Notes on FRI

arnaucube

February 2023

Abstract

Notes taken from Vincenzo Iovino explainations and while reading about FRI [1], [2].

Usually while reading papers I take handwritten notes, this document contains some of them re-written to LaTeX.

The notes are not complete, don't include all the steps neither all the proofs.

Contents

1	Preliminaries	
	1.1 Low degree testing	
	1.1.1 General degree d test	
2	FRI protocol	
	2.1 Intuition	
	2.2 FRI	
3	FRI as polynomial commitment	

1 Preliminaries

1.1 Low degree testing

V wants to ensure that $deg(f(x)) \leq d$.

We are in the IOP setting, V asks on a point, P sends back the opening at that point.

TODO

1.1.1 General degree d test

Query at points $\{x_i\}_0^{d+1}$, z (with rand $z \in \mathbb{F}$). Interpolate p(x) at $\{f(x_i)\}_0^{d+1}$ to reconstruct the unique polynomial p of degree d such that $p(x_i) = f(x_i) \ \forall i = 1, \ldots, d+1$.

V checks p(z) = f(z), if the check passes, then V is convinced with high probability.

This needs d + 2 queries, is linear, $\mathcal{O}(n)$. With FRI we will have the test in $\mathcal{O}(\log d)$.

2 FRI protocol

Allows to test if a function f is a poly of degree $\leq d$ in $\mathcal{O}(\log d)$.

Note: "P sends f(x) to V", "sends", in the ideal IOP model means that all the table of f(x) is sent, in practice is sent a commitment to f(x).

2.1 Intuition

- V wants to check that two functions g, h are both polynomials of degree $\leq d$. Consider the following protocol:
 - 1. V sends $\alpha \in \mathbb{F}$ to P. P sends $f(x) = g(x) + \alpha h(x)$ to V.
 - 2. P sends $f(x) = g(x) + \alpha h(x)$ to V.
 - 3. V queries f(r), g(r), h(r) for rand $r \in \mathbb{F}$.
 - 4. V checks $f(r) = g(r) + \alpha h(r)$. (Schwartz-Zippel lema). If holds, V can be certain that $f(x) = g(x) + \alpha h(x)$.
 - 5. P proves that $deg(f) \leq d$.
 - 6. If V is convinced that $deg(f) \leq d$, V belives that both g, h have $deg \leq d$.

With high probability, α will not cancel the coeffs with $deg \ge d+1$.

Let $g(x) = a \cdot x^{d+1}$, $h(x) = b \cdot x^{d+1}$, and set $f(x) = g(x) + \alpha h(x)$. Imagine that P can chose α such that $ax^{d+1} + \alpha \cdot bx^{d+1} = 0$, then, in f(x) the coefficients of degree d + 1 would cancel.

Here, P proves g, h both have $deg \leq d$, but instead of doing $2 \cdot (d+2)$ queries (d+2 for g, and d+2 for h), it is done in d+2 queries (for f). So we halved the number of queries.

2.2 FRI

Both P and V have oracle access to function f.

V wants to test if f is polynomial with $deg(f) \le d$. Let $f_0(x) = f(x)$.

Each polynomial f(x) of degree that is a power of 2, can be written as

$$f(x) = f^{L}(x^{2}) + x f^{R}(x^{2})$$

for some polynomials f^L , f^R of degree $\frac{deg(f)}{2}$, each one containing the even and odd degree coefficients as follows:

$$f^{L}(x) = \sum_{0}^{\frac{d+1}{2}-1} c_{2i}x^{i}, \quad f^{R}(x) = \sum_{0}^{\frac{d+1}{2}-1} c_{2i+1}x^{i}$$

eg. for $f(x) = x^4 + x^3 + x^2 + x + 1$,

$$\begin{cases} f^{L}(x) = x^{2} + x + 1 \\ f^{R}(x) = x + 1 \end{cases} \quad f(x) = f^{L}(x^{2}) + x \cdot f^{R}(x^{2}) \\ = (x^{2})^{2} + (x^{2}) + 1 + x \cdot ((x^{2}) + 1) \\ = x^{4} + x^{2} + 1 + x^{3} + x \end{cases}$$

1. V sends to P some $\alpha_0 \in \mathbb{F}$. Let

$$f_0(x) = f_0^L(x^2) + x f_0^R(x^2)$$
(A₀)

2. P sends

$$f_1(x) = f_0^L(x) + \alpha_0 f_0^R(x) \tag{B_0}$$

to V.

(remember that "sends" in IOP model is that P commits to it)

3. V sends to P some $\alpha_1 \in \mathbb{F}$. Let

$$f_1(x) = f_1^L(x^2) + x f_1^R(x^2) \tag{A1}$$

4. P sends

$$f_2(x) = f_1^L(x) + \alpha_1 f_1^R(x) \tag{B}_1$$

to V.

5. Keep repeating the process, eg. let

$$f_2(x) = f_2^L(x^2) + x f_2^R(x^2)$$
(A₂)

until f_i^L , f_i^R are constant (degree 0 polynomials).

6. Once f_i^L , f_i^R are constant, P sends them to V.

Notice that at each step, $deg(f_i)$ halves.

Query phase

- 1. V sends rand $z \in \mathbb{F}$ to P
- 2. P sends $\{f_i(z^{2^i}), f_i(-z^{2^i})\}$ to V. eg. $f_0(z), f_0(-z), f_1(z^2), f_1(-z^2), f_2(z^4), f_2(-z^4), f_3(z^8), f_3(-z^8), \dots$
- 3. V checks $f_i(a) = f_i^L(a^2) + a f_i^R(a^2)$ for $a = \{z, -z\}$

$$\begin{pmatrix} 1 & z \\ 1 & -z \end{pmatrix} \begin{pmatrix} f_i^L(z^2) \\ f_i^R(z^2) \end{pmatrix} = \begin{pmatrix} f_i(z) \\ f_i(-z) \end{pmatrix}$$

The number of queries needed is $2 \cdot log(d)$.

3 FRI as polynomial commitment

[WIP. Unfinished document]

References

- Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon interactive oracle proofs of proximity, 2018. https://eccc. weizmann.ac.il/report/2017/134/.
- [2] Ulrich Haböck. A summary on the fri low degree test. Cryptology ePrint Archive, Paper 2022/1216, 2022. https://eprint.iacr.org/2022/1216.