|
\documentclass{article}
|
|
\usepackage[utf8]{inputenc}
|
|
\usepackage{amsfonts}
|
|
\usepackage{amsthm}
|
|
\usepackage{amsmath}
|
|
\usepackage{mathtools}
|
|
\usepackage{enumerate}
|
|
\usepackage{hyperref}
|
|
\usepackage{xcolor}
|
|
|
|
% prevent warnings of underfull \hbox:
|
|
\usepackage{etoolbox}
|
|
\apptocmd{\sloppy}{\hbadness 4000\relax}{}{}
|
|
|
|
\theoremstyle{definition}
|
|
\newtheorem{definition}{Def}[section]
|
|
\newtheorem{theorem}[definition]{Thm}
|
|
|
|
% custom lemma environment to set custom numbers
|
|
\newtheorem{innerlemma}{Lemma}
|
|
\newenvironment{lemma}[1]
|
|
{\renewcommand\theinnerlemma{#1}\innerlemma}
|
|
{\endinnerlemma}
|
|
|
|
|
|
\title{Notes on Nova}
|
|
\author{arnaucube}
|
|
\date{February 2023}
|
|
|
|
\begin{document}
|
|
|
|
\maketitle
|
|
|
|
\begin{abstract}
|
|
Notes taken while reading Nova \cite{cryptoeprint:2021/370} paper.
|
|
|
|
Usually while reading papers I take handwritten notes, this document contains some of them re-written to $LaTeX$.
|
|
|
|
The notes are not complete, don't include all the steps neither all the proofs.
|
|
\end{abstract}
|
|
|
|
\tableofcontents
|
|
|
|
\section{Folding Scheme for Committed Relaxed R1CS}
|
|
|
|
\subsection{R1CS modification}
|
|
|
|
Want: merge 2 instances of R1CS with the same matrices into a single one. Each instance has $z_i = (W_i,~ x_i)$ (public witness, private values resp.).
|
|
|
|
\paragraph{traditional R1CS}
|
|
Merged instance with $z=z_1 + r z_2$, for rand $r$. But, since R1CS is not linear $\longrightarrow$ can not apply.
|
|
|
|
eg.
|
|
\begin{align*}
|
|
Az \circ Bz &= A(z_1 + r z_2) \circ B (z_1 + r z_2)\\
|
|
&= A z_1 \circ B z_1 + r(A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 (A z_2 \circ B z_2)\\
|
|
&\neq Cz
|
|
\end{align*}
|
|
|
|
$\longrightarrow$ introduce error vector $E \in \mathbb{F}^m$, which absorbs the cross-temrs generated by folding.
|
|
|
|
$\longrightarrow$ introduce scalar $u$, which absorbs an extra factor of $r$ in $C z_1 + r^2 C z_2$ and in $z=(W, x, 1+r\cdot 1)$.
|
|
|
|
\paragraph{Relaxed R1CS}
|
|
\begin{align*}
|
|
&u=u_1+r u_2\\
|
|
&E=E_1 + r (A z_1 \circ B z_2 + A z_2 \circ B z_1 - u_1 C z_2 - u_2 C z_1) + r^2 E_2\\
|
|
&Az \circ Bz = uCz + E,~~ with~ z=(W,~x,~u)
|
|
\end{align*}
|
|
where R1CS set $E=0,~u=1$.
|
|
|
|
\begin{align*}
|
|
Az \circ Bz &= A z_1 \circ B z_1 + r(A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 (A z_2 \circ B z_2)\\
|
|
&= (u_1 C z_1 + E_1) + r (A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 (u_2 C z_2 + E_2)\\
|
|
&= u_1 C z_1 + \underbrace{E_1 + r(A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 E_2}_\text{E} + r^1 u_2 C z_2\\
|
|
&= u_1 C z_1 + r^2 u_2 C z_2 + E\\
|
|
&= (u_1 + r u_2) \cdot C \cdot (z_1 + r z_2) + E\\
|
|
&= uCz + E
|
|
\end{align*}
|
|
|
|
For R1CS matrices $(A,~B,~C)$, the folded witness $W$ is a satisfying witness for the folded instance $(E,~u,~x)$.
|
|
|
|
|
|
|
|
\vspace{20px}
|
|
Problem: not non-trivial, and not zero-knowledge. Solution: use polynomial commitment with hiding, binding, succintness and additively homomorphic properties.
|
|
|
|
\paragraph{Committed Relaxed R1CS}
|
|
Instance for a Committed Relaxed R1CS\\
|
|
$(\overline{E}, u, \overline{W}, x)$, satisfyied by a witness $(E, r_E, W, r_W)$ such that
|
|
\begin{align*}
|
|
&\overline{E} = Com(E, r_E)\\
|
|
&\overline{W} = Com(E, r_W)\\
|
|
&Az \circ Bz = uCz+E,~~ where~z=(W, x, u)
|
|
\end{align*}
|
|
|
|
|
|
\subsection{Folding protocol}
|
|
|
|
V and P take two \emph{committed relaxed R1CS} instances
|
|
\begin{align*}
|
|
\varphi_1&=(\overline{E}_1, u_1, \overline{W}_1, x_1)\\
|
|
\varphi_2&=(\overline{E}_2, u_2, \overline{W}_2, x_2)
|
|
\end{align*}
|
|
|
|
P additionally takes witnesses to both instances
|
|
\begin{align*}
|
|
(E_1, r_{E_1}, W_1, r_{W_1})\\
|
|
(E_2, r_{E_2}, W_2, r_{W_2})
|
|
\end{align*}
|
|
|
|
Let $Z_1 = (W_1, x_1, u_1)$ and $Z_2 = (W_2, x_2, u_2)$.
|
|
|
|
% \paragraph{Protocol}
|
|
\begin{enumerate}
|
|
\item P send $\overline{T} = Com(T, r_T)$,\\
|
|
where $T=A z_1 \circ B z_1 + A z_2 \circ B z_2 - u_1 C z_2 - u_2 C z_2$\\
|
|
and rand $r_T \in \mathbb{F}$
|
|
\item V sample random challenge $r \in \mathbb{F}$
|
|
\item V, P output the folded instance $\varphi = (\overline{E}, u, \overline{W}, x)$
|
|
\begin{align*}
|
|
&\overline{E}=\overline{E}_1 + r \overline{T} + r^2 \overline{E}_2\\
|
|
&u = u_1 + r u_2\\
|
|
&\overline{W} = \overline{W}_1 + r \overline{W}_2\\
|
|
&x = x_1 + r x_2
|
|
\end{align*}
|
|
\item P outputs the folded witness $(E, r_E, W, r_W)$
|
|
\begin{align*}
|
|
&E = E_1 + r T + r^2 E_2\\
|
|
&r_E = r_{E_1} + r \cdot r_T + r^2 r_{E_2}\\
|
|
&W=W_1 + r W_2\\
|
|
&r_W = r_{W_1} + r \cdot r_{W_2}
|
|
\end{align*}
|
|
\end{enumerate}
|
|
|
|
P uses a zkSNARK showing that knows the valid witness $(E, r_E, W, r_W)$ for the committed relaxed R1CS without revealing its value.
|
|
Then, vie Fiat-Shamir transform we achieve non-interactivity.
|
|
|
|
\section{IVC proofs}
|
|
\textbf{WIP}
|
|
|
|
|
|
\bibliography{paper-notes.bib}
|
|
\bibliographystyle{unsrt}
|
|
|
|
\end{document}
|