# Primitive Root of Unity
|
|
def get_primitive_root_of_unity(F, n):
|
|
# using the method described by Thomas Pornin in
|
|
# https://crypto.stackexchange.com/a/63616
|
|
q = F.order()
|
|
for k in range(q):
|
|
if k==0:
|
|
continue
|
|
g = F(k)
|
|
# g = F.random_element()
|
|
if g==0:
|
|
continue
|
|
w = g ^ ((q-1)/n)
|
|
if w^(n/2) != 1:
|
|
return g, w
|
|
|
|
# Roots of Unity
|
|
def get_nth_roots_of_unity(n, primitive_w):
|
|
w = [0]*n
|
|
for i in range(n):
|
|
w[i] = primitive_w^i
|
|
return w
|
|
|
|
|
|
# fft (Fast Fourier Transform) returns:
|
|
# - nth roots of unity
|
|
# - Vandermonde matrix for the nth roots of unity
|
|
# - Inverse Vandermonde matrix
|
|
def fft(F, n):
|
|
g, primitive_w = get_primitive_root_of_unity(F, n)
|
|
|
|
w = get_nth_roots_of_unity(n, primitive_w)
|
|
|
|
ft = matrix(F, n)
|
|
for j in range(n):
|
|
row = []
|
|
for k in range(n):
|
|
row.append(primitive_w^(j*k))
|
|
ft.set_row(j, row)
|
|
ft_inv = ft^-1
|
|
return w, ft, ft_inv
|
|
|
|
|
|
# Fast polynomial multiplicaton using FFT
|
|
def poly_mul(fa, fb, F, n):
|
|
w, ft, ft_inv = fft(F, n)
|
|
|
|
# compute evaluation points from polynomials fa & fb at the roots of unity
|
|
a_evals = []
|
|
b_evals = []
|
|
for i in range(n):
|
|
a_evals.append(fa(w[i]))
|
|
b_evals.append(fb(w[i]))
|
|
|
|
# multiply elements in a_evals by b_evals
|
|
c_evals = map(operator.mul, a_evals, b_evals)
|
|
c_evals = vector(c_evals)
|
|
|
|
# using FFT, convert the c_evals into fc(x)
|
|
fc_coef = c_evals*ft_inv
|
|
fc2=P(fc_coef.list())
|
|
return fc2, c_evals
|