\documentclass{article} \usepackage[utf8]{inputenc} \usepackage{amsfonts} \usepackage{amsthm} \usepackage{amsmath} \usepackage{enumerate} \usepackage{hyperref} \hypersetup{ colorlinks, citecolor=black, filecolor=black, linkcolor=black, urlcolor=blue } \usepackage{xcolor} % prevent warnings of underfull \hbox: \usepackage{etoolbox} \apptocmd{\sloppy}{\hbadness 4000\relax}{}{} \theoremstyle{definition} \newtheorem{definition}{Def}[section] \newtheorem{theorem}[definition]{Thm} \title{Notes on Halo} \author{arnaucube} \date{July 2022} \begin{document} \maketitle \begin{abstract} Notes taken while reading Halo paper \cite{cryptoeprint:2019/1021}. Usually while reading papers I take handwritten notes, this document contains some of them re-written to $LaTeX$. The notes are not complete, don't include all the steps neither all the proofs. \end{abstract} \tableofcontents \section{modified IPA (from Halo paper)} Notes taken while reading about the modified Inner Product Argument (IPA) from the Halo paper \cite{cryptoeprint:2019/1021}. \subsection{Notation} \begin{description} \item[Scalar mul] $[a]G$, where $a$ is a scalar and $G \in \mathbb{G}$ \item[Inner product] $<\overrightarrow{a}, \overrightarrow{b}> = a_0 b_0 + a_1 b_1 + \ldots + a_{n-1} b_{n-1}$ \item[Multiscalar mul] $<\overrightarrow{a}, \overrightarrow{b}> = [a_0] G_0 + [a_1] G_1 + \ldots [a_{n-1}] G_{n-1}$ \end{description} \subsection{Transparent setup} $\overrightarrow{G} \in^r \mathbb{G}^d$, $H \in^r \mathbb{G}$ Prover wants to commit to $p(x)=a_0$ \subsection{Protocol} Prover: $$P=<\overrightarrow{a}, \overrightarrow{G}> + [r]H$$ $$v=<\overrightarrow{a}, \{1, x, x^2, \ldots, x^{d-1} \} >$$ where $\{1, x, x^2, \ldots, x^{d-1} \} = \overrightarrow{b}$. We can see that computing $v$ is the equivalent to evaluating $p(x)$ at $x$ ($p(x)=v$). We will prove: \begin{enumerate}[i.] \item polynomial $p(X) = \sum a_i X^i$\\ $p(x) = v$ (that $p(X)$ evaluates $x$ to $v$). \item $deg(p(X)) \leq d-1$ \end{enumerate} Both parties know $P$, point $x$ and claimed evaluation $v$. For $U \in^r \mathbb{G}$, $$P' = P + [v] U = <\overrightarrow{a}, G> + [r]H + [v] U$$ Now, for $k$ rounds ($d=2^k$, from $j=k$ to $j=1$): \begin{itemize} \item random blinding factors: $l_j, r_j \in \mathbb{F}_p$ \item $$L_j = < \overrightarrow{a}_{lo}, \overrightarrow{G}_{hi}> + [l_j] H + [< \overrightarrow{a}_{lo}, \overrightarrow{b}_{hi}>] U$$ $$L_j = < \overrightarrow{a}_{lo}, \overrightarrow{G}_{hi}> + [l_j] H + [< \overrightarrow{a}_{lo}, \overrightarrow{b}_{hi}>] U$$ \item Verifier sends random challenge $u_j \in \mathbb{I}$ \item Prover computes the halved vectors for next round: $$\overrightarrow{a} \leftarrow \overrightarrow{a}_{hi} \cdot u_j^{-1} + \overrightarrow{a}_{lo} \cdot u_j$$ $$\overrightarrow{b} \leftarrow \overrightarrow{b}_{lo} \cdot u_j^{-1} + \overrightarrow{b}_{hi} \cdot u_j$$ $$\overrightarrow{G} \leftarrow \overrightarrow{G}_{lo} \cdot u_j^{-1} + \overrightarrow{G}_{hi} \cdot u_j$$ \end{itemize} After final round, $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{G}$ are each of length 1. Verifier can compute $$G = \overrightarrow{G}_0 = < \overrightarrow{s}, \overrightarrow{G} >$$ and $$b = \overrightarrow{b}_0 = < \overrightarrow{s}, \overrightarrow{b} >$$ where $\overrightarrow{s}$ is the binary counting structure: \begin{align*} &s = (u_1^{-1} ~ u_2^{-1} \cdots ~u_k^{-1},\\ &~~~~~~u_1 ~~~ u_2^{-1} ~\cdots ~u_k^{-1},\\ &~~~~~~u_1^{-1} ~~ u_2 ~~\cdots ~u_k^{-1},\\ &~~~~~~~~~~~~~~\vdots\\ &~~~~~~u_1 ~~~~ u_2 ~~\cdots ~u_k) \end{align*} And verifier checks: $$[a]G + [r'] H + [ab] U == P' + \sum_{j=1}^k ( [u_j^2] L_j + [u_j^{-2}] R_j)$$ where the synthetic blinding factor $r'$ is $r' = r + \sum_{j=1}^k (l_j u_j^2 + r_j u_j^{-2})$. \vspace{1cm} Unfold: $$ \textcolor{brown}{[a]G} + \textcolor{cyan}{[r'] H} + \textcolor{magenta}{[ab] U} == \textcolor{blue}{P'} + \sum_{j=1}^k ( \textcolor{violet}{[u_j^2] L_j} + \textcolor{orange}{[u_j^{-2}] R_j}) $$ \begin{align*} &Right~side = \textcolor{blue}{P'} + \sum_{j=1}^k ( \textcolor{violet}{[u_j^2] L_j} + \textcolor{orange}{[u_j^{-2}] R_j})\\ &= \textcolor{blue}{< \overrightarrow{a}, \overrightarrow{G}> + [r] H + [v] U}\\ &+ \sum_{j=1}^k (\\ &\textcolor{violet}{[u_j^2] \cdot <\overrightarrow{a}_{lo}, \overrightarrow{G}_{hi}> + [l_j] H + [<\overrightarrow{a}_{lo}, \overrightarrow{b}_{hi}>] U}\\ &\textcolor{orange}{+ [u_j^{-2}] \cdot <\overrightarrow{a}_{hi}, \overrightarrow{G}_{lo}> + [r_j] H + [<\overrightarrow{a}_{hi}, \overrightarrow{b}_{lo}>] U} ) \end{align*} \begin{align*} &Left~side = \textcolor{brown}{[a]G} + \textcolor{cyan}{[r'] H} + \textcolor{magenta}{[ab] U}\\ & = \textcolor{brown}{< \overrightarrow{a}, \overrightarrow{G} >}\\ &+ \textcolor{cyan}{[r + \sum_{j=1}^k (l_j \cdot u_j^2 + r_j u_j^{-2})] \cdot H}\\ &+ \textcolor{magenta}{< \overrightarrow{a}, \overrightarrow{b} > U} \end{align*} \section{Amortization Strategy} TODO \bibliography{paper-notes.bib} \bibliographystyle{unsrt} \end{document}