Browse Source

refactor: optimize code, fix bugs

al-gkr-basic-workflow
Andrey Khmuro 1 year ago
parent
commit
2708a23649
3 changed files with 93 additions and 131 deletions
  1. +0
    -5
      src/merkle/mod.rs
  2. +28
    -42
      src/merkle/partial_mt/mod.rs
  3. +65
    -84
      src/merkle/partial_mt/tests.rs

+ 0
- 5
src/merkle/mod.rs

@ -101,8 +101,3 @@ impl std::error::Error for MerkleError {}
const fn int_to_node(value: u64) -> Word { const fn int_to_node(value: u64) -> Word {
[Felt::new(value), ZERO, ZERO, ZERO] [Felt::new(value), ZERO, ZERO, ZERO]
} }
#[cfg(test)]
const fn int_to_digest(value: u64) -> RpoDigest {
RpoDigest::new([Felt::new(value), ZERO, ZERO, ZERO])
}

+ 28
- 42
src/merkle/partial_mt/mod.rs

@ -22,6 +22,7 @@ const EMPTY_DIGEST: RpoDigest = RpoDigest::new(EMPTY_WORD);
/// Tree allows to create Merkle Tree by providing Merkle paths of different lengths. /// Tree allows to create Merkle Tree by providing Merkle paths of different lengths.
/// ///
/// The root of the tree is recomputed on each new leaf update. /// The root of the tree is recomputed on each new leaf update.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct PartialMerkleTree { pub struct PartialMerkleTree {
max_depth: u8, max_depth: u8,
nodes: BTreeMap<NodeIndex, RpoDigest>, nodes: BTreeMap<NodeIndex, RpoDigest>,
@ -112,12 +113,12 @@ impl PartialMerkleTree {
/// Returns a vector of paths from every leaf to the root. /// Returns a vector of paths from every leaf to the root.
pub fn paths(&self) -> Vec<(NodeIndex, ValuePath)> { pub fn paths(&self) -> Vec<(NodeIndex, ValuePath)> {
let mut paths = Vec::new(); let mut paths = Vec::new();
self.leaves.iter().for_each(|leaf| {
self.leaves.iter().for_each(|&leaf| {
paths.push(( paths.push((
*leaf,
leaf,
ValuePath { ValuePath {
value: *self.get_node(*leaf).expect("Failed to get leaf node"),
path: self.get_path(*leaf).expect("Failed to get path"),
value: *self.get_node(leaf).expect("Failed to get leaf node"),
path: self.get_path(leaf).expect("Failed to get path"),
}, },
)); ));
}); });
@ -160,10 +161,10 @@ impl PartialMerkleTree {
/// Returns an iterator over the leaves of this [PartialMerkleTree]. /// Returns an iterator over the leaves of this [PartialMerkleTree].
pub fn leaves(&self) -> impl Iterator<Item = (NodeIndex, RpoDigest)> + '_ { pub fn leaves(&self) -> impl Iterator<Item = (NodeIndex, RpoDigest)> + '_ {
self.leaves.iter().map(|leaf| {
self.leaves.iter().map(|&leaf| {
( (
*leaf,
self.get_node(*leaf).unwrap_or_else(|_| {
leaf,
self.get_node(leaf).unwrap_or_else(|_| {
panic!( panic!(
"Leaf with node index ({}, {}) is not in the nodes map", "Leaf with node index ({}, {}) is not in the nodes map",
leaf.depth(), leaf.depth(),
@ -214,19 +215,25 @@ impl PartialMerkleTree {
self.nodes.insert(index_value, node); self.nodes.insert(index_value, node);
// if the calculated node was a leaf, remove it from leaves set. // if the calculated node was a leaf, remove it from leaves set.
if self.leaves.contains(&index_value) {
self.leaves.remove(&index_value);
}
self.leaves.remove(&index_value);
let sibling_node = index_value.sibling(); let sibling_node = index_value.sibling();
// node became a leaf only if it is a new node (it wasn't in nodes map)
if !self.nodes.contains_key(&sibling_node) {
// Insert node from Merkle path to the nodes map. This sibling node becomes a leaf only
// if it is a new node (it wasn't in nodes map).
// Node can be in 3 states: internal node, leaf of the tree and not a node at all.
// - Internal node can only stay in this state -- addition of a new path can't make it
// a leaf or remove it from the tree.
// - Leaf node can stay in the same state (remain a leaf) or can become an internal
// node. In the first case we don't need to do anything, and the second case is handled
// in the line 219.
// - New node can be a calculated node or a "sibling" node from a Merkle Path:
// --- Calculated node, obviously, never can be a leaf.
// --- Sibling node can be only a leaf, because otherwise it is not a new node.
if self.nodes.insert(sibling_node, hash.into()).is_none() {
self.leaves.insert(sibling_node); self.leaves.insert(sibling_node);
} }
// insert node from Merkle path to the nodes map
self.nodes.insert(sibling_node, hash.into());
Rpo256::merge(&index_value.build_node(node, hash.into())) Rpo256::merge(&index_value.build_node(node, hash.into()))
}); });
@ -238,8 +245,6 @@ impl PartialMerkleTree {
return Err(MerkleError::ConflictingRoots([*self.root(), *root].to_vec())); return Err(MerkleError::ConflictingRoots([*self.root(), *root].to_vec()));
} }
// self.update_leaves()?;
Ok(()) Ok(())
} }
@ -250,7 +255,7 @@ impl PartialMerkleTree {
&mut self, &mut self,
node_index: NodeIndex, node_index: NodeIndex,
value: RpoDigest, value: RpoDigest,
) -> Result<RpoDigest, MerkleError> {
) -> Result<Option<RpoDigest>, MerkleError> {
// check correctness of the depth and update it // check correctness of the depth and update it
Self::check_depth(node_index.depth())?; Self::check_depth(node_index.depth())?;
self.update_depth(node_index.depth()); self.update_depth(node_index.depth());
@ -259,38 +264,19 @@ impl PartialMerkleTree {
self.leaves.insert(node_index); self.leaves.insert(node_index);
// add node value to the nodes Map // add node value to the nodes Map
let old_value = self.nodes.insert(node_index, value).unwrap_or(EMPTY_DIGEST);
let old_value = self.nodes.insert(node_index, value);
// if the old value and new value are the same, there is nothing to update // if the old value and new value are the same, there is nothing to update
if value == old_value {
return Ok(value);
if old_value.is_some() && value == old_value.unwrap() {
return Ok(old_value);
} }
let mut node_index = node_index; let mut node_index = node_index;
let mut value = value; let mut value = value;
for _ in 0..node_index.depth() { for _ in 0..node_index.depth() {
let is_right = node_index.is_value_odd();
let (left, right) = if is_right {
let left_index = NodeIndex::new(node_index.depth(), node_index.value() - 1)?;
(
self.nodes
.get(&left_index)
.cloned()
.ok_or(MerkleError::NodeNotInSet(left_index))?,
value,
)
} else {
let right_index = NodeIndex::new(node_index.depth(), node_index.value() + 1)?;
(
value,
self.nodes
.get(&right_index)
.cloned()
.ok_or(MerkleError::NodeNotInSet(right_index))?,
)
};
let sibling = self.nodes.get(&node_index.sibling()).expect("sibling should exist");
value = Rpo256::merge(&node_index.build_node(value, *sibling));
node_index.move_up(); node_index.move_up();
value = Rpo256::merge(&[left, right]);
self.nodes.insert(node_index, value); self.nodes.insert(node_index, value);
} }

+ 65
- 84
src/merkle/partial_mt/tests.rs

@ -1,18 +1,29 @@
use crate::hash::rpo::RpoDigest;
use super::{ use super::{
super::{int_to_digest, int_to_node, NodeIndex},
PartialMerkleTree, Rpo256,
super::{int_to_node, MerkleStore, MerkleTree, NodeIndex, PartialMerkleTree},
Word,
}; };
// TEST DATA // TEST DATA
// ================================================================================================ // ================================================================================================
const NODE10: NodeIndex = NodeIndex::new_unchecked(1, 0);
const NODE22: NodeIndex = NodeIndex::new_unchecked(2, 2); const NODE22: NodeIndex = NodeIndex::new_unchecked(2, 2);
const NODE32: NodeIndex = NodeIndex::new_unchecked(3, 2); const NODE32: NodeIndex = NodeIndex::new_unchecked(3, 2);
const NODE33: NodeIndex = NodeIndex::new_unchecked(3, 3); const NODE33: NodeIndex = NodeIndex::new_unchecked(3, 3);
const VALUES8: [Word; 8] = [
int_to_node(1),
int_to_node(2),
int_to_node(3),
int_to_node(4),
int_to_node(5),
int_to_node(6),
int_to_node(7),
int_to_node(8),
];
// TESTS // TESTS
// ================================================================================================ // ================================================================================================
@ -21,107 +32,92 @@ const NODE33: NodeIndex = NodeIndex::new_unchecked(3, 3);
#[test] #[test]
fn get_root() { fn get_root() {
let leaf0 = int_to_digest(0);
let leaf1 = int_to_digest(1);
let leaf2 = int_to_digest(2);
let leaf3 = int_to_digest(3);
let mt = MerkleTree::new(VALUES8.to_vec()).unwrap();
let expected_root = mt.root();
let parent0 = calculate_parent_hash(leaf0, 0, leaf1);
let parent1 = calculate_parent_hash(leaf2, 2, leaf3);
let mut store = MerkleStore::new();
let ms = MerkleStore::extend(&mut store, mt.inner_nodes());
let root_exp = calculate_parent_hash(parent0, 0, parent1);
let path33 = ms.get_path(expected_root, NODE33).unwrap();
let set =
super::PartialMerkleTree::with_paths([(0, leaf0, vec![*leaf1, *parent1].into())]).unwrap();
let pmt = PartialMerkleTree::with_paths([(3_u64, path33.value.into(), path33.path)]).unwrap();
assert_eq!(set.root(), root_exp);
assert_eq!(pmt.root(), expected_root.into());
} }
#[test] #[test]
fn add_and_get_paths() { fn add_and_get_paths() {
let value32 = int_to_digest(32);
let value33 = int_to_digest(33);
let value20 = int_to_digest(20);
let value22 = int_to_digest(22);
let value23 = int_to_digest(23);
let value21 = Rpo256::merge(&[value32, value33]);
let value10 = Rpo256::merge(&[value20, value21]);
let value11 = Rpo256::merge(&[value22, value23]);
let mt = MerkleTree::new(VALUES8.to_vec()).unwrap();
let expected_root = mt.root();
let path_33 = vec![*value32, *value20, *value11];
let mut store = MerkleStore::new();
let ms = MerkleStore::extend(&mut store, mt.inner_nodes());
let path_22 = vec![*value23, *value10];
let expected_path33 = ms.get_path(expected_root, NODE33).unwrap();
let expected_path22 = ms.get_path(expected_root, NODE22).unwrap();
let pmt = PartialMerkleTree::with_paths([ let pmt = PartialMerkleTree::with_paths([
(3, value33, path_33.clone().into()),
(2, value22, path_22.clone().into()),
(3_u64, expected_path33.value.into(), expected_path33.path.clone()),
(2, expected_path22.value.into(), expected_path22.path.clone()),
]) ])
.unwrap(); .unwrap();
let stored_path_33 = pmt.get_path(NODE33).unwrap();
let stored_path_22 = pmt.get_path(NODE22).unwrap();
assert_eq!(path_33, *stored_path_33);
assert_eq!(path_22, *stored_path_22);
let path33 = pmt.get_path(NODE33).unwrap();
let path22 = pmt.get_path(NODE22).unwrap();
assert_eq!(expected_path33.path, path33);
assert_eq!(expected_path22.path, path22);
} }
#[test] #[test]
fn get_node() { fn get_node() {
let path_6 = vec![int_to_node(7), int_to_node(45), int_to_node(123)];
let hash_6 = int_to_digest(6);
let index = NodeIndex::make(3, 6);
let pmt = PartialMerkleTree::with_paths([(index.value(), hash_6, path_6.into())]).unwrap();
let mt = MerkleTree::new(VALUES8.to_vec()).unwrap();
let expected_root = mt.root();
let mut store = MerkleStore::new();
let ms = MerkleStore::extend(&mut store, mt.inner_nodes());
let path33 = ms.get_path(expected_root, NODE33).unwrap();
assert_eq!(int_to_digest(6u64), pmt.get_node(index).unwrap());
let pmt = PartialMerkleTree::with_paths([(3_u64, path33.value.into(), path33.path)]).unwrap();
assert_eq!(ms.get_node(expected_root, NODE32).unwrap(), *pmt.get_node(NODE32).unwrap());
assert_eq!(ms.get_node(expected_root, NODE10).unwrap(), *pmt.get_node(NODE10).unwrap());
} }
#[test] #[test]
fn update_leaf() { fn update_leaf() {
let value32 = int_to_digest(32);
let value33 = int_to_digest(33);
let value20 = int_to_digest(20);
let value22 = int_to_digest(22);
let value23 = int_to_digest(23);
let value21 = Rpo256::merge(&[value32, value33]);
let value10 = Rpo256::merge(&[value20, value21]);
let value11 = Rpo256::merge(&[value22, value23]);
let mut mt = MerkleTree::new(VALUES8.to_vec()).unwrap();
let root = mt.root();
let path_33 = vec![*value32, *value20, *value11];
let path_22 = vec![*value23, *value10];
let mut store = MerkleStore::new();
let ms = MerkleStore::extend(&mut store, mt.inner_nodes());
let path33 = ms.get_path(root, NODE33).unwrap();
let mut pmt = let mut pmt =
PartialMerkleTree::with_paths([(3, value33, path_33.into()), (2, value22, path_22.into())])
.unwrap();
let new_value32 = int_to_digest(132);
let new_value21 = Rpo256::merge(&[new_value32, value33]);
let new_value10 = Rpo256::merge(&[value20, new_value21]);
let expected_root = Rpo256::merge(&[new_value10, value11]);
PartialMerkleTree::with_paths([(3_u64, path33.value.into(), path33.path)]).unwrap();
let old_leaf = pmt.update_leaf(NODE32, new_value32).unwrap();
let new_value32 = int_to_node(132);
mt.update_leaf(2_u64, new_value32).unwrap();
let expected_root = mt.root();
assert_eq!(value32, old_leaf);
pmt.update_leaf(NODE32, new_value32.into()).unwrap();
let actual_root = pmt.root();
let new_root = pmt.root();
assert_eq!(new_root, expected_root);
assert_eq!(expected_root, *actual_root);
} }
#[test] #[test]
fn check_leaf_depth() { fn check_leaf_depth() {
let value32 = int_to_digest(32);
let value33 = int_to_digest(33);
let value20 = int_to_digest(20);
let value22 = int_to_digest(22);
let value23 = int_to_digest(23);
let mt = MerkleTree::new(VALUES8.to_vec()).unwrap();
let expected_root = mt.root();
let value11 = Rpo256::merge(&[value22, value23]);
let mut store = MerkleStore::new();
let ms = MerkleStore::extend(&mut store, mt.inner_nodes());
let path_33 = vec![*value32, *value20, *value11];
let path33 = ms.get_path(expected_root, NODE33).unwrap();
let pmt = PartialMerkleTree::with_paths([(3, value33, path_33.into())]).unwrap();
let pmt = PartialMerkleTree::with_paths([(3_u64, path33.value.into(), path33.path)]).unwrap();
assert_eq!(pmt.get_leaf_depth(0).unwrap(), 2); assert_eq!(pmt.get_leaf_depth(0).unwrap(), 2);
assert_eq!(pmt.get_leaf_depth(1).unwrap(), 2); assert_eq!(pmt.get_leaf_depth(1).unwrap(), 2);
@ -131,23 +127,8 @@ fn check_leaf_depth() {
assert_eq!(pmt.get_leaf_depth(5).unwrap(), 1); assert_eq!(pmt.get_leaf_depth(5).unwrap(), 1);
assert_eq!(pmt.get_leaf_depth(6).unwrap(), 1); assert_eq!(pmt.get_leaf_depth(6).unwrap(), 1);
assert_eq!(pmt.get_leaf_depth(7).unwrap(), 1); assert_eq!(pmt.get_leaf_depth(7).unwrap(), 1);
assert!(pmt.get_leaf_depth(8).is_err());
} }
// TODO: add test for add_path function and check correctness of leaf determination (requires // TODO: add test for add_path function and check correctness of leaf determination (requires
// inner_nodes iter) // inner_nodes iter)
// HELPER FUNCTIONS
// --------------------------------------------------------------------------------------------
/// Calculates the hash of the parent node by two sibling ones
/// - node — current node
/// - node_pos — position of the current node
/// - sibling — neighboring vertex in the tree
fn calculate_parent_hash(node: RpoDigest, node_pos: u64, sibling: RpoDigest) -> RpoDigest {
let parity = node_pos & 1;
if parity == 0 {
Rpo256::merge(&[node, sibling])
} else {
Rpo256::merge(&[sibling, node])
}
}

Loading…
Cancel
Save