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Abstract

Notes on ”A book of Abstract Algebra - by Charles C. Pinter”, is a
LaTeX version of handmade notes taken while reading the book. It con-
tains only some definitions and theorems (without proofs), so it is highly
recommended to read the actual book instead of the current notes. Addi-
tionally, some theorems and concepts are extended with notes from other
resources from outside the book.
This is an unfinished and ’work in progress’ document.
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1 Groups

Def 1.1 (Group). A set G with an operation ∗ which satisfies the axioms:

i. ∗ is associative
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ii. (identity element) there is an element e ∈ G s.t. a ∗ e = a and e ∗ a = a
∀a ∈ G

iii. (inverse) ∀a ∈ G, there is an element a−1 ∈ G s.t. a∗a−1 = e and a−1∗a = e

Def 1.2 (Abelian Group). A group G is said to be commutative if ∀a, b ∈ G,
ab = ba. A commutative group is also called Abelian.

Def 1.3 (Order of an element). In a group G, the order of an element a ∈ G
is the least positive integer n such that a · a · · · a = an = e. It is represented by
ord(a).

Def 1.4 (Order of a group). Order of a group G, is the number of elements in
G. It is represented by |G|.

Def 1.5 (Cyclic group). Let G be a group, and a ∈ G. If G consists of all the
powers of a and nothing else:

G = {an : n ∈ Z}

then, G is called a cyclic group, and a is called its generator.
The group G generated by a is defined by G = 〈a〉.

Thm 1.6. The order of a cyclic group is the same as the order of it’s generator.
In other words, for a cyclic group, |〈a〉| = ord(a).

〈a〉 defines a cyclic group generated by a. 〈a〉 = {e, a, a2, ..., an−1}

|〈a〉| defines the order of the cyclic group generated by a.

Thm 1.7. Every subgroup of a cyclic group is cyclic.

2 Subgroups

Def 2.1 (Subgroup). Let G be a group, and H a non-empty subset of G. If

i. the idenity e of G is in H.

ii. H is closed with respect to the operation. Which is for a, b ∈ H, ab ∈ H.

iii. H is closed with respect to inverses. Which is for a ∈ H, a−1 ∈ H.

we call H a subgroup of G. The operation of H is the same as the operation of
G.

Thm 2.2. Every subgroup of a cyclic group is cyclic.
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3 Functions

Def 3.1 (Function). If A and B are sets, then a function from A to B is a rule
which to every element x in A assigns a unique element y in B.
Functions are represented by f : A→ B, where ∀a ∈ A⇒ f(a) ∈ B.

Def 3.2 (Injective (monomorphism)). A function f : A→ B is called injective
if each element of B is the image of no more than one element of A.

Def 3.3 (Surjective (epimorphism)). A function f : A→ B is called surjective
if each element of B is the image of at least one element of A.

Def 3.4 (Bijective (isomorphism)). A function f : A→ B is called bijective if
it is both injective and surjective.
A function f : A→ B has an inverse iff it is bijective. In that case, the inverse
f−1 is a bijective function from B to A.

Def 3.5 (Composite function). A function f : A → B and g : B → C be
functions. The composite function denoted by g ◦ f is a function from A to C
defined as follows:

[g ◦ f ](x) = g(f(x)),∀x ∈ A

Def 3.6 (Permutation). By a permutation of a set A we mean a bijective func-
tion from A to A, that is, a one-to-one correspondence between A and itself.
The set of all the permutations of A, with the operation ◦ of composition, is a
group.
For any positive integer n, the symmetric group on the set 1, 2, 3, ..., n is called
the symmetric group on n elements, and is denoted by Sn.

4 Isomorphism

Def 4.1 (Isomorphism). Let G1 and G2 be groups. A bijective function f :
G1 → G2 with the property that for any two elements a, b ∈ G1,

f(ab) = f(a)f(b)

is called an isomorphism from G1 to G2.
If there exists an isomorphism from G1 to G2, we say that G1 is isomorphic to
G2, symbolized by G1

∼= G2.

Thm 4.2 (Cayley’s Theorem). Every group is isomorphic to a group of permu-
tations.

Thm 4.3. (Isomorphism of cyclic groups)

i. For every positive integer n, every cyclic group of order n is isomorphic to
Zn. Thus, any two cyclic groups of order n are isomorphic to each other.

ii. Every cyclic group of order infinity is isomorphic to Z, and therefore any
two cyclic groups of order infinity are isomorphic to each other.
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5 Cosets

Def 5.1 (Coset). Let G be a group, and H a subgroup of G. For any element
a in G, the symbol aH denotes the set of all products ah, as a remains fixed
and h ranges over H. aH is caled a left coset of H in G.
In similar fashion, Ha denotes the set of all products ha, as a remains fixed an
h ranges over H. Ha is called a right coset of H in G.

Thm 5.2. If Ha is any coset of H, there is a one-to-one correspondence from
H to Ha (there is a bijection between H and Ha).
If a ∈ G, then |H| = |Ha|.

Thm 5.3 (Lagrange’s theorem). Let G be a finite group, and H any subgroup
of G. The order of G is a multiple of the order of H.

Lagrange’s theorem can be easily seen by the facts that:

i. cosets partition the group G

ii. |Ha| = |H| (each coset has the same order as H).

By consequence,

Thm 5.4. If G is a group with a prime number p of elements, then G is a cyclic
group. Furthermore, any element a 6= e in G is a generator of G.

Thus,

Thm 5.5. The order of any element of a finite group divides the order of the
group.

Def 5.6 (Index of H in G). Number of cosets of H in G. Represented by (G : H).
Combined with Lagrange Theorem, we know that |G| = |H| · |G : H|, so,

(G : H) =
|G|
|H|

6 Homomorphisms

Def 6.1 (Homomorhism). If G and G are groups, a homomorphism from G to
H is a function f : G→ H s.t. for any two elements a, b ∈ G,

f(ab) = f(a)f(b)

If there exists a homomorphism from G onto H, we say that H is a homomorphic
image of G.

Note: an isomorphism is a bijective homomorphism.
Example of an homomorphism: f : Z6 → Z3.

Thm 6.2. Let G and G be groups, and f : G→ H a homomorphism. Then
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i. f(e) = e

ii. f(a−1) = [f(a)]−1, ∀a ∈ G

Def 6.3 (Conjugate). A conjugate of a is any element of the form xax−1, where
x ∈ G.

Def 6.4 (Normal subgroup). Let H be a subgroup of a group G. H is called a
normal subgroup of G if it is closed with respect to conjugates, that is, if
for any a ∈ H and x ∈ G, xax−1 ∈ H.
Alternatively, we can see that H is a normal subgroup iff ∀a ∈ G, aH = Ha.
In an abelian group, every subgroup is normal.

Def 6.5 (Kernel). Let f : G→ H be a homomorphism. The kernel of f is the
set K of all the elements of G which are carried by f onto the neutral element
of H. That is,

K = x ∈ G : f(x) = e

For every homomorphism, the e ∈ G maps to e ∈ H, so the kernel is never
empty, it always contains the identity eG, and if the kernel only contains the
identity, then f is one-to-one (injective).

7 Quotient Groups

Quotient group construction is useful as a way of actually manufacturing all the
homomorphic images of any group G. Additionally, we can often choose H so as
to ”factor out” unwanted properties of G, and prserve in G/H only ”desirable”
traits.

Def 7.1 (Coset multiplication). The coset of a, multiplied by the coset of b, is
defined to be the coset of ab. In symbols, Ha ·Hb = H(ab).

Thm 7.2. Let H be a normal subgroup of G. If Ha = Hc and Hb = Hd, then
H(ab) = H(cd).

Def 7.3. G/H denotes the set which consists of all the cosets of H.
Thus, if Ha,Hb,Hc, . . . are cosets of H, then G/H = {Ha,Hb,Hc, ...}.

Thm 7.4 (Quotient group). G/H with coset multiplication is a group.

Thm 7.5. G/H is a homomorphic image of G.
Conversely, every homomorphic image of G is a quotient group of G.

Thm 7.6. Let G be a group and H a subgroup of G. Then

i. Ha = Hb iff ab−1 ∈ H

ii. Ha = H iff a ∈ H

5



8 Rings

Def 8.1 (Ring). A set A with operations called addition and multiplication
which satisfy the following axions:

i. A with addition alone is an abelian group.

ii. Multiplication is associative.

iii. Multiplication is distributive over addition. That is, ∀a, b, c ∈ A,

a(b + c) = ab + ac

(b + c)a = ba + ca

Def 8.2 (Commutative ring). By definition, addition is commutative in every
ring but multiplication is not. When multiplication also is commutative in a
ring, we call that ring a commutative ring.

Def 8.3 (Unity). A ring does not necessarily have a neutral element for mul-
tiplication. If there is in A a neutral element for mulitplication, it is called the
unity of A, and is denoted by the symbol 1.
If A has a unity, we call A a ring with unity.

Def 8.4 (Field). If A is a commutative ring with unity in which every nonzero
element is invertible, A is called a field.

Def 8.5 (Divisor of zero). In any ring, a nonzero element a is called a divisor
of zero if there is a nonzero element b in the ring such that the product ab or
ba is equal to zero.

Def 8.6 (Cancellation property). A ring is said to have the cancellation prop-
erty if ab = ac or ba = ca implies b = c for any elements a, b, and c in the ring
if a 6= 0.

Thm 8.7. A ring has the cancellation property iff it has no divisors of zero.

Def 8.8 (Integral domain). An integral domain is defined to be a commutative
ring with unity having the cancellation property.

Every field is an integral domain, but the converse is not true (eg. Z is an
integral domain but not a field).

Def 8.9 (Ideal). A nonempty subset B of a ring A is called an ideal of A if B
is closed with respect to addition and negatives, and B absorbs products in A.

WIP: covered until chapter 18, work in progress.
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