Seminar exercises

February 2022

Solution 1.9.

1. Let $f(a)=u$, then $g(f(a))=g(u)$, so $g \circ f$ is a function.
2. We can see that composition of functions is associative as follows: we know that $[f \circ g](x)=f(g(x)), \forall x \in A$, so,

$$
(h \circ[g \circ f])(x)=h([g \circ f](x))=h(g(f(x)))
$$

and

$$
([h \circ g] \circ f)(x)=[h \circ g](f(x))=h(g(f(x)))
$$

Then, we can see that

$$
h \circ(g \circ f)=h(g(f(x)))=(h \circ g) \circ f
$$

Solution 1.28.

The quotient set of the equivalence relation in Example 1.27 is

$$
X / \sim=\left\{\left[\left(x_{0}, y_{0}\right)\right],\left[\left(x_{1}, y_{1}\right)\right], \ldots,\left[\left(x_{n}, y_{n}\right)\right]\right\}
$$

Yes, it is isomorphic to the cosets of the $n t h$ roots of unity, which are $\mathbb{G}_{n}=$ $\left\{w_{k}\right\}_{k=0}^{n-1}$, where $w_{k}=e^{\frac{2 \pi i}{n}}$.

Solution 2.2.

To prove that the inverse x^{-1} is unique, assume x^{-1} and \tilde{x}^{-1} are two inverses of x.
By the definition of the inverse, we know that $x \cdot x^{-1}=e$. And by the definition of the unit element, we know that $x \cdot e=x$.
Then,

$$
x^{-1} \cdot\left(x \cdot \tilde{x}^{-1}\right)=x^{-1} \cdot e=x^{-1}
$$

and

$$
\left(x^{-1} \cdot x\right) \cdot \tilde{x}^{-1}=e \cdot \tilde{x}^{-1}=\tilde{x}^{-1}
$$

By associativity property of groups, we know that

$$
x^{-1} \cdot\left(x \cdot \tilde{x}^{-1}\right)=\left(x^{-1} \cdot x\right) \cdot \tilde{x}^{-1}
$$

so,

$$
x^{-1} \cdot e=e \cdot \tilde{x}^{-1}
$$

which is

$$
x^{-1}=\tilde{x}^{-1}
$$

So, for any $x \in G$, the inverse x^{-1} is unique.

Solution 2.5.

Let $\alpha=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right), \beta=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)$, then,

$$
\alpha \cdot \beta=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right)
$$

and

$$
\beta \cdot \alpha=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)
$$

So, we can see that

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right) \neq\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)
$$

so, $\alpha \cdot \beta \neq \beta \cdot \alpha$.

Solution 2.26.

We want to prove that $f: G \rightarrow H$ is a monomorphism iff $\operatorname{ker} f=\{e\}$.
We know that f is a monomorphism (injective) iff $\forall a, b \in G, f(a)=f(b) \Rightarrow$ $a=b$.
Let $a, b \in G$ such that $f(a)=f(b)$. Then

$$
\begin{gathered}
f(a) f(b)^{-1}=f(b)(f(b))^{-1}=e \\
f(a) f\left(b^{-1}\right)=e \\
f\left(a b^{-1}\right)=e
\end{gathered}
$$

as ker $f=\{e\}$, then we see that $a b^{-1}=e$, so $a=b$. Thus f is a monomorphism.

