from hashlib import sha256
|
|
|
|
# Implementation of Sigma protocol & OR proofs
|
|
|
|
|
|
def hash_two_points(a, b):
|
|
h = sha256((str(a)+str(b)).encode('utf-8'))
|
|
return int(h.hexdigest(), 16)
|
|
|
|
def generic_verify(g, X, A, c, z):
|
|
return g * int(z) == X * int(c) + A
|
|
|
|
###
|
|
# Sigma protocol interactive
|
|
###
|
|
|
|
class Prover_interactive:
|
|
def __init__(self, F, g):
|
|
self.F = F # Z_q
|
|
self.g = g # elliptic curve generator
|
|
|
|
def new_key(self):
|
|
self.w = self.F.random_element()
|
|
X = self.g * int(self.w)
|
|
return X
|
|
|
|
def new_commitment(self):
|
|
self.a = self.F.random_element()
|
|
A = self.g * int(self.a)
|
|
return A
|
|
|
|
def gen_proof(self, c):
|
|
return int(self.a) + int(c) * int(self.w)
|
|
|
|
class Verifier_interactive:
|
|
def __init__(self, F, g):
|
|
self.F = F
|
|
self.g = g
|
|
|
|
def new_challenge(self, A):
|
|
self.A = A
|
|
self.c = self.F.random_element()
|
|
return self.c
|
|
|
|
def verify(self, X, z):
|
|
return self.g * int(z) == X * int(self.c) + self.A
|
|
|
|
|
|
###
|
|
# Sigma protocol non-interactive
|
|
###
|
|
class Prover:
|
|
def __init__(self, F, g):
|
|
self.F = F # Z_p
|
|
self.g = g # elliptic curve generator
|
|
|
|
def new_key(self):
|
|
self.w = self.F.random_element()
|
|
X = self.g * int(self.w)
|
|
return X
|
|
|
|
def gen_proof(self, X):
|
|
a = self.F.random_element()
|
|
A = self.g * int(a)
|
|
c = hash_two_points(A, X)
|
|
z = int(a) + c * int(self.w)
|
|
return A, z
|
|
|
|
|
|
class Verifier:
|
|
def __init__(self, F, g):
|
|
self.F = F
|
|
self.g = g
|
|
|
|
def verify(self, X, A, z):
|
|
c = hash_two_points(A, X)
|
|
return self.g * int(z) == X * c + A
|
|
|
|
class Simulator:
|
|
def __init__(self, F, g):
|
|
self.F = F
|
|
self.g = g
|
|
|
|
def simulate(self, X):
|
|
c = self.F.random_element()
|
|
z = self.F.random_element()
|
|
# A = g * int(z) + X*(-int(c))
|
|
A = g * int(z) - X * int(c)
|
|
return A, c, z
|
|
|
|
###
|
|
# OR proof (with 2 parties)
|
|
###
|
|
|
|
class ORProver_2parties:
|
|
def __init__(self, F, g):
|
|
self.F = F # Z_p
|
|
self.g = g # elliptic curve generator
|
|
|
|
def new_key(self):
|
|
self.w = self.F.random_element()
|
|
X = self.g * int(self.w)
|
|
return X
|
|
|
|
def gen_commitments(self, xs):
|
|
# gen commitment A
|
|
self.a = self.F.random_element()
|
|
A = self.g * int(self.a)
|
|
|
|
# run the simulator for 1-b
|
|
sim = Simulator(self.F, self.g)
|
|
A_1, c_1, z_1 = sim.simulate(xs[1])
|
|
|
|
self.A_1 = A_1
|
|
self.c_1 = c_1
|
|
self.z_1 = z_1
|
|
|
|
return [A, A_1]
|
|
|
|
def gen_proof(self, s):
|
|
# split the challenge s = c xor c_1
|
|
c = int(s) ^^ int(self.c_1)
|
|
# compute z
|
|
z = int(self.a) + int(c) * int(self.w)
|
|
# note, here the order of the returned elements is always the same, in
|
|
# a real-world implementation would be shuffled
|
|
return [c, self.c_1], [z, self.z_1]
|
|
|
|
class ORVerifier_2parties:
|
|
def __init__(self, F, g):
|
|
self.F = F
|
|
self.g = g
|
|
|
|
def new_challenge(self, As):
|
|
self.As = As
|
|
self.s = self.F.random_element()
|
|
return self.s
|
|
|
|
def verify(self, Xs, cs, zs):
|
|
assert self.s == int(cs[0]) ^^ int(cs[1])
|
|
assert self.g * int(zs[0]) == Xs[0] * int(cs[0]) + self.As[0]
|
|
assert self.g * int(zs[1]) == Xs[1] * int(cs[1]) + self.As[1]
|
|
|
|
###
|
|
# OR proof (with n parties)
|
|
###
|
|
|
|
class ORProver:
|
|
def __init__(self, F, g):
|
|
self.F = F # Z_p
|
|
self.g = g # elliptic curve generator
|
|
|
|
def new_key(self):
|
|
self.w = self.F.random_element()
|
|
X = self.g * int(self.w)
|
|
return X
|
|
|
|
def gen_commitments(self, xs):
|
|
# gen commitment A
|
|
self.a = self.F.random_element()
|
|
A = self.g * int(self.a)
|
|
self.As = [A]
|
|
|
|
|
|
# run the simulator for the rest of Xs
|
|
sim = Simulator(self.F, self.g)
|
|
self.cs = []
|
|
self.zs = []
|
|
for i in range(1, len(xs)):
|
|
A_1, c_1, z_1 = sim.simulate(xs[i])
|
|
self.As.append(A_1)
|
|
self.cs.append(c_1)
|
|
self.zs.append(z_1)
|
|
|
|
return self.As
|
|
|
|
def gen_proof(self, s):
|
|
# split the challenge s = c xor c_1 xor c_2 xor ... xor c_n
|
|
c = int(s)
|
|
for i in range(len(self.cs)):
|
|
c = c ^^ int(self.cs[i])
|
|
|
|
self.cs.insert(0, c) # add c at the beginning of cs array
|
|
|
|
# compute z
|
|
z = int(self.a) + int(c) * int(self.w)
|
|
self.zs.insert(0, z) # add z at the beginning of zs array
|
|
|
|
# note, here the order of the returned elements is always the same, in
|
|
# a real-world implementation would be shuffled
|
|
return self.cs, self.zs
|
|
|
|
class ORVerifier:
|
|
def __init__(self, F, g):
|
|
self.F = F
|
|
self.g = g
|
|
|
|
def new_challenge(self, As):
|
|
self.As = As
|
|
self.s = self.F.random_element()
|
|
return self.s
|
|
|
|
def verify(self, Xs, cs, zs):
|
|
# check s == c_0 xor c_1 xor c_2 xor ... xor c_n
|
|
computed_s = int(cs[0])
|
|
for i in range(1, len(cs)):
|
|
computed_s = computed_s ^^ int(cs[i])
|
|
|
|
assert self.s == computed_s
|
|
|
|
# check g*z == X*c + A (in multiplicative notation would g^z ==X^c * A)
|
|
for i in range(len(Xs)):
|
|
assert self.g * int(zs[i]) == Xs[i] * int(cs[i]) + self.As[i]
|
|
|
|
|
|
|
|
# Tests
|
|
import unittest, operator
|
|
|
|
# ethereum elliptic curve
|
|
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
|
|
a = 0
|
|
b = 7
|
|
F = GF(p)
|
|
E = EllipticCurve(F, [a,b])
|
|
GX = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
|
|
GY = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8
|
|
g = E(GX,GY)
|
|
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
|
|
h = 1
|
|
q = g.order()
|
|
assert is_prime(p)
|
|
assert is_prime(q)
|
|
|
|
class TestSigmaProtocol(unittest.TestCase):
|
|
def test_interactive(self):
|
|
alice = Prover_interactive(F, g)
|
|
|
|
# Alice generates witness w & statement X
|
|
X = alice.new_key()
|
|
assert X == alice.g * int(alice.w)
|
|
|
|
# Alice generates the commitment A
|
|
A = alice.new_commitment()
|
|
assert A == alice.g * int(alice.a)
|
|
|
|
# Bob generates the challenge (and stores A)
|
|
bob = Verifier_interactive(F, g)
|
|
c = bob.new_challenge(A)
|
|
|
|
# Alice generates the proof
|
|
z = alice.gen_proof(c)
|
|
|
|
# Bob verifies the proof
|
|
assert bob.verify(X, z)
|
|
|
|
# check with the generic_verify function
|
|
assert generic_verify(g, X, A, c, z)
|
|
|
|
def test_non_interactive(self):
|
|
alice = Prover(F, g)
|
|
|
|
# Alice generates witness w & statement X
|
|
X = alice.new_key()
|
|
assert X == alice.g * int(alice.w)
|
|
|
|
# Alice generates the proof
|
|
A, z = alice.gen_proof(X)
|
|
|
|
# Bob generates the challenge
|
|
bob = Verifier(F, g)
|
|
|
|
# Bob verifies the proof
|
|
assert bob.verify(X, A, z)
|
|
|
|
# check with the generic_verify function
|
|
c = hash_two_points(A, X)
|
|
assert generic_verify(g, X, A, c, z)
|
|
|
|
def test_simulator(self):
|
|
sim = Simulator(F, g)
|
|
|
|
# set a public key X, for which we don't know w
|
|
unknown_w = 3
|
|
X = g * unknown_w
|
|
|
|
# simulate for X
|
|
A, c, z = sim.simulate(X)
|
|
|
|
# verify the simulated proof
|
|
assert generic_verify(g, X, A, c, z)
|
|
|
|
class TestORProof(unittest.TestCase):
|
|
def test_2_parties(self):
|
|
# set a public key X, for which we don't know w
|
|
unknown_w = 3
|
|
X_1 = g * unknown_w
|
|
|
|
alice = ORProver_2parties(F, g)
|
|
|
|
# Alice generates key pair
|
|
X = alice.new_key()
|
|
Xs = [X, X_1]
|
|
# Alice generates commitments (internally running the simulator)
|
|
As = alice.gen_commitments(Xs)
|
|
|
|
# Bob generates the challenge (and stores As)
|
|
bob = ORVerifier_2parties(F, g)
|
|
s = bob.new_challenge(As)
|
|
|
|
# Alice generates the ORproof
|
|
cs, zs = alice.gen_proof(s)
|
|
|
|
# Bob verifies the proofs
|
|
bob.verify(Xs, cs, zs)
|
|
|
|
def test_n_parties(self):
|
|
# set n public keys X, for which we don't know w
|
|
Xs = []
|
|
for i in range(10):
|
|
X_i = g * i
|
|
Xs.append(X_i)
|
|
|
|
alice = ORProver(F, g)
|
|
|
|
# Alice generates key pair
|
|
X = alice.new_key()
|
|
Xs.insert(0, X) # add X at the begining of Xs array
|
|
|
|
# Alice generates commitments (internally running the simulator)
|
|
As = alice.gen_commitments(Xs)
|
|
|
|
# Bob generates the challenge (and stores As)
|
|
bob = ORVerifier(F, g)
|
|
s = bob.new_challenge(As)
|
|
|
|
# Alice generates the ORproof
|
|
cs, zs = alice.gen_proof(s)
|
|
|
|
# Bob verifies the proofs
|
|
bob.verify(Xs, cs, zs)
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|