from hashlib import sha256
|
|
|
|
# Ring Signatures
|
|
# bLSAG: Back’s Linkable Spontaneous Anonymous Group signatures
|
|
#
|
|
# A Rust implementation of this scheme can be found at:
|
|
# https://github.com/arnaucube/ring-signatures-rs
|
|
|
|
def hashToPoint(a):
|
|
# TODO use a proper hash-to-point
|
|
h = sha256((str(a)).encode('utf-8'))
|
|
r = int(h.hexdigest(), 16) * g
|
|
return r
|
|
|
|
def hash(R, m, A, B, q):
|
|
h = sha256((
|
|
str(R) + str(m) + str(A) + str(B)
|
|
).encode('utf-8'))
|
|
r = int(h.hexdigest(), 16)
|
|
return int(mod(r, q))
|
|
|
|
def print_ring(a):
|
|
print("ring of c's:")
|
|
for i in range(len(a)):
|
|
print(i, a[i])
|
|
print("")
|
|
|
|
class Prover:
|
|
def __init__(self, F, g):
|
|
self.F = F # Z_p
|
|
self.g = g # elliptic curve generator
|
|
self.q = self.g.order() # order of group
|
|
|
|
def new_key(self):
|
|
self.w = int(self.F.random_element())
|
|
self.K = self.g * self.w
|
|
return self.K
|
|
|
|
def sign(self, m, R):
|
|
# determine pi (the position of signer's public key in R
|
|
pi = -1
|
|
for i in range(len(R)):
|
|
if self.K == R[i]:
|
|
pi = i
|
|
break
|
|
assert pi>=0
|
|
|
|
a = int(self.F.random_element())
|
|
r = [None] * len(R)
|
|
# for i \in {1, 2, ..., n} \ {i=pi}
|
|
for i in range(0, len(R)):
|
|
if i==pi:
|
|
continue
|
|
|
|
r[i] = int(mod(int(self.F.random_element()), self.q))
|
|
|
|
c = [None] * len(R)
|
|
# c_{pi+1}
|
|
pi1 = mod(pi + 1, len(R))
|
|
c[pi1] = hash(R, m, a * self.g, hashToPoint(R[pi]) * a, self.q)
|
|
|
|
key_image = self.w * hashToPoint(self.K)
|
|
|
|
# do c_{i+1} from i=pi+1 to pi-1:
|
|
for j in range(0, len(R)-1):
|
|
i = mod(pi1+j, len(R))
|
|
i1 = mod(pi1+j +1, len(R))
|
|
|
|
c[i1] = hash(R, m, r[i] * self.g + c[i] * R[i], r[i] * hashToPoint(R[i]) + c[i] * key_image, self.q)
|
|
|
|
# compute r_pi
|
|
r[pi] = int(mod(a - c[pi] * self.w, self.q))
|
|
print_ring(c)
|
|
|
|
return [c[0], r]
|
|
|
|
def verify(g, R, m, key_image, sig):
|
|
q = g.order()
|
|
c1 = sig[0]
|
|
r = sig[1]
|
|
assert len(R) == len(r)
|
|
|
|
# check that key_image \in G (EC), by l * key_image == 0
|
|
assert q * key_image == 0 # in sage 0 EC point is represented as (0:1:0)
|
|
|
|
|
|
# for i \in 1,2,...,n
|
|
c = [None] * len(R)
|
|
c[0] = c1
|
|
for j in range(0, len(R)):
|
|
i = mod(j, len(R))
|
|
i1 = mod(j+1, len(R))
|
|
c[i1] = hash(R, m, r[i] * g + c[i] * R[i], r[i] * hashToPoint(R[i]) + c[i] * key_image, q)
|
|
|
|
print_ring(c)
|
|
assert c1 == c[0]
|
|
|
|
# Tests
|
|
import unittest, operator
|
|
|
|
# ethereum elliptic curve
|
|
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
|
|
a = 0
|
|
b = 7
|
|
F = GF(p)
|
|
E = EllipticCurve(F, [a,b])
|
|
GX = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
|
|
GY = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8
|
|
g = E(GX,GY)
|
|
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
|
|
h = 1
|
|
q = g.order()
|
|
assert is_prime(p)
|
|
assert is_prime(q)
|
|
assert g * q == 0
|
|
|
|
|
|
class TestRingSignatures(unittest.TestCase):
|
|
def test_bLSAG_ring_of_5(self):
|
|
test_bLSAG(5, 3)
|
|
def test_bLSAG_ring_of_20(self):
|
|
test_bLSAG(20, 14)
|
|
|
|
def test_bLSAG(ring_size, pi):
|
|
print(f"[bLSAG] Testing with a ring of {ring_size} keys")
|
|
prover = Prover(F, g)
|
|
n = ring_size
|
|
R = [None] * n
|
|
|
|
# generate prover's key pair
|
|
K_pi = prover.new_key()
|
|
|
|
# generate other n public keys
|
|
for i in range(0, n):
|
|
R[i] = g * i
|
|
|
|
# set K_pi
|
|
R[pi] = K_pi
|
|
|
|
# sign m
|
|
m = 1234
|
|
print("sign")
|
|
sig = prover.sign(m, R)
|
|
|
|
print("verify")
|
|
key_image = prover.w * hashToPoint(prover.K)
|
|
verify(g, R, m, key_image, sig)
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|