|
\documentclass{article}
|
|
\usepackage[utf8]{inputenc}
|
|
\usepackage{amsfonts}
|
|
\usepackage{amsthm}
|
|
\usepackage{amsmath}
|
|
\usepackage{enumerate}
|
|
\usepackage{hyperref}
|
|
\usepackage{amssymb}
|
|
|
|
\begin{filecontents}[overwrite]{galois-theory-notes.bib}
|
|
@misc{ianstewart,
|
|
author = {Ian Stewart},
|
|
title = {{Galois Theory, Third Edition}},
|
|
year = {2004}
|
|
}
|
|
|
|
@misc{dihedral,
|
|
author = {Gaurab Bardhan and Palash Nath and Himangshu Chakraborty}
|
|
title = {Subgroups and normal subgroups of dihedral group up to isomorphism}
|
|
year = {2010},
|
|
note = {\url{https://scipp.ucsc.edu/~haber/ph251/Dn_subgroups.pdf}},
|
|
url = {https://scipp.ucsc.edu/~haber/ph251/Dn_subgroups.pdf}
|
|
}
|
|
\end{filecontents}
|
|
\nocite{*}
|
|
|
|
|
|
\theoremstyle{definition}
|
|
|
|
\newtheorem{innerdefn}{Definition}
|
|
\newenvironment{defn}[1]
|
|
{\renewcommand\theinnerdefn{#1}\innerdefn}
|
|
{\endinnerdefn}
|
|
|
|
\newtheorem{innerthm}{Theorem}
|
|
\newenvironment{thm}[1]
|
|
{\renewcommand\theinnerthm{#1}\innerthm}
|
|
{\endinnerthm}
|
|
|
|
\newtheorem{innerlemma}{Lemma}
|
|
\newenvironment{lemma}[1]
|
|
{\renewcommand\theinnerlemma{#1}\innerlemma}
|
|
{\endinnerlemma}
|
|
|
|
\newtheorem{innercor}{Lemma}
|
|
\newenvironment{cor}[1]
|
|
{\renewcommand\theinnercor{#1}\innercor}
|
|
{\endinnercor}
|
|
|
|
\newtheorem{innereg}{Example}
|
|
\newenvironment{eg}[1]
|
|
{\renewcommand\theinnereg{#1}\innereg}
|
|
{\endinnereg}
|
|
|
|
|
|
\title{Galois Theory notes}
|
|
\author{arnaucube}
|
|
\date{2025}
|
|
|
|
\begin{document}
|
|
|
|
\maketitle
|
|
|
|
\begin{abstract}
|
|
Notes taken while studying Galois Theory, mostyly from Ian Stewart's book "Galois Theory" \cite{ianstewart}.
|
|
|
|
Usually while reading books and papers I take handwritten notes in a notebook, this document contains some of them re-written to $LaTeX$.
|
|
|
|
The notes are not complete, don't include all the steps neither all the proofs.
|
|
\end{abstract}
|
|
|
|
\tableofcontents
|
|
|
|
\section{Recap on the degree of field extensions}
|
|
(Definitions, theorems, lemmas, corollaries and examples enumeration follows from Ian Stewart's book \cite{ianstewart}).
|
|
|
|
\begin{defn}{4.10}
|
|
A \emph{simple extension} is $L:K$ such that $L=K(\alpha)$ for some $\alpha \in L$.
|
|
\end{defn}
|
|
\begin{eg}{4.11}
|
|
Beware, $L=\mathbb{Q}(i, -i, \sqrt{5}, -\sqrt{5}) = \mathbb{Q}(i, \sqrt{5}) = \mathbb{Q}(i+\sqrt{5})$.
|
|
\end{eg}
|
|
|
|
\begin{defn}{5.5}
|
|
Let $L:K$, suppose $\alpha \in L$ is algebraic over $K$. Then, the \emph{minimal polynomial} of $\alpha$ over $K$ is the unique monic polynomial $m$ over $K$, $m(t) \in K[t]$, of smallest degree such that $m(\alpha)=0$.
|
|
\\
|
|
eg.: $i \in \mathbb{C}$ is algebraic over $\mathbb{R}$. The minimal polynomial of $i$ over $\mathbb{R}$ is $m(t)=t^2 +1$, so that $m(i)=0$.
|
|
\end{defn}
|
|
|
|
\begin{lemma}{5.9}
|
|
Every polynomial $a \in K[t]$ is congruent modulo $m$ to a unique polynomial of degree $< \delta m$.
|
|
\end{lemma}
|
|
\begin{proof}
|
|
Divide $a / m$ with remainder, $a= qm +r$, with $q,r \in K[t]$ and $\delta r < \delta m$.
|
|
Then, $a-r=qm$, so $a \equiv r \pmod{m}$.
|
|
|
|
It remains to prove uniqueness.
|
|
|
|
Suppose $\exists~ r \equiv s \pmod{m}$, with $\delta r, \delta s < \delta m$.
|
|
Then, $r-s$ is divisible by $m$, but has smaller degree than $m$.
|
|
|
|
Therefore, $r-s=0$, so $r=s$, proving uniqueness.
|
|
\end{proof}
|
|
|
|
\begin{lemma}{5.14}
|
|
Let $K(\alpha):K$ be a simple algebraic extension, let $m$ be the minimal polynomial of $\alpha$ over $K$, let $\delta m =n$.
|
|
|
|
Then $\{1, \alpha, \alpha^2, \ldots, \alpha^{n-1}\}$ is a basis for $K(\alpha)$ over $K$.
|
|
In particular, $[K(\alpha):K]=n$.
|
|
\end{lemma}
|
|
|
|
\begin{defn}{6.2}
|
|
The degree $[L:K]$ of a field extension $L:K$ is the dimension of L considered as a vector space over $K$.
|
|
|
|
Equivalently, the dimension of $L$ as a vector space over $K$ is the number of terms in the expression for a general element of $L$ using coefficients from $K$.
|
|
\end{defn}
|
|
|
|
\begin{eg}{6.3}
|
|
\begin{enumerate}
|
|
\item $\mathbb{C}$ elements are 2-dimensional over $\mathbb{R}$ ($p+qi \in \mathbb{C}$, with $p,q \in \mathbb{R}$), because a basis is $\{1, i\}$, hence $[\mathbb{C}:\mathbb{R}]=2$.
|
|
\item $[ \mathbb{Q}(i, \sqrt{5}) : \mathbb{Q}]=4$, since the elements $\{1, \sqrt{5}, i, i\sqrt{5}\}$ form a basis for $\mathbb{Q}(i, \sqrt{5})$ over $\mathbb{Q}$.
|
|
\end{enumerate}
|
|
\end{eg}
|
|
|
|
\begin{thm}{6.4}\emph{(Short Tower Law)} \label{shorttowerlaw}
|
|
If $K, L, M \subseteq \mathbb{C}$, and $K \subseteq L \subseteq M$, then $[M:K]=[M:L]\cdot [L:K]$.
|
|
\end{thm}
|
|
\begin{proof}
|
|
Let $(x_i)_{i \in I}$ be a basis for $L$ over $K$,
|
|
let $(y_j)_{j \in J}$ be a basis for $M$ over $L$.\\
|
|
$\forall i \in I, j \in J$, we have $x_i \in L, u_j \in M$.
|
|
\\
|
|
Want to show that $(x_i y_j)_{i\in I, j\in J}$ is a basis for $M$ over $K$.
|
|
\begin{enumerate}[i.]
|
|
\item prove linear independence:\\
|
|
Suppose that
|
|
$$\sum_{ij} k_{ij} x_i y_j = 0 ~(k_{ij} \in K)$$
|
|
rearrange
|
|
$$\sum_j (\underbrace{\sum_i k_{ij} x_i}_{\in L}) y_j = 0 ~(k_{ij} \in K)$$
|
|
Since $\sum_i k_{ij} x_i \in L$, and the $y_j \in M$ are linearly independent over $L$, then $\sum_i k_{ij} x_i = 0$.
|
|
\\
|
|
Repeating the argument inside $L$ $\longrightarrow$ $k_{ij}=0 ~~\forall i\in I, j\in J$.
|
|
\\
|
|
So the elements $x_i y_j$ are linearly independent over $K$.
|
|
|
|
\item prove that $x_i y_j$ span $M$ over $K$:\\
|
|
Any $x \in M$ can be written $x=\sum_j \lambda_j y_j$ for $\lambda_j \in L$, because $y_j$ spans $M$ over $L$.
|
|
Similarly, $\forall j\in J,~ \lambda_j = \sum_i \lambda_{ij} x_i y_j$ for $\lambda_{ij} \in K$.\\
|
|
Putting the pieces together, $x=\sum_{ij} \lambda_{ij} x_i y_j$ as required.
|
|
\end{enumerate}
|
|
\end{proof}
|
|
|
|
\begin{cor}{6.6}\emph{(Tower Law)}\\ \label{towerlaw}
|
|
If $K_0 \subseteq K_1 \subseteq \ldots \subseteq K_n$ are subfields of $\mathbb{C}$, then
|
|
$$[K_n:K_0] = [K_n:K_{n-1}] \cdot [K_{n-1}:K_{n-2}] \cdot \ldots \cdot [K_1: K_0]$$
|
|
\end{cor}
|
|
\begin{proof}
|
|
From \ref{shorttowerlaw}.
|
|
\end{proof}
|
|
|
|
[...]
|
|
|
|
|
|
\newpage
|
|
|
|
\section{Tools}
|
|
This section contains tools that I found useful to solve Galois Theory related problems, and that don't appear in Stewart's book.
|
|
|
|
\subsection{De Moivre's Theorem and Euler's formula}\label{demoivre}
|
|
Useful for finding all the roots of a polynomial.
|
|
|
|
Euler's formula:
|
|
$$e^{i \psi} = cos \psi + i \cdot sin \psi$$
|
|
|
|
The n-th roots of a complex number $z=x + i y = r (cos \theta + i \cdot sin \theta)$ are given by
|
|
|
|
$$z_k = \sqrt[n]{r} \cdot \left(cos(\frac{\theta + 2k \pi}{n}) + i \cdot sin(\frac{\theta + 2k \pi}{n}) \right)$$
|
|
for $k=0, \ldots, n-1$.
|
|
|
|
So, by Euler's formula:
|
|
$$z_k = \sqrt[n]{r} \cdot e^{i (\frac{\theta + 2 k \pi}{n})}$$
|
|
|
|
\subsection{Einsenstein's Criterion} \label{einsenstein}
|
|
\emph{reference: Stewart's book}
|
|
|
|
Let $f(t) = a_0 + a_1 t + \ldots + a_n t^n$, suppose there is a prime $q$ such that
|
|
\begin{enumerate}
|
|
\item $q \nmid a_n$
|
|
\item $q | a_i$ for $i=0, \ldots, n-1$
|
|
\item $q^2 \nmid a_0$
|
|
\end{enumerate}
|
|
Then, $f$ is irreducible over $\mathbb{Q}$.
|
|
|
|
\emph{TODO proof \& Gauss lemma.}
|
|
|
|
|
|
\subsection{Elementary symmetric polynomials}
|
|
\emph{TODO from orange notebook, page 36}
|
|
|
|
\subsection{Cyclotomic polynomials} \label{cyclotomicpoly}
|
|
\emph{TODO theory from brown muji notebook, page 82}
|
|
|
|
Examples:
|
|
|
|
\begin{align*}
|
|
\Phi_n(x) &= x^{n-1} + x^{n-2} + \ldots + x^2 + x + 1 = \sum_{i=0}^{n-1} x^i\\
|
|
\Phi_{2p}(x) &= x^{p-1} + \ldots + x^2 - x + 1 = \sum_{i=0}^{p-1} (-x)^i\\
|
|
\Phi_m(x) &= x^{m/2} + 1, ~~\text{when $m$ is a power of $2$}
|
|
\end{align*}
|
|
|
|
|
|
\subsection{Lemma 1.42 from J.S.Milne's book}
|
|
\emph{TODO add reference to Milne's book}
|
|
|
|
Useful for when dealing with $x^p - 1$ with $p$ prime.
|
|
|
|
Observe that
|
|
|
|
$$x^p -1 = (x-1)(x^{p-1} + x^{p-2} + \ldots + 1)$$
|
|
|
|
Notice that
|
|
$$\Phi_p(x) = x^{p-1} + x^{p-2} + \ldots + 1$$
|
|
is the $p$-th Cyclotomic polynomial.
|
|
|
|
\begin{lemma}{1.42}
|
|
If $p$ prime, then $x^{p-1} + \ldots + 1$ is irreducible; hence $\mathbb{Q}[e^{2 \pi i /p}]$ has degree $p-1$ over $\mathbb{Q}$.
|
|
\end{lemma}
|
|
\begin{proof}
|
|
Let $f(x) = (x^p - 1)/(x-1) = x^{p-1} + \ldots + 1$
|
|
then
|
|
$$
|
|
f(x+1) = \frac{(x+1)^p -1}{x+1-1} = \frac{(x+1)^p -1}{x} = x^{p-1} + \ldots + a_i x^i + \ldots + p
|
|
$$
|
|
|
|
with $a_i = \left( \stackrel{p}{i+1} \right)$.
|
|
|
|
We know that $p | a_i$ for $i= 1, \ldots, p-2$, therefore $f(x+1)$ is irreducibe by Einsenstein's Criterion.
|
|
|
|
This implies that $f(x)$ is irreducible.
|
|
\end{proof}
|
|
|
|
|
|
\subsection{Dihedral groups - Groups of symmetries} \label{dihedral}
|
|
Source: Wikipedia and \cite{dihedral}.
|
|
|
|
Dihedral groups ($\mathbb{D}_n$) represent the symmetries of a regular $n$-gon.
|
|
|
|
Properties:
|
|
\begin{itemize}
|
|
\item are non-abelian (for $n>2$), ie. $rs \neq sr$
|
|
\item order $2n$
|
|
\item generated by a rotation $r$ and a reflextion $s$
|
|
\item $r^n = s^2 = id,~~~(rs)^2=id$
|
|
\end{itemize}
|
|
Subgroups of $\mathbb{D}_n$:
|
|
\begin{itemize}
|
|
\item rotation form a cyclic subgroup of order $n$, denoted as $<r>$
|
|
\item for each $d$ such that $d|n$, $\exists~ \mathbb{D}_d$ with order $2d$
|
|
\item normal subgroups
|
|
\begin{itemize}
|
|
\item for $n$ odd: $\mathbb{D}_n$ and $<r^d>$ for every $d|n$
|
|
\item for $n$ even: $2$ additional normal subgroups
|
|
\end{itemize}
|
|
\item Klein four-groups: $\mathbb{Z}_2 \times \mathbb{Z}_2$, of order 4
|
|
\end{itemize}
|
|
|
|
\vspace{0.3cm}
|
|
Total number of subgroups in $\mathbb{D}_n$: $d(n) + s(n)$, where $d(n)$ is the number of positive disivors of $n$, and $s(n)$ is the sum of those divisors.
|
|
|
|
\begin{eg}{}
|
|
For $\mathbb{D}_6$, we have $\{1,2,3,6\} | 6$, so $d(n) = d(6) = 4$, and
|
|
$s(6) = 1+2+3+6 = 12$; henceforth, the total amount of subgroups is $d(n)+s(n) = 4+12 = 16$.
|
|
\end{eg}
|
|
|
|
\vspace{0.3cm}
|
|
For $n \geq 3, ~~\mathbb{D}_n \subseteq \mathbb{S}_n$ (subgroup of the Symmetry group).
|
|
|
|
|
|
|
|
\newpage
|
|
|
|
\section{Exercises}
|
|
|
|
\subsection{Galois groups}
|
|
|
|
\subsubsection[t6-7]{$t^6-7 \in \mathbb{Q}$}
|
|
|
|
This exercise comes from a combination of exercises 12.4 and 13.7 from \cite{ianstewart}.
|
|
|
|
First let's find the roots. By De Moivre's Theorem (\ref{demoivre}), $t_k =
|
|
\sqrt[6]{7} \cdot e^{i \frac{2 \pi k}{6}}$.
|
|
|
|
From which we denote $\alpha = \sqrt[6]{7}$, and $\zeta = e^{\frac{2 \pi i}{6}}$, so that the
|
|
roots of the polynomial are $\{ \alpha, \alpha \zeta, \alpha \zeta^2, \alpha \zeta^3, \alpha \zeta^4, \alpha \zeta^5\}$, ie.
|
|
$\{ \alpha \zeta^k \}_0^5$.
|
|
|
|
Hence the \emph{splitting field} is $\mathbb{Q}(\alpha, \zeta)$.
|
|
|
|
\emph{Degree of the extension}
|
|
|
|
In order to find $[\mathbb{Q}(\alpha, \zeta) : \mathbb{Q}$, we're going to split it in tow
|
|
parts. By the Tower Law (\ref{towerlaw}),
|
|
|
|
$$[\mathbb{Q}(\alpha, \zeta) : \mathbb{Q}] = [\mathbb{Q}(\alpha, \zeta) : \mathbb{Q}(\alpha)] \cdot [\mathbb{Q}(\alpha) : \mathbb{Q}]$$
|
|
|
|
To find each degree, we will find the minimal polynomial of the adjoined term over the base field of the extension:
|
|
|
|
\begin{enumerate}[i.]
|
|
\item minimal polynomial of $\alpha$ over $\mathbb{Q}$\\
|
|
By Einsenstein's Criterion (\ref{einsenstein}), with $q=7$ we have that $q
|
|
\nmid 1$, $7 | {-7,0,0,\ldots}$, and $7^2 \nmid -7$, hence $f(t)$ is
|
|
irreducibe over $\mathbb{Q}$, thus is the minimal polynomial
|
|
$$m_i(t)= f(t) =t^6-7$$
|
|
which has roots $\{ \alpha \zeta^k \}_0^5$.
|
|
\item minimal polynomial of $\zeta$ over $\mathbb{Q}(\alpha)$\\
|
|
Since $\zeta$ is the primitive $6$th root of unity, we know that the minimal
|
|
polynomial will be the $6$th cyclotomic polynomial (\ref{cyclotomicpoly}):
|
|
$$m_{ii}(t) = \Phi_6(t) = t^2 - t + 1$$
|
|
which has roots $\zeta, -\zeta$.
|
|
|
|
Since $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$, and the roots of
|
|
$\Phi_6(t)=t^2 - t +1$ are in $\mathbb{C}$, $\Phi_6(t)$ remains irreducible
|
|
over $\mathbb{Q}(\alpha)$.
|
|
\end{enumerate}
|
|
|
|
\vspace{0.5cm}
|
|
Therefore, by the tower of law,
|
|
$$[\mathbb{Q}(\alpha, \zeta) : \mathbb{Q}] = \deg{\Phi_6(t)} \cdot \deg{f(t)} = 2 \cdot 6 = 12$$
|
|
and by the Fundamental Theorem of Galois Theory, we know that
|
|
$$|\Gamma( \mathbb{Q}(\alpha, \zeta) : \mathbb{Q} )| = [\mathbb{Q}(\alpha, \zeta) : \mathbb{Q}] = 12$$
|
|
which tells us that there exist $12$ $\mathbb{Q}$-automorphisms of the Galois group.
|
|
|
|
|
|
\vspace{0.5cm}
|
|
Let's find the $12$ $\mathbb{Q}$-automorphisms. Start by defining $\sigma$ which
|
|
fixes $\zeta$ and acts on $\alpha$, sending it to another of the roots of the
|
|
minimal polynomial of $\alpha$ over $\mathbb{Q}$, $f(t)$, choose $\alpha \zeta$.
|
|
|
|
Now define $\tau$ which fixes $\alpha$ and acts on $\zeta$, sending it into
|
|
another root of the minimal polynomial of $\zeta$ over $\mathbb{Q}(\alpha)$,
|
|
choose $-\zeta$.
|
|
|
|
\vspace{0.3cm}
|
|
\begin{tabular}{@{}l l@{}}
|
|
$\begin{aligned}
|
|
\sigma: \alpha &\mapsto \alpha \zeta \\
|
|
\zeta &\mapsto \zeta
|
|
\end{aligned}$
|
|
&
|
|
$\begin{aligned}
|
|
\tau: \alpha &\mapsto \alpha\\
|
|
\zeta &\mapsto -\zeta = \zeta^{-1}
|
|
\end{aligned}$
|
|
\end{tabular}
|
|
|
|
In other words, we have $12$ $\mathbb{Q}$-automorphisms, which are the
|
|
combination of $\sigma$ and $\tau$:
|
|
|
|
$$\begin{aligned}
|
|
\sigma^k \tau^j:~~&\alpha \mapsto \alpha \zeta^k\\
|
|
&\zeta \mapsto \zeta^j
|
|
\end{aligned}$$
|
|
|
|
for $0 \leq k \leq 5$ and $j = \pm 1$.
|
|
|
|
\vspace{0.5cm}
|
|
\emph{TODO diagram}
|
|
\vspace{0.5cm}
|
|
|
|
Observe, that $\Gamma$ is generated by the combination of $\sigma$ and $\tau$,
|
|
and it is isomorphic to the group of symmetries of order 12, the dihedral
|
|
group (\ref{dihedral}) of order 12, $\mathbb{D}_6$, ie. $\Gamma \cong \mathbb{D}_6$.
|
|
|
|
\vspace{0.5cm}
|
|
|
|
Let's find the subgroups of $\Gamma$, and the fixed fields of $\mathbb{Q}(\alpha, \zeta)$.
|
|
|
|
We know that $\Gamma \cong \mathbb{D}_6$, and we know from the properties
|
|
of the dihedral group (\ref{dihedral}) that the number of subgroups of
|
|
$\mathbb{D}_6$ will be $d(6) + s(6) = 4 + 12 = 16$ subgroups.
|
|
|
|
|
|
\vspace{0.4cm}
|
|
|
|
\hspace*{-3.5cm}
|
|
\begin{tabular}{ c c c c | p{7.5cm} }
|
|
\hline
|
|
generators & order & group & fixed field & notes (check fixed field)\\
|
|
\hline
|
|
$\langle \rangle = \langle \sigma^6 \rangle=\langle \tau^2 \rangle$ & 1 & id & $\mathbb{Q}(\alpha,\zeta)$ & \\
|
|
$\langle \sigma \rangle = \langle \sigma^5 \rangle$ & 6 & $\mathbb{Z}_6$ & $\mathbb{Q}(\zeta)$ & \\
|
|
$\langle \sigma^2 \rangle=\langle \sigma^4 \rangle$ & 3 & $\mathbb{Z}_3$ & $\mathbb{Q}(\alpha^3, \zeta)$ & $\sigma^2(\alpha^3)=\alpha^3 \zeta^{3\cdot 2}=\alpha^3 \zeta^6 = \alpha^3 \cdot 1 = \alpha^3$\\
|
|
$\langle \sigma^3 \rangle$ & 2 & $\mathbb{Z}_2$ & $\mathbb{Q}(\alpha^2,\zeta)$ & $\sigma^3(\alpha^2)=(\alpha\zeta^3)^2=\alpha^2\zeta^6=\alpha^2$\\
|
|
\hline
|
|
$\langle \tau \rangle$ & 2 & $\mathbb{Z}_2$ & $\mathbb{Q}(\alpha)$ & \\
|
|
\hline
|
|
$\langle \sigma\tau \rangle$ & 2 & $\mathbb{Z}_2$ & $\mathbb{Q}(\alpha+\alpha\zeta)$ &
|
|
$\sigma\zeta(\alpha+\alpha\zeta)=\sigma(\alpha+\alpha\zeta^{-1}) = \alpha\zeta + \alpha\zeta^{-1}\zeta=\alpha\zeta+\alpha$\\
|
|
$\langle \sigma^2\tau \rangle$ & 2 & $\mathbb{Z}_2$ & $\mathbb{Q}(\alpha+\alpha\zeta^2), \mathbb{Q}(\alpha\zeta)$ &
|
|
$\sigma^2\tau(\alpha+\alpha\zeta^2) = \sigma(\alpha+\alpha\zeta^{-2})=\alpha\zeta^2+ \alpha\zeta^{-2}\zeta^2=\alpha\zeta^2+\alpha$\\
|
|
$\langle \sigma^3\tau \rangle$ & 2 & $\mathbb{Z}_2$ & $\mathbb{Q}(\alpha+\alpha\zeta^3)$ &
|
|
$\sigma^3\tau(\alpha+\alpha\zeta^3) = \sigma(\alpha+\alpha\zeta^{-3})=\alpha\zeta^3+ \alpha\zeta^{-3}\zeta^3=\alpha\zeta^3+\alpha$\\
|
|
$\langle \sigma^4\tau \rangle$ & 2 & $\mathbb{Z}_2$ & $\mathbb{Q}(\alpha+\alpha\zeta^4), \mathbb{Q}(\alpha\zeta^2)$ &
|
|
$\sigma^4\tau(\alpha+\alpha\zeta^4) = \sigma(\alpha+\alpha\zeta^{-4})=\alpha\zeta^4+ \alpha\zeta^{-4}\zeta^4=\alpha\zeta^4+\alpha$\\
|
|
$\langle \sigma^5\tau \rangle$ & 2 & $\mathbb{Z}_2$ & $\mathbb{Q}(\alpha+\alpha\zeta^5)$ &
|
|
$\sigma^5\tau(\alpha+\alpha\zeta^5) = \sigma(\alpha+\alpha\zeta^{-5})=\alpha\zeta^5+ \alpha\zeta^{-5}\zeta^5=\alpha\zeta^5+\alpha$\\
|
|
\hline
|
|
$\langle \sigma, \tau \rangle = \langle \sigma^5,\tau \rangle$ & $6\cdot2=12$ & $\mathbb{D}_6$ & $\mathbb{Q}$ & \\
|
|
$\langle \sigma^2, \tau \rangle = \langle \sigma^4,\tau \rangle$ & $3\cdot2=6$ & $\mathbb{D}_3$ & $\mathbb{Q}(\alpha^3)$ &
|
|
$\sigma^2(\alpha^3)=\alpha^3\zeta^{3\cdot 2}=\alpha^3$ and $\tau(\alpha^3)=\alpha^3$\\
|
|
$\langle \sigma^3, \tau \rangle$ & $2\cdot2=4$ & $\mathbb{D}_2$ & $\mathbb{Q}(\alpha^2)$ &
|
|
$\sigma^3(\alpha^2)=\alpha^2\zeta^{2\cdot 2}=\alpha^2$ and $\tau(\alpha^2)=\alpha^2$\\
|
|
\hline
|
|
$\langle \sigma^2, \sigma\tau \rangle$ & $3\cdot 2=6$ & $\mathbb{D}_3$ & $\mathbb{Q}(\alpha^3+\alpha^3\zeta^3)$ &
|
|
$\sigma^2(\alpha^3 + \alpha^3 \zeta^3) = \alpha^3\zeta^3 + \alpha^3 \zeta^3\zeta^3 = \alpha^3\zeta^3 + \alpha^3\zeta^6 = \alpha^3\zeta^3+\alpha^3$\\
|
|
$\langle \sigma^3, \sigma\tau \rangle$ & $2\cdot2=4$ & $\mathbb{Z}_2 \times \mathbb{Z}_2$ & $\mathbb{Q}(\alpha^2\zeta^2),\mathbb{Q}(\alpha^2+\alpha^2\zeta^2)$ &
|
|
$\sigma^3(\alpha^2+\alpha^2\zeta^2)=\alpha^2\zeta^{2\cdot3}+\alpha^2\zeta^{2\cdot3}\zeta^2=\alpha^2+\alpha^2\zeta^2$
|
|
and
|
|
$\sigma\tau(\alpha^2+\alpha^2\zeta^2)=\alpha^2\zeta^2+\alpha^2\zeta^{-2}\zeta^2 = \alpha^2\zeta^2+\alpha^2$\\
|
|
$\langle \sigma^3, \sigma^2\tau\rangle$ & $2\cdot2=4$ & $\mathbb{Z}_2 \times \mathbb{Z}_2$ & $\mathbb{Q}(\alpha^2\zeta^4),\mathbb{Q}(\alpha^2+\alpha^2\zeta^4)$ &
|
|
$\sigma^2\zeta(\alpha^2\zeta^4)=\alpha^2\zeta^2\zeta^{-4}=\alpha^2\zeta^{-2}=\alpha^2\zeta^4$
|
|
and $\sigma^3(\alpha^2\zeta^4)=\alpha^2\zeta^{2\cdot3}\zeta^4=\alpha^2\zeta^4$
|
|
\end{tabular}
|
|
|
|
|
|
|
|
\bibliographystyle{unsrt}
|
|
\bibliography{galois-theory-notes.bib}
|
|
|
|
\end{document}
|