# Sage impl of the powers of tau,
|
|
# a Go implementation can be found at: https://github.com/arnaucube/eth-kzg-ceremony-alt
|
|
|
|
|
|
load("bls12-381.sage") # file from https://github.com/arnaucube/math/blob/master/bls12-381.sage
|
|
e = Pairing()
|
|
|
|
def new_empty_SRS(nG1, nG2):
|
|
g1s = [None] * nG1
|
|
g2s = [None] * nG2
|
|
for i in range(0, nG1):
|
|
g1s[i] = e.G1
|
|
for i in range(0, nG2):
|
|
g2s[i] = e.G2
|
|
|
|
return [g1s, g2s]
|
|
|
|
def new_tau(random):
|
|
return e.F1(random)
|
|
|
|
def compute_contribution(new_tau, prev_srs):
|
|
g1s = [None] * len(prev_srs[0])
|
|
g2s = [None] * len(prev_srs[1])
|
|
srs = [g1s, g2s]
|
|
Q = e.r
|
|
|
|
# compute [τ'⁰]₁, [τ'¹]₁, [τ'²]₁, ..., [τ'ⁿ⁻¹]₁, where n = len(prev_srs.G1s)
|
|
for i in range(0, len(prev_srs[0])):
|
|
srs[0][i] = (new_tau^i) * prev_srs[0][i]
|
|
|
|
# compute [τ'⁰]₂, [τ'¹]₂, [τ'²]₂, ..., [τ'ⁿ⁻¹]₂, where n = len(prev_srs.G2s)
|
|
for i in range(0, len(prev_srs[1])):
|
|
srs[1][i] = (new_tau^i) * prev_srs[1][i]
|
|
|
|
return srs
|
|
|
|
def generate_proof(tau, prev_srs, new_srs):
|
|
# g_1^{tau'} = g_1^{p * tau} = SRS_G1s[1] * p
|
|
g1_ptau = prev_srs[0][1] * tau
|
|
# g_2^{p}
|
|
g2_p = tau * e.G2
|
|
return [g1_ptau, g2_p]
|
|
|
|
def verify(prev_srs, new_srs, proof):
|
|
# 1. check that elements of the newSRS are valid points
|
|
for i in range(0, len(new_srs[0])-1):
|
|
assert new_srs[0][i] != None
|
|
assert new_srs[0][i] != e.E1(0)
|
|
assert new_srs[0][i] in e.E1
|
|
|
|
for i in range(0, len(new_srs[1])-1):
|
|
assert new_srs[1][i] != None
|
|
assert new_srs[1][i] != e.E2(0)
|
|
assert new_srs[1][i] in e.E2
|
|
|
|
# 2. check proof.G1PTau == newSRS.G1Powers[1]
|
|
assert proof[0] == new_srs[0][1]
|
|
|
|
# 3. check newSRS.G1s[1] (g₁^τ'), is correctly related to prev_srs.G1s[1] (g₁^τ)
|
|
# e([τ]₁, [p]₂) == e([τ']₁, [1]₂)
|
|
assert e.pair(prev_srs[0][1], proof[1]) == e.pair(new_srs[0][1], e.G2)
|
|
|
|
# 4. check newSRS following the powers of tau structure
|
|
# i) e([τ'ⁱ]₁, [τ']₂) == e([τ'ⁱ⁺¹]₁, [1]₂), for i ∈ [1, n−1]
|
|
for i in range(0, len(new_srs[0])-1):
|
|
assert e.pair(new_srs[0][i], new_srs[1][1]) == e.pair(new_srs[0][i+1], e.G2)
|
|
|
|
# ii) e([τ']₁, [τ'ʲ]₂) == e([1]₁, [τ'ʲ⁺¹]₂), for j ∈ [1, m−1]
|
|
for i in range(0, len(new_srs[1])-1):
|
|
assert e.pair(new_srs[0][1], new_srs[1][i]) == e.pair(e.G1, new_srs[1][i+1])
|
|
|
|
|
|
|
|
|
|
|
|
(prev_srs) = new_empty_SRS(5, 3)
|
|
|
|
random = 12345
|
|
tau = new_tau(random)
|
|
|
|
new_srs = compute_contribution(tau, prev_srs)
|
|
|
|
proof = generate_proof(tau, prev_srs, new_srs)
|
|
|
|
verify(prev_srs, new_srs, proof)
|