\documentclass{article}
|
|
\usepackage[utf8]{inputenc}
|
|
\usepackage{amsfonts}
|
|
\usepackage{amsthm}
|
|
\usepackage{amsmath}
|
|
\usepackage{amssymb}
|
|
\usepackage{mathtools}
|
|
\usepackage{enumerate}
|
|
\usepackage{hyperref}
|
|
\hypersetup{
|
|
colorlinks,
|
|
citecolor=black,
|
|
filecolor=black,
|
|
linkcolor=black,
|
|
urlcolor=blue
|
|
}
|
|
% \usepackage{xcolor}
|
|
|
|
% prevent warnings of underfull \hbox:
|
|
% \usepackage{etoolbox}
|
|
% \apptocmd{\sloppy}{\hbadness 4000\relax}{}{}
|
|
|
|
\theoremstyle{definition}
|
|
\newtheorem{definition}{Def}[section]
|
|
\newtheorem{theorem}[definition]{Thm}
|
|
\newtheorem{innersolution}{}
|
|
\newenvironment{solution}[1]
|
|
{\renewcommand\theinnersolution{#1}\innersolution}
|
|
{\endinnersolution}
|
|
|
|
|
|
\title{Weil Pairing - study}
|
|
\author{arnaucube}
|
|
\date{August 2022}
|
|
|
|
\begin{document}
|
|
|
|
\maketitle
|
|
|
|
\begin{abstract}
|
|
Notes taken from \href{https://sites.google.com/site/matanprasma/artifact}{Matan Prsma} math seminars and also while reading about Bilinear Pairings. Usually while reading papers and books I take handwritten notes, this document contains some of them re-written to $LaTeX$.
|
|
|
|
The notes are not complete, don't include all the steps neither all the proofs. I use these notes to revisit the concepts after some time of reading the topic.
|
|
\end{abstract}
|
|
|
|
\tableofcontents
|
|
|
|
\section{Divisors and rational functions}
|
|
|
|
\begin{definition}{Divisor}
|
|
$$D= \sum_{P \in E(\mathbb{K})} n_p \cdot [P]$$
|
|
\end{definition}
|
|
|
|
\begin{definition}{Degree \& Sum}
|
|
$$deg(D)= \sum_{P \in E(\mathbb{K})} n_p$$
|
|
$$sum(D)= \sum_{P \in E(\mathbb{K})} n_p \cdot P$$
|
|
\end{definition}
|
|
|
|
\begin{definition}{Principal divisor}
|
|
iff $deg(D)=0$ and $sum(D)=0$
|
|
\end{definition}
|
|
$D \sim D'$ iff $D - D'$ is principal.
|
|
|
|
|
|
\begin{definition}{Evaluation of a rational function}
|
|
$$r(D)= \prod r(P)^{n_p}$$
|
|
\end{definition}
|
|
|
|
\section{Weil reciprocity}
|
|
\begin{theorem}{(Weil reciprocity)}
|
|
Let $E/ \mathbb{K}$ be an e.c. over an alg. closed field. If $r,~s \in \mathbb{K}\setminus \{0\}$ are rational functions whose divisors have disjoint support, then
|
|
$$r(div(s)) = s(div(r))$$
|
|
\end{theorem}
|
|
Proof. (todo)
|
|
|
|
\section{Generic Weil Pairing}
|
|
Let $E(\mathbb{K})$, with $\mathbb{K}$ of char $p$, $n$ s.t. $p \nmid n$.
|
|
|
|
$\mathbb{K}$ large enough: $E(\mathbb{K})[n] = E(\mathbb{\overline{K}}) = \mathbb{Z}_n \oplus \mathbb{Z}_n$ (with $n^2$ elements).
|
|
|
|
For $P, Q \in E[n]$,
|
|
\begin{align*}
|
|
D_P &\sim [P] - [0]\\
|
|
D_Q &\sim [Q] - [0]
|
|
\end{align*}
|
|
|
|
We need them to have disjoint support:
|
|
\begin{align*}
|
|
D_P &\sim [P] - [0]\\
|
|
D_Q' &\sim [Q+T] - [T]
|
|
\end{align*}
|
|
|
|
$$\Delta D = D_Q - D_Q' = [Q] - [0] - [Q+T] + [T]$$
|
|
|
|
|
|
Note that $n D_P$ and $n D_Q$ are principal. Proof:
|
|
\begin{align*}
|
|
n D_P &= n [P] - n [O]\\
|
|
deg(n D_P) &= n - n = 0\\
|
|
sum(n D_P) &= nP - nO = 0
|
|
\end{align*}
|
|
($nP = 0$ bcs. $P$ is n-torsion)
|
|
|
|
Since $n D_P,~ n D_Q$ are principal, we know that $f_P,~ f_Q$ exist.
|
|
|
|
Take
|
|
\begin{align*}
|
|
f_P &: div(f_P) = n D_P\\
|
|
f_Q &: div(f_Q) = n D_Q
|
|
\end{align*}
|
|
|
|
We define
|
|
$$
|
|
e_n(P, Q) = \frac{f_P(D_Q)}{f_Q(D_P)}
|
|
$$
|
|
|
|
Remind: evaluation of a rational function over a divisor $D$:
|
|
\begin{align*}
|
|
D &= \sum n_P [P]\\
|
|
r(D) &= \prod r(P)^{n_P}
|
|
\end{align*}
|
|
|
|
If $D_P = [P+S] - [S],~~ D_Q=[Q-T]-[T]$ what is $e_n(P, Q)$?
|
|
|
|
\begin{align*}
|
|
f_P(D_Q) &= f_P(Q+T)^1 \cdot f_P(T)^{-1}\\
|
|
f_Q(D_P) &= f_Q(P+S)^1 \cdot f_Q(S)^{-1}
|
|
\end{align*}
|
|
|
|
$$
|
|
e_n(P, Q) = \frac{f_P(Q+T)}{f_P(T)} / \frac{f_Q(P+S)}{f_Q(S)}
|
|
$$
|
|
|
|
with $S \neq \{O, P, -Q, P-Q \}$.
|
|
|
|
|
|
\section{Properties}
|
|
|
|
|
|
\section{Exercises}
|
|
\emph{An Introduction to Mathematical Cryptography, 2nd Edition} - Section 6.8. Bilinear pairings on elliptic curves
|
|
|
|
\begin{solution}{6.29}
|
|
$div(R(x) \cdot S(x)) = div( R(x)) + div( S(x))$, where $R(x), S(x)$ are rational functions.
|
|
\\proof:\\
|
|
\emph{Norm} of $f$: $N_f = f \cdot \overline{f}$, and we know that $N_{fg} = N_f \cdot N_g~\forall~\mathbb{K}[E]$,\\
|
|
then $$deg(f) = deg_x(N_f)$$\\
|
|
and $$deg(f \cdot g) = deg(f) + deg(g)$$
|
|
|
|
Proof:
|
|
$$deg(f \cdot g) = deg_x(N_{fg}) = deg_x(N_f \cdot N_g)$$
|
|
$$= deg_x(N_f) + deg_x(N_g) = deg(f) + deg(g)$$
|
|
|
|
So, $\forall P \in E(\mathbb{K}),~ ord_P(rs) = ord_P(r) + ord_P(s)$.\\
|
|
As $div(r) = \sum_{P\in E(\mathbb{K})} ord_P(r)[P]$, $div(s) = \sum ord_P(s)[P]$.
|
|
|
|
So,
|
|
$$div(rs) = \sum ord_P(rs)[P]$$
|
|
$$= \sum ord_P(r)[P] + \sum ord_P(s)[P] = div(r) + div(s)$$
|
|
\end{solution}
|
|
|
|
\vspace{0.5cm}
|
|
|
|
\begin{solution}{6.31}
|
|
$$e_m(P, Q) = e_m(Q, P)^{-1} \forall P, Q \in E[m]$$
|
|
Proof:
|
|
We know that $e_m(P, P) = 1$, so:
|
|
$$1 = e_m(P+Q, P+Q) = e_m(P, P) \cdot e_m(P, Q) \cdot e_m(Q, P) \cdot e_m(Q, Q)$$
|
|
|
|
and we know that $e_m(P, P) = 1$, then we have:
|
|
$$1 = e_m(P, Q) \cdot e_m(Q, P)$$
|
|
$$\Longrightarrow e_m(P, Q) = e_m(Q, P)^{-1}$$
|
|
\end{solution}
|
|
|
|
|
|
|
|
|
|
\end{document}
|