You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

62 lines
1.5 KiB

# Primitive Root of Unity
def get_primitive_root_of_unity(F, n):
# using the method described by Thomas Pornin in
# https://crypto.stackexchange.com/a/63616
q = F.order()
for k in range(q):
if k==0:
continue
g = F(k)
# g = F.random_element()
if g==0:
continue
w = g ^ ((q-1)/n)
if w^(n/2) != 1:
return g, w
# Roots of Unity
def get_nth_roots_of_unity(n, primitive_w):
w = [0]*n
for i in range(n):
w[i] = primitive_w^i
return w
# fft (Fast Fourier Transform) returns:
# - nth roots of unity
# - Vandermonde matrix for the nth roots of unity
# - Inverse Vandermonde matrix
def fft(F, n):
g, primitive_w = get_primitive_root_of_unity(F, n)
w = get_nth_roots_of_unity(n, primitive_w)
ft = matrix(F, n)
for j in range(n):
row = []
for k in range(n):
row.append(primitive_w^(j*k))
ft.set_row(j, row)
ft_inv = ft^-1
return w, ft, ft_inv
# Fast polynomial multiplicaton using FFT
def poly_mul(fa, fb, F, n):
w, ft, ft_inv = fft(F, n)
# compute evaluation points from polynomials fa & fb at the roots of unity
a_evals = []
b_evals = []
for i in range(n):
a_evals.append(fa(w[i]))
b_evals.append(fb(w[i]))
# multiply elements in a_evals by b_evals
c_evals = map(operator.mul, a_evals, b_evals)
c_evals = vector(c_evals)
# using FFT, convert the c_evals into fc(x)
fc_coef = c_evals*ft_inv
fc2=P(fc_coef.list())
return fc2, c_evals