You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

186 lines
5.7 KiB

\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{mathtools}
\usepackage{enumerate}
\usepackage{hyperref}
\usepackage{xcolor}
% prevent warnings of underfull \hbox:
\usepackage{etoolbox}
\apptocmd{\sloppy}{\hbadness 4000\relax}{}{}
\theoremstyle{definition}
\newtheorem{definition}{Def}[section]
\newtheorem{theorem}[definition]{Thm}
% custom lemma environment to set custom numbers
\newtheorem{innerlemma}{Lemma}
\newenvironment{lemma}[1]
{\renewcommand\theinnerlemma{#1}\innerlemma}
{\endinnerlemma}
\title{Notes on FRI}
\author{arnaucube}
\date{February 2023}
\begin{document}
\maketitle
\begin{abstract}
Notes taken from \href{https://sites.google.com/site/vincenzoiovinoit/}{Vincenzo Iovino} explainations and while reading about FRI \cite{fri}, \cite{cryptoeprint:2022/1216}.
Usually while reading papers I take handwritten notes, this document contains some of them re-written to $LaTeX$.
The notes are not complete, don't include all the steps neither all the proofs.
\end{abstract}
\tableofcontents
\section{Preliminaries}
\subsection{Low degree testing}
V wants to ensure that $deg(f(x)) \leq d$.
We are in the IOP setting, V asks on a point, P sends back the opening at that point.
TODO
\subsubsection{General degree d test}
Query at points $\{ x_i \}_0^{d+1},~z$ (with rand $z \overset{R}{\in} \mathbb{F}$).
Interpolate $p(x)$ at $\{f(x_i)\}_0^{d+1}$ to reconstruct the unique polynomial $p$ of degree $d$ such that $p(x_i)=f(x_i)~\forall i=1, \ldots, d+1$.
V checks $p(z)=f(z)$, if the check passes, then V is convinced with high probability.
This needs $d+2$ queries, is linear, $\mathcal{O}(n)$. With FRI we will have the test in $\mathcal{O}(\log{}d)$.
\section{FRI protocol}
Allows to test if a function $f$ is a poly of degree $\leq d$ in $\mathcal{O}(\log{}d)$.
Note: "P \emph{sends} $f(x)$ to V", "\emph{sends}", in the ideal IOP model means that all the table of $f(x)$ is sent, in practice is sent a commitment to $f(x)$.
\subsection{Intuition}
V wants to check that two functions $g,~h$ are both polynomials of degree $\leq d$.
Consider the following protocol:
\begin{enumerate}
\item V sends $\alpha \in \mathbb{F}$ to P. P sends $f(x) = g(x) + \alpha h(x)$ to V.
\item P sends $f(x)=g(x) + \alpha h(x)$ to V.
\item V queries $f(r), ~g(r), ~h(r)$ for rand $r \in \mathbb{F}$.
\item V checks $f(r)=g(r) + \alpha h(r)$. (Schwartz-Zippel lema).
If holds, V can be certain that $f(x)=g(x)+ \alpha h(x)$.
\item P proves that $deg(f) \leq d$.
\item If V is convinced that $deg(f) \leq d$, V belives that both $g, h$ have $deg \leq d$.
\end{enumerate}
%/// TODO tabulate this next lines
With high probablility, $\alpha$ will not cancel the coeffs with $deg \geq d+1$. % TODO check which is the name of this theorem or why this is true
Let $g(x)=a \cdot x^{d+1}, ~~ h(x)=b \cdot x^{d+1}$, and set $f(x) = g(x) + \alpha h(x)$.
Imagine that P can chose $\alpha$ such that $a x^{d+1} + \alpha \cdot b x^{d+1} = 0$, then, in $f(x)$ the coefficients of degree $d+1$ would cancel.
%///
\quad
Here, P proves $g,~h$ both have $deg \leq d$, but instead of doing $2 \cdot (d+2)$ queries ($d+2$ for $g$, and $d+2$ for $h$), it is done in $d+2$ queries (for $f$).
So we halved the number of queries.
\subsection{FRI}
Both P and V have oracle access to function $f$.
V wants to test if $f$ is polynomial with $deg(f) \leq d$.
Let $f_0(x)=f(x)$.
Each polynomial $f(x)$ of degree that is a power of $2$, can be written as
$$f(x) = f^L(x^2) + x f^R(x^2)$$
for some polynomials $f^L,~f^R$ of degree $\frac{deg(f)}{2}$, each one containing the even and odd degree coefficients as follows:
% $f^L(x)$ is built from the even degree coefficients divided by $x$, and $f^R(x)$ from the odd degree coefficients divided by $x$.
$$f^L(x)= \sum_0^{\frac{d+1}{2}-1} c_{2i} x^i ,~~ f^R(x)= \sum_0^{\frac{d+1}{2}-1} c_{2i+1} x^i$$
eg. for $f(x)=x^4+x^3+x^2+x+1$,
\begin{align*}
\begin{rcases}
f^L(x)=x^2+x+1\\
f^R(x)=x+1
\end{rcases}
~f(x) = f^L(x^2) &+ x \cdot f^R(x^2)\\
= (x^2)^2 + (x^2) + 1 &+ x \cdot ((x^2) + 1)\\
= x^4 + x^2 + 1 &+ x^3 + x
\end{align*}
\begin{enumerate}
\item V sends to P some $\alpha_0 \in \mathbb{F}$.
Let
\begin{equation}\tag{$A_0$}
f_0(x) = f_0^L(x^2) + x f_0^R(x^2)
\end{equation}
\item P sends
\begin{equation}\tag{$B_0$}
f_1(x) = f_0^L(x) + \alpha_0 f_0^R(x)
\end{equation}
to V.
(remember that "sends" in IOP model is that P commits to it)
\item V sends to P some $\alpha_1 \in \mathbb{F}$.
Let
\begin{equation}\tag{$A_1$}
f_1(x) = f_1^L(x^2) + x f_1^R(x^2)
\end{equation}
\item P sends
\begin{equation}\tag{$B_1$}
f_2(x) = f_1^L(x) + \alpha_1 f_1^R(x)
\end{equation}
to V.
\item Keep repeating the process, eg. let
\begin{equation}\tag{$A_2$}
f_2(x) = f_2^L(x^2) + x f_2^R(x^2)
\end{equation}
until $f_i^L,~ f_i^R$ are constant (degree 0 polynomials).
\item Once $f_i^L,~ f_i^R$ are constant, P sends them to V.
\end{enumerate}
Notice that at each step, $deg(f_i)$ halves.
\paragraph{Query phase}
\begin{enumerate}
\item V sends rand $z \in \mathbb{F}$ to P
\item P sends $\{ f_i(z^{2^i}), f_i(- z^{2^i}) \}$ to V.\\
{\scriptsize eg. $f_0(z),~ f_0(-z),~ f_1(z^2),~ f_1(-z^2),~ f_2(z^4),~ f_2(-z^4),~ f_3(z^8),~ f_3(-z^8),~ \ldots$}
\item V checks $f_i(a)=f_i^L(a^2) + a f_i^R(a^2)$ for $a=\{z, -z\}$
$$
\begin{pmatrix}
1 & z\\
1 & -z
\end{pmatrix}
\begin{pmatrix}
f_i^L(z^2)\\
f_i^R(z^2)
\end{pmatrix}
=
\begin{pmatrix}
f_i(z)\\
f_i(-z)
\end{pmatrix}
$$
\end{enumerate}
The number of queries needed is $2 \cdot log(d)$.
\section{FRI as polynomial commitment}
\emph{[WIP. Unfinished document]}
\bibliography{paper-notes.bib}
\bibliographystyle{unsrt}
\end{document}