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Abstract

Notes taken while studying Galois Theory, mostly from Ian Stewart’s
book ”Galois Theory” [1].

Usually while reading books and papers I take handwritten notes in a
notebook, this document contains some of them re-written to LaTeX.

The notes are not complete, don’t include all the steps neither all the
proofs.
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1 Galois Theory notes

1.1 Chapters 4-12

(Definitions, theorems, lemmas, corollaries and examples enumeration follows
from Ian Stewart’s book [1]).

Definition 4.10. A simple extension is L : K such that L = K(α) for some
α ∈ L.

Example 4.11. Beware, L = Q(i,−i,
√
5,−
√
5) = Q(i,

√
5) = Q(i+

√
5).

Definition 5.5. Let L : K, suppose α ∈ L is algebraic over K. Then, the
minimal polynomial of α over K is the unique monic polynomial m over K,
m(t) ∈ K[t], of smallest degree such that m(α) = 0.
eg.: i ∈ C is algebraic over R. The minimal polynomial of i over R is m(t) =
t2 + 1, so that m(i) = 0.

Lemma 5.9. Every polynomial a ∈ K[t] is congruent modulo m to a unique
polynomial of degree < δm.

Proof. Divide a/m with remainder, a = qm+ r, with q, r ∈ K[t] and δr < δm.
Then, a− r = qm, so a ≡ r (mod m).

It remains to prove uniqueness.
Suppose ∃ r ≡ s (mod m), with δr, δs < δm. Then, r − s is divisible by m,

but has smaller degree than m.
Therefore, r − s = 0, so r = s, proving uniqueness.

Theorem 5.10. ∀0 ̸= f ∈ K[t]
<m> , ∃f

−1 iff m is irreducible in K[t].

Then K[t]
<m> is a field.

Theorem 5.12. Let K(α) : K simple algebraic extension, let m minimal poly-
nomial of α over K.
K(α) : K is isomorphic to K[t]

<m> .

The isomorphism K[t]
<m> −→ K(α) can be chosen to map t to α.

Corollary 5.13. Let K(α) : K and K(β) : K be simple algebraic extensions.
If α, β have same minimal polynomial m over K, then the two extensions are
isomorphic, and the isomorphism of the larger fields map α to β.

Proof. By 5.12, both extensions are isomorphic to K[t]
<m> .

Lemma 5.14. Let K(α) : K be a simple algebraic extension, let m be the
minimal polynomial of α over K, let δm = n.

Then {1, α, α2, . . . , αn−1} is a basis for K(α) over K. In particular, [K(α) :
K] = n.

Definition 6.2. The degree [L : K] of a field extension L : K is the dimension
of L considered as a vector space over K.

Equivalently, the dimension of L as a vector space over K is the number of
terms in the expression for a general element of L using coefficients from K.
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Example 6.3. 1. C elements are 2-dimensional over R (p + qi ∈ C, with
p, q ∈ R), because a basis is {1, i}, hence [C : R] = 2.

2. [Q(i,
√
5) : Q] = 4, since the elements {1,

√
5, i, i

√
5} form a basis for

Q(i,
√
5) over Q.

Theorem 6.4. (Short Tower Law) If K,L,M ⊆ C, and K ⊆ L ⊆ M , then
[M : K] = [M : L] · [L : K].

Proof. Let (xi)i∈I be a basis for L over K, let (yj)j∈J be a basis for M over L.
∀i ∈ I, j ∈ J , we have xi ∈ L, uj ∈M .
Want to show that (xiyj)i∈I,j∈J is a basis for M over K.

i. prove linear independence:
Suppose that ∑

ij

kijxiyj = 0 (kij ∈ K)

rearrange ∑
j

(
∑
i

kijxi︸ ︷︷ ︸
∈L

)yj = 0 (kij ∈ K)

Since
∑
i kijxi ∈ L, and the yj ∈ M are linearly independent over L, then∑

i kijxi = 0.
Repeating the argument inside L −→ kij = 0 ∀i ∈ I, j ∈ J .
So the elements xiyj are linearly independent over K.

ii. prove that xiyj span M over K:
Any x ∈M can be written

x =
∑
j

λjyj

for λj ∈ L, because yj spans M over L. Similarly,

∀j ∈ J, λj =
∑
i

λijxiyj

for λij ∈ K.
Putting the pieces together,

x =
∑
ij

λijxiyj

as required.

Corollary 6.6. (Tower Law)
If K0 ⊆ K1 ⊆ . . . ⊆ Kn are subfields of C, then

[Kn : K0] = [Kn : Kn−1] · [Kn−1 : Kn−2] · . . . · [K1 : K0]
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Proof. From 6.4.

Theorem 6.7. if K(α) : K

• transcendental =⇒ [K(α) : K] = inf

• algebraic =⇒ [K(α) : K] = δm

(where m is the minimal polynomial of α over K).

Definition 8.1. L : K, a K-automorphism of L is an automorphism α of L
such that α(k) = k ∀k ∈ K.
ie. α fixes k.

Theorem 8.2, 8.3. The set of all K-automorphisms of L forms a group, Γ(L :
K), the Galois group of L : K.

Definition 8.12. (Radical Extension) L : K is radical if L = K(α1, . . . , αm)
where for each j = 1, . . . ,m, ∃ nj such that α

nj

j ∈ K(α1, . . . , αj−1) (j ≥ 1)

Lemma 8.18. Let q ∈ L. The minimal polynomial of q over K splits into
linear factors over L.

Exercise E.8.7. TODO

Definition 9.1. For K ⊆ C, and f ∈ K[t], f splits over K if it can be expressed
as a product of linear factors

f(t) = k · (t− α1) · . . . · (t− αn)

where k, αi ∈ K.
=⇒ (Thm 9.3) if f splits over Σ, Σ is the splitting field.

If K ⊆ Σ′ ⊆ Σ and f splits over Σ′, then Σ′ = Σ.

Theorem 9.6. TODO

Definition 9.8. L : K is normal if every irreducible polynomial f ∈ K[t] that
has at least one zero in L, splits in L.

Theorem 9.9. TODO

Theorem 9.10. An irreducible polynomial f ∈ K[t] (K ⊆ C) is separable over
K if it has simple zeros in C, or equivalently, simple zeros in its splitting field.

Lemma 9.13. f ∈ K[t] with splitting field Σ. f has multiple zeros (in Σ or C)
iff f and Df have a common factor of degree ≥ 1 in Σ[t].
More details at Rolle’s theorem (2.7) section.

Theorem 10.5. |Γ(K : K0)| = [K : K0], where K0 is the fixed field of Γ(K :
K0).
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Definition 11.1. K ⊆ L, K ⊆ L. A K-monomorphism of M into L is a field
monomorphism

ϕ :M −→ L

such that ϕ(k) = k ∀k ∈ K.

Theorem 11.3. L : K normal, K ⊆ M ⊆ L. Let τ any K-monomorphism
τ :M −→ L.

Then, ∃ a K-automorphism σ of L such that σ

∣∣∣∣
M

= τ .

Proof. L : K normal =⇒ by Thm 9.9, L splitting field for some poly f ∈ K[t].
Hence, L is splitting field over M for f and over τ(M) for τ(f).

Since τ

∣∣∣∣
K

is the identity, τ(f) = f .

We have
M L

τ(M) L

τ

with σ yet to be formed.

By Theorem 9.6, ∃ isomorphism σ : L −→ L such that σ

∣∣∣∣
M

= τ .

Therefore, σ is an automorphism of L, and since σ

∣∣∣∣
K

= τ

∣∣∣∣
K

= id, σ is a

K-automorphism of L.

Proposition 11.4. L : K finite normal, α, β are zeros in L of the irreducible
polynomial p ∈ K[t].

Then, ∃ a K-automorphism σ of L such that σ(α) = β.

Proof. By Corollary 5.13, ∃ isomorphism τ : K(α) −→ K(β) such that τ

∣∣∣∣
K

is

the identity, and τ(α) = β.
By Theorem 11.3, τ extends to a K-automorphism σ of L.

Lemma 11.8. K ⊆ L ⊆ N ⊆M , L : K finite, N normal closure of L : K.
Let τ any K-monomorphism τ : L −→M .
Then τ(L) ⊆ N .

Proof. α ∈ L, m minimal polynomial of α over K.
=⇒ m(α) = 0, so τ(m(α)) = 0

(since τ is a K-automorphism, ie. maps the zeros of m(t)).

Since τ is a K-monomorphism, τ(m(α)) = m(τ(α)) = 0
=⇒ τ(α) is a zero of m.
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Therefore, τ(α) lies in N , since N : K is normal.
Henceforth, τ(L) ⊆ N .

Theorem 11.9. The following are equivalent:

1. L : K normal

2. ∃ finite normal extension N of K containing L,
such that every K-monomorphism τ : L −→ N is a K-automorphism of
L.

3. for every finite extension M of K containing L,
every K-monomorphism τ : L −→M is a K-automorphism of L.

Theorem 11.10. [L : N ] = 1, N normal closure of L : K. Then,
∃ n K-monomorphisms L −→ N .

(the ones proven by Lemma 11.8).

Corollary 11.11. |Γ(L : K)| = [L : K] (if L : K is normal).
ie. there are precisely [L : K] distinct K-automorphisms of L.

Theorem 11.12. Γ(L : K) = G. If L : K normal, then K is the fixed field of
G.

Proof. let K0 be the fixed field of G. Let [L : K] = n.
By 11.11, |G| = [L : K] = n.
By 10.5, [L : K0] = n (K0 fixed field).
Since K ⊆ K0, we must have K = K0.

=⇒ thus K is the fixed field of G.

Theorem 11.14. if L any field, G any finite group of automorphisms of L, and
K its fixed field,

then L : K is finite and normal, with Galois group G.

Theorem 12.2. (Fundamental Theorem of Galois Theory) if L : K finite and
normal inside C, with Γ(L : K) = G, then:

1. |Γ(L : K)| = [L : K] (by Corollary 11.11)

2. the maps * and † are mutual inverses, and setup an order-reversing one-
to-one correspondence between F and G.

3. if M an intermediate field, then

[L :M ] = |M∗| [M : K] =
|G|
|M∗|

4. for M an intermediate field, M : K normal iff

Γ(M : K)︸ ︷︷ ︸
=M∗

◁Γ(L : K)︸ ︷︷ ︸
=G
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5. for M intermediate, if M : K normal, then

Γ(M : K) ∼=
G

M∗

ie.

Γ(M : K) ∼=
Γ(L : K)

Γ(L :M)

Proof. TODO

1.2 Chapter 13 - Full example

(Chapter 13 is basically a full example. More examples can be found at section
3.1)

1.3 Detour: Isomorphism Theorems

Theorem i.1. (First Isomorphism Theorem)

If ψ : G −→ H a group homomorphism, then ker(ψ) ◁ G.
Let ϕ : G −→ G/ker(ψ) be the canonical homomorphism.
Then ∃ unique isomorphism η : G/ker(ψ) −→ ψ(G) such
that ψ = ηϕ.
⇐⇒ ie. G/ker(ψ) ∼= ψ(G).

G H

G/ ker(ψ)

ψ

ϕ η

Proof. (proof from Thomas W. Judson book ”Abstract Algebra” [5])

Let K = ker(ψ). Since

η : G/K −→ ψ(G)

let
η : gK −→ ψ(g)

ie. η(gK) = ψ(g).

i. show that η is a well defined map:

if we have two representatives of the same coset, ie. g1K = g2K, we want
to show that η(g1K) = η(g2K), so that η is a well-defined map.

By the coset properties for some k ∈ K, g1 = g2k, so

η(g1K) = ψ(g1) = ψ(g2k) = η(g2kK) = η(g2K)

Thus, η does not depend on the choice of coset representatives, and the
map η : G/ker(ψ) −→ ψ(G) is uniquely defined since ψ = ηϕ.
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ii. show that η is a homomorphism:

Observe:

η(g1Kg2K) = η(g1g2K) = ψ(g1g2) = ψ(g1)ψ(g2) = η(g1K)η(g2K)

=⇒ so η is a homomorphism.

iii. show that η is an isomorphism:

Since each element of H = ψ(G) has at least a preimage, then η is surjective
(onto ψ(G)).

Show that it is also injective (onet-to-one):

Suppose 2 different preimatges lead to the same image in ψ(G), ie. η(g1K) =
η(g2K)

then,
ψ(g1) = ψ(g2)

which implies ψ(g−1
1 g2) = e, ie. g−1

1 g2 ∈ ker(ψ), hence

g−1
1 g2K = K

g1K = g2K

so η is injective.

Since η is injective and surjective =⇒ η is a bijective homomorphism,
ie. η is an isomorphism.

Theorem i.2. (Second Isomorphism Theorem) Let H ⊆ G, N ◁ G. Then

i. HN ⊆ G

ii. H ∩N ◁H

iii. H
H∩N

∼= HN
N

Proof. (proof from Thomas W. Judson book ”Abstract Algebra” [5])

i. show HN ⊆ G:
Note that HN = {hn : h ∈ H,n ∈ N}. Let h1n1, h2n2 ∈ HN .

Since N normal =⇒ h−1
2 n1h2 ∈ N , so

(h1n1)(h2n2) = h1h2(h
−1
2 n1h2) · n2 ∈ HN

[Recall: since N ◁ G, gN = Ng ∀g ∈ G =⇒ gn = n′g for some n′ ∈ N .]

To see that (hn)−1 ∈ HN :
since (hn)−1 = h−1n−1 = h−1(hn−1h−1), thus (hn)−1 ∈ HN .

Thus HN ⊆ G.
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In fact,

HN =
⋃
h∈H

hN

(TODO: diagram)

ii. show that H ∩N ◁H:
Let h ∈ H, n ∈ H ∩N (recall: H ∩N ⊆ H).
Then h−1nh ∈ H ←− since h−1, n, h ∈ H.
Since N ◁ G, h−1nh ∈ N .
Therefore, h−1nh ∈ H ∩N =⇒ H ∩N ◁H

iii. show that H
H∩N

∼= HN
N :

Define a map

ϕ :H −→ HN

N
by ϕ :h 7−→ hN

ϕ is surjective (onto), since any coset hnN = hN is the image of h ∈ H, ie.
ϕ(h)

ϕ is a homomorphism, since

ϕ(hh′) = hh′N = hNh′N = ϕ(h)ϕ(h′)

By the First Isomorphism Theorem i.1,

HN

N
∼=

H

ker(ϕ)

and since

ker(ϕ) = {h ∈ H : h ∈ N}
then ker(ϕ) = H ∩N

so then,
HN

N
= ϕ(H) ∼=

H

ker(ϕ)
=

H

H ∩N
thus

HN

N
∼=

H

H ∩N

Theorem i.3. (Third Isomorphism Theorem)
Let H ⊆ K and K ◁ G, H ◁ G.
Then K

H ◁ G
H and

G/H

K/H
∼=
G

K
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Proof. (proof from Dummit and Foote book “Abstract Algebra” [6])

Easy to see that K
H ◁ G

H .
Define

ψ :
G

H
−→ G

K
by ψ :gH 7−→ gK

To show that ψ is well defined :
suppose g1H = g2H, then g1 = g2h for some h ∈ H.
Since H ⊆ K =⇒ h ∈ K, hence g1K = g2K,
ie. ψ(g1H) = ψ(g2H), which shows that ψ is well defined.

Since g ∈ G may be chosen arbitrarily in G, ψ is a surjective homomorphism.
Finally,

ker(ψ) = {gH ∈ G

H
| ψ(gH) = 1K}

= {gH ∈ G

H
| gK = 1K}

= {gH ∈ G

H
| g ∈ K}

=
K

H

By the First Isomorphism Theorem (i.1),

G
H

G
K

G/H
ker(ψ) =

G/H
K/H

ψ

ϕ η

So, by

η :
G/H

K/H
−→ G

K

since η is bijective (we know it by the First Isomorphism Theorem), η it is the
isomorphism:

G/H

K/H
∼=
G

K

1.4 Chapter 14

Definition 14.1. a group G is soluble if it has a finite series of subgroups

1 = G0 ⊆ G1 ⊆ . . . ⊆ Gn = G
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such that

i. Gi ◁Gi+1 for i = 0, . . . , n− 1

ii. Gi+1

Gi+1
is Abelian for for i = 0, . . . , n− 1

(Note: Gi ◁Gi+1 ◁Gi+2 does not imply Gi ◁Gi+2)

Theorem 14.4. H ⊆ G, N ◁ G, then

1. if G soluble =⇒ H soluble

2. if G soluble =⇒ G/N soluble

3. if N and G/N soluble =⇒ G soluble

Proof. 1. Since G soluble, by definition: ∃ 1 = G0 ◁ G1 ◁ . . . ◁ Gr = G with
Abelian quotients Gi+1

Gi
.

Let Hi = Gi ∩H, then H has a series 1 = H0 ◁ H1 ◁ . . . ◁ Hr = H, next
we show that the quotients Hi+1

Hi
are Abelian (so that H is soluble):

Hi+1

Hi
=
Gi+1 ∩H
Gi ∩H

(∗)
=

Gi+1 ∩H
Gi ∩ (Gi+1 ∩H)

(∗∗)∼=
Gi(Gi+1 ∩H)

Gi
⊆ Gi+1

Gi

(*): to see why, Hi = Gi ∩H = Gi ∩Hi = Gi ∩Hi+1 = Gi ∩ (Gi+1 ∩H).
(**): by the 2nd Isomorphism Theorem (i.3).

[TODO: diagram of subgroups]

Notice that Gi+1

Gi
is Abelian, thus the left-hand-side of the congruence is

also Abelian. Therefore, Hi+1

Hi
is Abelian, thus H is soluble.

2. For G/N to be soluble, (by definition) it would have the series N
N =

G0
N
N ◁ G1

N
N ◁ . . . ◁ Gr

N
N = G

N , and any quotient being
Gi+1

N
N

Gi
N
N

.

The series clearly exists, so now we show that the quotients are Abelian,
so that G/N is soluble:

Gi+1N

GiN
=
Gi+1(GiN)

GiN

(∗)∼=
Gi+1

Gi+1 ∩ (GiN)
∼=

Gi+1/Gi
(Gi+1 ∩ (GiN))/Gi

(*): by the 2nd Isomorphism Theorem (i.3).

The last quotient is a quotient of the Abelian group Gi+1/Gi, so it is
Abelian.

Hence, Gi+1N
GiN

is also Abelian; so G
N is soluble.
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3. By the definition of N and G/N being soluble,

Nsoluble =⇒ 1 = N0 ◁ N1 ◁ . . . ◁ Nr = N

G/Nsoluble =⇒ 1 =
N

N
=
G0

N
◁
G1

N
◁ . . . ◁

Gr
N

=
G

N

both with Abelian quotients.

Consider the series of G given by combining the two previous series:

1 = N0 ◁ N1 ◁ . . . ◁ Nr = N = G0 ◁ G1 ◁ . . . ◁ Gr = G

the quotients are either

• Ni+1

Ni
, Abelian

• Gi+1

Gi
, isomorphic to Gi+1/N

Gi/N
, which is Abelian.

Therefore, the quotients are always Abelian; hence G is soluble.

Definition 14.5. G is simple if it’s nontrivial and it’s only normal subgroups
are 1 and G.

Theorem 14.6. A soluble group is simple iff it is cyclic of prime order.

Theorem 14.7. if n ≥ 5, then An is simple.

Corollary 14.8. Sn is not soluble if n ≥ 5.

Proof. if Sn were soluble, then An would be soluble by Theorem 14.1(i), and
simple by Theorem 14.7, hence of prime order by Theorem 14.6.

But observe: |An| = 1
2 (n!) is not prime if n ≥ 5.

Thus Sn is not soluble if n ≥ 5.

Lemma 14.14. if A finite and abelian group with p

∣∣∣∣|A| (p prime), then A has

an element of order p.

Proof. i. if |A| prime and Abelian =⇒ then A is cyclic.

Since p||A| =⇒ ∃! B ⊆ A such that |B| = p, where B =< b > with
ord(b) = p. So the lemma is proven.

ii. if |A| non-prime:

take M ⊆ A with |M | = m, m maximal. Then

a. if p|m =⇒ ∃! B′ =< b′ >, b′ ∈ A with |B′| = p and ord(b′) = p.

b. if p ∤ m: Let b ∈ A ̸M and B =< b >.
Then MB ⊇M , and by maximility must be MB = A.

By the 1st Isomorphism Theorem (i.1),

|A| = |MB| = |M | · |B|
|M ∩B|
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both |A| and |B| are divisible by p (but recall that p ∤ m = |M |), since
B is cyclic and p||B|
=⇒ thus, B has an element of order p.

So, if |B| = r, and p|r =⇒ ord(br/p) = p.

Hence, in all cases i, ii.a, ii.b, A contains an element of order p.

Theorem 14.15. (Cauchy’s Theorem) if p

∣∣∣∣|G| (p prime), then ∃ x ∈ G such

that ord(x) = p.

Proof. (induction on |G|)
For |G| = 1, 2, 3, trivial.
Induction step: class equation

|G| = 1 + |C2|+ . . .+ |Cr|

since p

∣∣∣∣|G|, must have p ∤ |Cj | for some j ≥ 2.

If x ∈ Cj =⇒ p

∣∣∣∣|CG(x)| (since |Cj | = |G|/|CG(x)|, recall p∣∣∣∣|G|).
i. if CG(x) ̸= G:

(by induction) since p

∣∣∣∣|CG(x)|,
∃a ∈ CG(x) with ord(a) = p, and a ∈ G (since CG(x) ⊂ G).

ii. otherwise, CG(x) = G:
implies x ∈ Z(G), by choice x ̸= 1, so Z(G) ̸= 1.

Then either

I. p

∣∣∣∣|Z(G)| −→ Abelian case, Lemma 14.14.

II. p ̸
∣∣∣∣|Z(G)|: by induction, ∃x ∈ G such that x̂ ∈ G/Z(G), with ord(x̂) =

p. (where x̂ is the image of x).

=⇒ xp ∈ Z(G), but x ̸∈ Z(G).
Let X =< x >, cyclic.

XZ(G) is Abelian, and p

∣∣∣∣|XZ(G))|
=⇒ by Lemma 14.14, it has an element of order p, and this element
belongs to G.
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Definition 15.1. (Soluble by radicals) let f ∈ K[t], K ⊆ C, and Σ a splitting
field of f over K.

f is soluble by radicals if
∃ a field M with Σ ⊆M such that M : K is a radical extension (8.12).

Note: not required Σ : K to be radical.

Lemma 15.3. L : K radical extension C, and M normal enclosure of L : K,
then M : K is radical.

Proof. let L = K(α1, . . . , αr) with α
ni
i ∈ K(α1, . . . , αj−1) (by definition of L : K

being a radical extension).
Let fi be the minimal polynimal of αi over K.
Then,M ⊇ L is splitting field of ri=1fi, sinceM is normal enclosure of L : K.
For every zero βij of fi in M ,

∃ an isomorphism σ : K(αi) −→ K(βij) by Corollary 5.13.
By Proposition 11.4, sinceK(αi), K(βij) ⊂M , σ extends to aK-automorphism

τ :M −→M

since M is splitting field (ie. contains the zeros of fi).
Since α is a member of radical sequence for a subfield of M , so it is βij .
By combining the sequences for M , M : K is a radical extension.

The next two lemmas show that certain Galois groups are Abelian.

Lemma 15.4.

Proof.

14



2 Tools

This section contains tools that I found useful to solve Galois Theory related
problems, and that don’t appear in Stewart’s book.

2.1 De Moivre’s Theorem and Euler’s formula

Useful for finding all the roots of a polynomial.
Euler’s formula:

eiψ = cosψ + i · sinψ

The n-th roots of a complex number z = x+ iy = r(cosθ+ i · sinθ) are given
by

zk = n
√
r ·

(
cos(

θ + 2kπ

n
) + i · sin(θ + 2kπ

n
)

)
for k = 0, . . . , n− 1.

So, by Euler’s formula:

zk = n
√
r · ei(

θ+2kπ
n )

Usually we will set α = n
√
r and ζ = e

2πi
n , and find the Q-automorphisms

from there (see 3.1 for examples).

2.2 Einsenstein’s Criterion

reference: Stewart’s book
Let f(t) = a0 + a1t+ . . .+ ant

n, suppose there is a prime q such that

1. q ∤ an

2. q|ai for i = 0, . . . , n− 1

3. q2 ∤ a0

Then, f is irreducible over Q.
TODO proof & Gauss lemma.

2.3 Elementary symmetric polynomials

TODO from orange notebook, page 36

2.4 Cyclotomic polynomials

2.4.1 From Elmyn Berlekamp’s ”Algebraic Coding Theory” book

The notes in this section are from the book ”Algebraic Coding Theory” by
Elmyn Berlekamp [3].
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Some times we might find polynomials that have the shape of tn − 1, those
are cyclotomic polynomials, and have some properties that might be useful.

Observe that in a finite field of order q, factoring xq − x gives

xq − x = x(xq−1 − 1)

The factor xq−1 − 1 is a special case of xn − 1: if we assume that the field
contains an element α of order n, then the roots of xn − 1 = 0 are

1, α, α2, α3, . . . , αn−1

and deg(xn − 1) = n, thus xn − 1 has at most n roots in any field, henceforth
the powers of α must include all the n-th roots of unity.

There fore, in any field which contains a primitive n-th root of unity we
have:

Theorem 4.31.

xn − 1 =

n−1∏
i=0

(x− αi) =
n∏
i=1

(x− αi)

If n = k · d, then αk, α2k, α3k, . . . , αdk are all roots of xd − 1 = 0
Every element with order dividing n, must be a power of α, since an element

of order d is a d-th root of unity.
Every power of α has order which divides n, and every field element whose

order divides n is a power of α. This suggests that we partition the powers of
α according to their orders:

xn − 1 =
∏
d,

d|n

∏
β

(x− β)

where at each iteration, β is a field element of order d for each d.
The polynomial whose roots are the field elements of order d is called the

cyclotomic polynomial, denoted by Q(d)(x).

Theorem 4.32.
xn − 1 =

∏
d,

d|n

Q(d)(x)

2.4.2 From Ian Stewart’s “Galois Theory” book

Notes from Ian Stewart’s book [1].
Consider the case n = 12, let ζ = eπi/6 be a primitive 12-th root of unity.

Classify its powers (ζj) according to their minimal power d such that (ζj)d = 1
(ie. when they are primitive d-th roots of unity).

d = 1, 1

d = 2, ζ6
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d = 3, ζ4, ζ8

d = 4, ζ3, ζ9

d = 6, ζ2, ζ10

d = 12, ζ, ζ5, ζ7, ζ11

Observe that we can factorize t12 − 1 by grouping the corresponding zeros:

t12 − 1 =(t− 1)×
(t− ζ6)×
(t− ζ4)(t− ζ8)×
(t− ζ3)(t− ζ9)×
(t− ζ2)(t− ζ10)×
(t− ζ)(t− ζ5)(t− ζ7)(t− ζ11)

which simplifies to

t12 − 1 = (t− 1)(t+ 1)(t2 + t+ 1)(t2 + 1)(t2 − t+ 1)F (t)

where F (t) = (t − ζ)(t − ζ5)(t − ζ7)(t − ζ11) = t4 − t2 + 1 (this last step can
be obtained either by multiplying (t− ζ)(t− ζ5)(t− ζ7)(t− ζ11) together, or by
dividing t12 − 1 by all the other factors).

Let Φd(t) be the factor corresponding to primitive d-th roots of unity, then
we have proved that

t12 − 1 = Φ1Φ2Φ3Φ4Φ6Φ12

Definition 21.5. The polynomial Φd(t) defined by

Φn(t) =
∏

a∈Zn,(a,n)=1

(t− ζa)

is the n-th cyclotomic polynomial over C.

Corollary 21.6. ∀n ∈ N, the polynomial Φn(t) lies in Z[t] and is monic and
irreducible.

Theorem 21.9. 1. The Galois group Γ(Q(ζ) : Q) consists of theQ-automorphisms
ψj defined by

ψj(ζ) = ζj

where 0 ≤ j ≤ n− 1 and j is prime to n.

2. Γ(Q(ζ) : Q)
iso∼= Z∗

n, and is an abelian group.

3. its order is ϕ(n)

4. if n is prime, Z∗
n is cyclic

17



2.4.3 Examples

Examples of cyclotomic polynomials:

Φn(x) = xn−1 + xn−2 + . . .+ x2 + x+ 1 =

n−1∑
i=0

xi

Φ2p(x) = xp−1 + . . .+ x2 − x+ 1 =

p−1∑
i=0

(−x)i

Φm(x) = xm/2 + 1, when m is a power of 2

2.5 Lemma 1.42 from J.S.Milne’s book

Lemma from J.S.Milne’s book [2].
Useful for when dealing with xp − 1 with p prime.
Observe that

xp − 1 = (x− 1)(xp−1 + xp−2 + . . .+ 1)

Notice that
Φp(x) = xp−1 + xp−2 + . . .+ 1

is the p-th Cyclotomic polynomial.

Lemma 1.42. If p prime, then xp−1+ . . .+1 is irreducible; hence Q[e2πi/p] has
degree p− 1 over Q.

Proof. Let f(x) = (xp − 1)/(x− 1) = xp−1 + . . .+ 1 then

f(x+ 1) =
(x+ 1)p − 1

x+ 1− 1
=

(x+ 1)p − 1

x
= xp−1 + . . .+ aix

i + . . .+ p

with ai =

(
p

i+ 1

)
.

We know that p|ai for i = 1, . . . , p − 2, therefore f(x + 1) is irreducibe by
Einsenstein’s Criterion.

This implies that f(x) is irreducible.

2.6 Dihedral groups - Groups of symmetries

Source: Wikipedia and [4].
Dihedral groups (Dn) represent the symmetries of a regular n-gon.
Properties:

• are non-abelian (for n > 2), ie. rs ̸= sr

• order 2n

• generated by a rotation r and a reflection s
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• rn = s2 = id, (rs)2 = id

Subgroups of Dn:

• rotation form a cyclic subgroup of order n, denoted as < r >

• for each d such that d|n, ∃ Dd with order 2d

• normal subgroups

– for n odd: Dn and < rd > for every d|n
– for n even: 2 additional normal subgroups

• Klein four-groups: Z2 × Z2, of order 4

Total number of subgroups in Dn: d(n) + s(n), where d(n) is the number of
positive disivors of n, and s(n) is the sum of those divisors.

Example . For D6, we have {1, 2, 3, 6}|6, so d(n) = d(6) = 4, and s(6) = 1+2+
3+6 = 12; henceforth, the total amount of subgroups is d(n)+s(n) = 4+12 = 16.

For n ≥ 3, Dn ⊆ Sn (subgroup of the Symmetry group).

2.7 Rolle’s theorem

Theorem . (Rolle’s Theorem) if a real-valued function f is

• continuous on a proper closed interval [a, b]

• differentiable on the open interval (a, b)

• f(a) = f(b)

then, ∃ at least one c in (a, b) such that Df(c) = 0.

Proof. (proof source: cue math website) Notice that when Df(xi) = 0 occurs, is
a maximum or minimum (extrema) value of f . =⇒ if a function is continuous,
it is guaranteed to have both a maximum and a minimum point in the interval.

Two possibilities:

i. f is constant
=⇒ ie. a horizontal line (f(a) = f(b)), ie. no slope =⇒ Df = 0 everywhere
in [a, b].

ii. f is not constant:
since f not constant, must change directions in ordder to start and end at
the same y-value (f(a) = f(b)).
Thus at some point between a and b it will either have a minimum, maxi-
mum or both.
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a. does the maximum occur at a point where Df > 0?
No, because if Df > 0, then f is increasing, but it can not increase since
we’re at its maximum point.

b. does the maximum occur at a point where Df < 0?
No, because if Df < 0, then f is deccreasing, which means that at our
left it was larger, but we’re at a maximum point, so a contradiction.

Same with minimus.
=⇒ Hence, since Df ≮ 0 and Df ≯ 0, and Df exists, then Df = 0.

Thus, f must have extrema (either max or min or both), and at that extrema
Df must be zero.

Consequence of Rolle’s Theorem:

Corollary . (Zero separation property) Between any two distinct consecutive
zeros of f , there lies at least one zero of Df .

Example . If f(t) has zeros t1, t2, with t1 < t2, and f is derivable, then by
Rolle’z theorem:
∃c ∈ (t1, t2) such that Df(c) = 0.
Hence, the zeros of Df separate the zeros of f .
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3 Exercises

3.1 Galois groups

3.1.1 t6 − 7 ∈ Q

This exercise comes from a combination of exercises 12.4 and 13.7 from [1].

First let’s find the roots. By De Moivre’s Theorem (2.1), tk = 6
√
7 · ei 2πk

6 .

From which we denote α = 6
√
7, and ζ = e

2πi
6 , so that the roots of the

polynomial are {α, αζ, αζ2, αζ3, αζ4, αζ5}, ie. {αζk}50.
Hence the splitting field is Q(α, ζ).
Degree of the extension
In order to find [Q(α, ζ) : Q, we’re going to split it in tow parts. By the

Tower Law (6.6),

[Q(α, ζ) : Q] = [Q(α, ζ) : Q(α)] · [Q(α) : Q]

To find each degree, we will find the minimal polynomial of the adjoined
term over the base field of the extension:

i. minimal polynomial of α over Q
By Einsenstein’s Criterion (2.2), with q = 7 we have that q ∤ 1, 7|−7, 0, 0, . . .,
and 72 ∤ −7, hence f(t) is irreducibe over Q, thus is the minimal polynomial

mi(t) = f(t) = t6 − 7

which has roots {αζk}50.

ii. minimal polynomial of ζ over Q(α)
Since ζ is the primitive 6th root of unity, we know that the minimal poly-
nomial will be the 6th cyclotomic polynomial (2.4):

mii(t) = Φ6(t) = t2 − t+ 1

which has roots ζ,−ζ.
Since Q(α) ⊆ R, and the roots of Φ6(t) = t2− t+1 are in C, Φ6(t) remains
irreducible over Q(α).

Therefore, by the tower of law,

[Q(α, ζ) : Q] = degΦ6(t) · deg f(t) = 2 · 6 = 12

and by the Fundamental Theorem of Galois Theory, we know that

|Γ(Q(α, ζ) : Q)| = [Q(α, ζ) : Q] = 12

which tells us that there exist 12 Q-automorphisms of the Galois group.
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Let’s find the 12 Q-automorphisms. Start by defining σ which fixes ζ and
acts on α, sending it to another of the roots of the minimal polynomial of α
over Q, f(t), choose αζ.

Now define τ which fixes α and acts on ζ, sending it into another root of the
minimal polynomial of ζ over Q(α), choose −ζ.

σ : α 7→ αζ

ζ 7→ ζ

τ : α 7→ α

ζ 7→ −ζ = ζ−1

In other words, we have 12 Q-automorphisms, which are the combination of
σ and τ :

σkτ j : α 7→ αζk

ζ 7→ ζj

for 0 ≤ k ≤ 5 and j = ±1.

NOTE: WIP diagram.

αζ0

αζ1αζ2

αζ3

αζ4 αζ5

τ

0

σ

0

σ

0

σ

0

σ

0

σ

0

σ

Observe, that Γ is generated by the combination of σ and τ , and it is isomor-
phic to the group of symmetries of order 12, the dihedral group (2.6) of order
12, D6, ie. Γ ∼= D6.

Let’s find the subgroups of Γ, and the fixed fields of Q(α, ζ).
We know that Γ ∼= D6, and we know from the properties of the dihedral

group (2.6) that the number of subgroups of D6 will be d(6)+s(6) = 4+12 = 16
subgroups.
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generators order group fixed field notes (check fixed field)
⟨⟩ = ⟨σ6⟩ = ⟨τ2⟩ 1 id Q(α, ζ)
⟨σ⟩ = ⟨σ5⟩ 6 Z6 Q(ζ)
⟨σ2⟩ = ⟨σ4⟩ 3 Z3 Q(α3, ζ) σ2(α3) = α3ζ3·2 = α3ζ6 = α3 · 1 = α3

⟨σ3⟩ 2 Z2 Q(α2, ζ) σ3(α2) = (αζ3)2 = α2ζ6 = α2

⟨τ⟩ 2 Z2 Q(α)
⟨στ⟩ 2 Z2 Q(α+ αζ) σζ(α+αζ) = σ(α+αζ−1) = αζ+αζ−1ζ = αζ+α
⟨σ2τ⟩ 2 Z2 Q(α+ αζ2),Q(αζ) σ2τ(α + αζ2) = σ(α + αζ−2) = αζ2 + αζ−2ζ2 =

αζ2 + α
⟨σ3τ⟩ 2 Z2 Q(α+ αζ3) σ3τ(α + αζ3) = σ(α + αζ−3) = αζ3 + αζ−3ζ3 =

αζ3 + α
⟨σ4τ⟩ 2 Z2 Q(α+ αζ4),Q(αζ2) σ4τ(α + αζ4) = σ(α + αζ−4) = αζ4 + αζ−4ζ4 =

αζ4 + α
⟨σ5τ⟩ 2 Z2 Q(α+ αζ5) σ5τ(α + αζ5) = σ(α + αζ−5) = αζ5 + αζ−5ζ5 =

αζ5 + α
⟨σ, τ⟩ = ⟨σ5, τ⟩ 6 · 2 = 12 D6 Q
⟨σ2, τ⟩ = ⟨σ4, τ⟩ 3 · 2 = 6 D3 Q(α3) σ2(α3) = α3ζ3·2 = α3 and τ(α3) = α3

⟨σ3, τ⟩ 2 · 2 = 4 D2 Q(α2) σ3(α2) = α2ζ2·2 = α2 and τ(α2) = α2

⟨σ2, στ⟩ 3 · 2 = 6 D3 Q(α3 + α3ζ3) σ2(α3 +α3ζ3) = α3ζ3 +α3ζ3ζ3 = α3ζ3 +α3ζ6 =
α3ζ3 + α3

⟨σ3, στ⟩ 2 · 2 = 4 Z2 × Z2 Q(α2ζ2),Q(α2 + α2ζ2) σ3(α2 + α2ζ2) = α2ζ2·3 + α2ζ2·3ζ2 = α2 + α2ζ2

and στ(α2+α2ζ2) = α2ζ2+α2ζ−2ζ2 = α2ζ2+α2

⟨σ3, σ2τ⟩ 2 · 2 = 4 Z2 × Z2 Q(α2ζ4),Q(α2 + α2ζ4) σ2ζ(α2ζ4) = α2ζ2ζ−4 = α2ζ−2 = α2ζ4 and
σ3(α2ζ4) = α2ζ2·3ζ4 = α2ζ4
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