(at+a¢®) =al®+a(¢C =
al’ + «
(o,7) = (6°,7) 6-2=12 Dg Q
(0%, 1) = (o', 7) 3-2= D3 Q(a?) o2(a?) = a3¢3? = o® and 7(a?) = o3
(o3, 7) 2-2=4 Do Q(a?) o3(a?) = a?¢*? = a? and 7(a?) = o?
<(727O'T> 3.2=6 Dg Q(OZ3+OZ3C3) 02(a3+a3<3) :a343+a3<3g3:a3<3+a3c6:
043(:3 +
<O’3,0'7'> 2.2 =4 ZQ X Z2 Q(O&QCQ),Q(OZQ + OZQCQ) 0.3(a2 + a2<2) — O[2<2~3 + a2<2<3<2 — 012 + a2<2
and O’T(OL2+052§2) — 0424'24*042(72(2 — 012§2+012
(03, 0%T) 2:2=4 ZoyxZy Q(a%C*),Q(a?+a%C*) | 02¢(a?¢*) = a?C*¢* = a?C? = a%¢* and
0'3(04244) — a2c2»3<4 — a2<4
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