\documentclass{article} \usepackage[utf8]{inputenc} \usepackage{amsfonts} \usepackage{amsthm} \usepackage{amsmath} \usepackage{mathtools} \usepackage{enumerate} \usepackage{hyperref} \usepackage{xcolor} \usepackage{pgf-umlsd} % diagrams \usepackage{centernot} % prevent warnings of underfull \hbox: \usepackage{etoolbox} \apptocmd{\sloppy}{\hbadness 4000\relax}{}{} \theoremstyle{definition} \newtheorem{definition}{Def}[section] \newtheorem{theorem}[definition]{Thm} % custom lemma environment to set custom numbers \newtheorem{innerlemma}{Lemma} \newenvironment{lemma}[1] {\renewcommand\theinnerlemma{#1}\innerlemma} {\endinnerlemma} \title{Notes on HyperNova} \author{arnaucube} \date{May 2023} \begin{document} \maketitle \begin{abstract} Notes taken while reading about Spartan \cite{cryptoeprint:2023/573}, \cite{cryptoeprint:2023/552}. Usually while reading papers I take handwritten notes, this document contains some of them re-written to $LaTeX$. The notes are not complete, don't include all the steps neither all the proofs. \end{abstract} \tableofcontents \section{CCS} \subsection{R1CS to CCS overview} \begin{itemize} \item[] R1CS instance: $S_{R1CS} = (m, n, N, l, A, B, C)$ \item[] CCS instance: $S_{CCS} = (m, n, N, l, t, q, d, M, S, c)$ \item[] R1CS-to-CCS parameters:\\ $n=n,~ m=m,~ N=N,~ l=l,~ t=3,~ q=2,~ d=2$\\ $M=\{A,B,C\}$, $S=\{\{0,~1\},~ \{2\}\}$, $c=\{1,-1\}$ \end{itemize} Then, we can see that the CCS relation: $$\sum_{i=0}^{q-1} c_i \cdot \bigcirc_{j \in S_i} M_j \cdot z ==0$$ where $z=(w, 1, x) \in \mathbb{F}^n$. In our R1CS-to-CCS parameters is equivalent to \begin{align*} &c_0 \cdot ( (M_0 z) \circ (M_1 z) ) + c_1 \cdot (M_2 z) ==0\\ \Longrightarrow &1 \cdot ( (A z) \circ (B z) ) + (-1) \cdot (C z) ==0\\ \Longrightarrow &( (A z) \circ (B z) ) - (C z) ==0 \end{align*} which is equivalent to the R1CS relation: $Az \circ Bz == Cz$ An example of the conversion from R1CS to CCS implemented in SageMath can be found at\\ \href{https://github.com/arnaucube/math/blob/master/r1cs-ccs.sage}{https://github.com/arnaucube/math/blob/master/r1cs-ccs.sage}. \subsection{Committed CCS} $R_{CCCS}$ instance: $(C, \mathsf{x})$, where $C$ is a commitment to a multilinear polynomial in $s'-1$ variables. Sat if: \begin{enumerate}[i.] \item $\text{Commit}(pp, \widetilde{w}) = C$ \item $\sum_{i=1}^q c_i \cdot \left( \prod_{j \in S_i} \left( \sum_{y \in \{0,1\}^{\log m}} \widetilde{M}_j(x, y) \cdot \widetilde{z}(y) \right) \right)$\\ where $\widetilde{z}(y) = \widetilde{(w, 1, \mathsf{x})}(x) ~\forall x \in \{0, 1\}^{s'}$ \end{enumerate} \subsection{Linearized Committed CCS} $R_{LCCCS}$ instance: $(C, u, \mathsf{x}, r, v_1, \ldots, v_t)$, where $C$ is a commitment to a multilinear polynomial in $s'-1$ variables, and $u \in \mathbb{F},~ \mathsf{x} \in \mathbb{F}^l,~ r \in \mathbb{F}^s,~ v_i \in \mathbb{F} ~\forall i \in [t]$. Sat if: \begin{enumerate}[i.] \item $\text{Commit}(pp, \widetilde{w}) = C$ \item $\forall i \in [t],~ v_i = \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_i(r, y) \cdot \widetilde{z}(y)$\\ where $\widetilde{z}(y) = \widetilde{(w, u, \mathsf{x})}(x) ~\forall x \in \{0, 1\}^{s'}$ \end{enumerate} \section{Multifolding Scheme for CCS} Recall sum-check protocol:\\ \underline{$C \leftarrow (g, l, d, T)$}:\\ % TODO use proper <, > $T=\sum_{x_1 \in \{0,1\}} \sum_{x_2 \in \{0,1\}} \cdots \sum_{x_l \in \{0,1\}} g(x_1, x_2, \ldots, x_l)$ $l$-variate polynomial g, degree $\leq d$ in each variable. let $s= \log m,~ s'= \log n$. \begin{enumerate} \item $V \rightarrow P: \gamma \in^R \mathbb{F},~ \beta \in^R \mathbb{F}^s$ \item $V: r_x' \in^R \mathbb{F}^s$ \item $V \leftrightarrow P$: sum-check protocol:\\ $$c \leftarrow (g, s, d+1, \sum_{j \in [t]} \gamma^j \cdot v_j)$$ where:\\ \begin{align*} g(x) &:= \left( \sum_{j \in [t]} \gamma^j \cdot L_j(x) \right) + \gamma^{t+1} \cdot Q(x)\\ L_j(x) &:= \widetilde{eq}(r_x, x) \cdot \left( \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_1(y) \right)\\ Q(x) &:= \widetilde{eq}(\beta, x) \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \left( \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_2(y) \right) \right) \end{align*} \item $P \rightarrow V$: $\left( (\sigma_1, \ldots, \sigma_t), (\theta_1, \ldots, \theta_t) \right)$ where $$\sigma_j = \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_1(y)$$ $$\theta_j = \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_2(y)$$ \item V: $e_1 \leftarrow \widetilde{eq}(r_x, r_x')$, $e_2 \leftarrow \widetilde{eq}(\beta, r_x')$\\ check: $$c = \left( \sum_{j \in [t]} \gamma^j e_1 \sigma_j + \gamma^{t+1} e_2 \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \sigma \right) \right)$$ \item $V \rightarrow P: \rho \in^R \mathbb{F}$ \item $V, P$: output the folded LCCCS instance $(C', u', \mathsf{x}', r_x', v_1', \ldots, v_t')$, where $\forall i \in [t]$: \begin{align*} C' &\leftarrow C_1 + \rho \cdot C_2\\ u' &\leftarrow u + \rho \cdot 1\\ \mathsf{x}' &\leftarrow \mathsf{x}_1 + \rho \cdot \mathsf{x}_2\\ v_i' &\leftarrow \sigma_i + \rho \cdot \theta_i \end{align*} \item $P$: output folded witness: $\widetilde{w}' \leftarrow \widetilde{w}_1 + \rho \cdot \widetilde{w}_2$. \end{enumerate} \bibliography{paper-notes.bib} \bibliographystyle{unsrt} \end{document}