@ -0,0 +1,112 @@ |
|||
use super::DIGEST_SIZE;
|
|||
use core::slice;
|
|||
use winterfell::crypto::Digest;
|
|||
use winterfell::math::{fields::f64::BaseElement, StarkField};
|
|||
use winterfell::{ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable};
|
|||
|
|||
// DIGEST TRAIT IMPLEMENTATIONS
|
|||
// ================================================================================================
|
|||
|
|||
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
|
|||
pub struct ElementDigest([BaseElement; DIGEST_SIZE]);
|
|||
|
|||
impl ElementDigest {
|
|||
pub fn new(value: [BaseElement; DIGEST_SIZE]) -> Self {
|
|||
Self(value)
|
|||
}
|
|||
|
|||
pub fn as_elements(&self) -> &[BaseElement] {
|
|||
&self.0
|
|||
}
|
|||
|
|||
pub fn digests_as_elements(digests: &[Self]) -> &[BaseElement] {
|
|||
let p = digests.as_ptr();
|
|||
let len = digests.len() * DIGEST_SIZE;
|
|||
unsafe { slice::from_raw_parts(p as *const BaseElement, len) }
|
|||
}
|
|||
}
|
|||
|
|||
impl Digest for ElementDigest {
|
|||
fn as_bytes(&self) -> [u8; 32] {
|
|||
let mut result = [0; 32];
|
|||
|
|||
result[..8].copy_from_slice(&self.0[0].as_int().to_le_bytes());
|
|||
result[8..16].copy_from_slice(&self.0[1].as_int().to_le_bytes());
|
|||
result[16..24].copy_from_slice(&self.0[2].as_int().to_le_bytes());
|
|||
result[24..].copy_from_slice(&self.0[3].as_int().to_le_bytes());
|
|||
|
|||
result
|
|||
}
|
|||
}
|
|||
|
|||
impl Default for ElementDigest {
|
|||
fn default() -> Self {
|
|||
ElementDigest([BaseElement::default(); DIGEST_SIZE])
|
|||
}
|
|||
}
|
|||
|
|||
impl Serializable for ElementDigest {
|
|||
fn write_into<W: ByteWriter>(&self, target: &mut W) {
|
|||
target.write_u8_slice(&self.as_bytes());
|
|||
}
|
|||
}
|
|||
|
|||
impl Deserializable for ElementDigest {
|
|||
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
|
|||
// TODO: check if the field elements are valid?
|
|||
let e1 = BaseElement::new(source.read_u64()?);
|
|||
let e2 = BaseElement::new(source.read_u64()?);
|
|||
let e3 = BaseElement::new(source.read_u64()?);
|
|||
let e4 = BaseElement::new(source.read_u64()?);
|
|||
|
|||
Ok(Self([e1, e2, e3, e4]))
|
|||
}
|
|||
}
|
|||
|
|||
impl From<[BaseElement; DIGEST_SIZE]> for ElementDigest {
|
|||
fn from(value: [BaseElement; DIGEST_SIZE]) -> Self {
|
|||
Self(value)
|
|||
}
|
|||
}
|
|||
|
|||
impl From<ElementDigest> for [BaseElement; DIGEST_SIZE] {
|
|||
fn from(value: ElementDigest) -> Self {
|
|||
value.0
|
|||
}
|
|||
}
|
|||
|
|||
impl From<ElementDigest> for [u8; 32] {
|
|||
fn from(value: ElementDigest) -> Self {
|
|||
value.as_bytes()
|
|||
}
|
|||
}
|
|||
|
|||
// TESTS
|
|||
// ================================================================================================
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
|
|||
use super::ElementDigest;
|
|||
use rand_utils::rand_value;
|
|||
use winterfell::{math::fields::f64::BaseElement, Deserializable, Serializable, SliceReader};
|
|||
|
|||
#[test]
|
|||
fn digest_serialization() {
|
|||
let e1 = BaseElement::new(rand_value());
|
|||
let e2 = BaseElement::new(rand_value());
|
|||
let e3 = BaseElement::new(rand_value());
|
|||
let e4 = BaseElement::new(rand_value());
|
|||
|
|||
let d1 = ElementDigest([e1, e2, e3, e4]);
|
|||
|
|||
let mut bytes = vec![];
|
|||
d1.write_into(&mut bytes);
|
|||
assert_eq!(32, bytes.len());
|
|||
|
|||
let mut reader = SliceReader::new(&bytes);
|
|||
let d2 = ElementDigest::read_from(&mut reader).unwrap();
|
|||
|
|||
assert_eq!(d1, d2);
|
|||
}
|
|||
}
|
@ -0,0 +1,195 @@ |
|||
// FFT-BASED MDS MULTIPLICATION HELPER FUNCTIONS
|
|||
// ================================================================================================
|
|||
|
|||
/// This module contains helper functions as well as constants used to perform the vector-matrix
|
|||
/// multiplication step of the Rescue prime permutation. The special form of our MDS matrix
|
|||
/// i.e. being circular, allows us to reduce the vector-matrix multiplication to a Hadamard product
|
|||
/// of two vectors in "frequency domain". This follows from the simple fact that every circulant
|
|||
/// matrix has the columns of the discrete Fourier transform matrix as orthogonal eigenvectors.
|
|||
/// The implementation also avoids the use of 3-point FFTs, and 3-point iFFTs, and substitutes that
|
|||
/// with explicit expressions. It also avoids, due to the form of our matrix in the frequency domain,
|
|||
/// divisions by 2 and repeated modular reductions. This is because of our explicit choice of
|
|||
/// an MDS matrix that has small powers of 2 entries in frequency domain.
|
|||
/// The following implementation has benefited greatly from the discussions and insights of
|
|||
/// Hamish Ivey-Law and Jacqueline Nabaglo of Polygon Zero.
|
|||
|
|||
// Rescue MDS matrix in frequency domain.
|
|||
// More precisely, this is the output of the three 4-point (real) FFTs of the first column of
|
|||
// the MDS matrix i.e. just before the multiplication with the appropriate twiddle factors
|
|||
// and application of the final four 3-point FFT in order to get the full 12-point FFT.
|
|||
// The entries have been scaled appropriately in order to avoid divisions by 2 in iFFT2 and iFFT4.
|
|||
// The code to generate the matrix in frequency domain is based on an adaptation of a code, to generate
|
|||
// MDS matrices efficiently in original domain, that was developed by the Polygon Zero team.
|
|||
const MDS_FREQ_BLOCK_ONE: [i64; 3] = [16, 8, 16];
|
|||
const MDS_FREQ_BLOCK_TWO: [(i64, i64); 3] = [(-1, 2), (-1, 1), (4, 8)];
|
|||
const MDS_FREQ_BLOCK_THREE: [i64; 3] = [-8, 1, 1];
|
|||
|
|||
// We use split 3 x 4 FFT transform in order to transform our vectors into the frequency domain.
|
|||
#[inline(always)]
|
|||
pub(crate) fn mds_multiply_freq(state: [u64; 12]) -> [u64; 12] {
|
|||
let [s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] = state;
|
|||
|
|||
let (u0, u1, u2) = fft4_real([s0, s3, s6, s9]);
|
|||
let (u4, u5, u6) = fft4_real([s1, s4, s7, s10]);
|
|||
let (u8, u9, u10) = fft4_real([s2, s5, s8, s11]);
|
|||
|
|||
// This where the multiplication in frequency domain is done. More precisely, and with
|
|||
// the appropriate permuations in between, the sequence of
|
|||
// 3-point FFTs --> multiplication by twiddle factors --> Hadamard multiplication -->
|
|||
// 3 point iFFTs --> multiplication by (inverse) twiddle factors
|
|||
// is "squashed" into one step composed of the functions "block1", "block2" and "block3".
|
|||
// The expressions in the aformentioned functions are the result of explicit computations
|
|||
// combined with the Karatsuba trick for the multiplication of Complex numbers.
|
|||
|
|||
let [v0, v4, v8] = block1([u0, u4, u8], MDS_FREQ_BLOCK_ONE);
|
|||
let [v1, v5, v9] = block2([u1, u5, u9], MDS_FREQ_BLOCK_TWO);
|
|||
let [v2, v6, v10] = block3([u2, u6, u10], MDS_FREQ_BLOCK_THREE);
|
|||
// The 4th block is not computed as it is similar to the 2nd one, up to complex conjugation,
|
|||
// and is, due to the use of the real FFT and iFFT, redundant.
|
|||
|
|||
let [s0, s3, s6, s9] = ifft4_real((v0, v1, v2));
|
|||
let [s1, s4, s7, s10] = ifft4_real((v4, v5, v6));
|
|||
let [s2, s5, s8, s11] = ifft4_real((v8, v9, v10));
|
|||
|
|||
[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11]
|
|||
}
|
|||
|
|||
// We use the real FFT to avoid redundant computations. See https://www.mdpi.com/2076-3417/12/9/4700
|
|||
#[inline(always)]
|
|||
fn fft2_real(x: [u64; 2]) -> [i64; 2] {
|
|||
[(x[0] as i64 + x[1] as i64), (x[0] as i64 - x[1] as i64)]
|
|||
}
|
|||
|
|||
#[inline(always)]
|
|||
fn ifft2_real(y: [i64; 2]) -> [u64; 2] {
|
|||
// We avoid divisions by 2 by appropriately scaling the MDS matrix constants.
|
|||
[(y[0] + y[1]) as u64, (y[0] - y[1]) as u64]
|
|||
}
|
|||
|
|||
#[inline(always)]
|
|||
fn fft4_real(x: [u64; 4]) -> (i64, (i64, i64), i64) {
|
|||
let [z0, z2] = fft2_real([x[0], x[2]]);
|
|||
let [z1, z3] = fft2_real([x[1], x[3]]);
|
|||
let y0 = z0 + z1;
|
|||
let y1 = (z2, -z3);
|
|||
let y2 = z0 - z1;
|
|||
(y0, y1, y2)
|
|||
}
|
|||
|
|||
#[inline(always)]
|
|||
fn ifft4_real(y: (i64, (i64, i64), i64)) -> [u64; 4] {
|
|||
// In calculating 'z0' and 'z1', division by 2 is avoided by appropriately scaling
|
|||
// the MDS matrix constants.
|
|||
let z0 = y.0 + y.2;
|
|||
let z1 = y.0 - y.2;
|
|||
let z2 = y.1 .0;
|
|||
let z3 = -y.1 .1;
|
|||
|
|||
let [x0, x2] = ifft2_real([z0, z2]);
|
|||
let [x1, x3] = ifft2_real([z1, z3]);
|
|||
|
|||
[x0, x1, x2, x3]
|
|||
}
|
|||
|
|||
#[inline(always)]
|
|||
fn block1(x: [i64; 3], y: [i64; 3]) -> [i64; 3] {
|
|||
let [x0, x1, x2] = x;
|
|||
let [y0, y1, y2] = y;
|
|||
let z0 = x0 * y0 + x1 * y2 + x2 * y1;
|
|||
let z1 = x0 * y1 + x1 * y0 + x2 * y2;
|
|||
let z2 = x0 * y2 + x1 * y1 + x2 * y0;
|
|||
|
|||
[z0, z1, z2]
|
|||
}
|
|||
|
|||
#[inline(always)]
|
|||
fn block2(x: [(i64, i64); 3], y: [(i64, i64); 3]) -> [(i64, i64); 3] {
|
|||
let [(x0r, x0i), (x1r, x1i), (x2r, x2i)] = x;
|
|||
let [(y0r, y0i), (y1r, y1i), (y2r, y2i)] = y;
|
|||
let x0s = x0r + x0i;
|
|||
let x1s = x1r + x1i;
|
|||
let x2s = x2r + x2i;
|
|||
let y0s = y0r + y0i;
|
|||
let y1s = y1r + y1i;
|
|||
let y2s = y2r + y2i;
|
|||
|
|||
// Compute x0y0 − ix1y2 − ix2y1 using Karatsuba for complex numbers multiplication
|
|||
let m0 = (x0r * y0r, x0i * y0i);
|
|||
let m1 = (x1r * y2r, x1i * y2i);
|
|||
let m2 = (x2r * y1r, x2i * y1i);
|
|||
let z0r = (m0.0 - m0.1) + (x1s * y2s - m1.0 - m1.1) + (x2s * y1s - m2.0 - m2.1);
|
|||
let z0i = (x0s * y0s - m0.0 - m0.1) + (-m1.0 + m1.1) + (-m2.0 + m2.1);
|
|||
let z0 = (z0r, z0i);
|
|||
|
|||
// Compute x0y1 + x1y0 − ix2y2 using Karatsuba for complex numbers multiplication
|
|||
let m0 = (x0r * y1r, x0i * y1i);
|
|||
let m1 = (x1r * y0r, x1i * y0i);
|
|||
let m2 = (x2r * y2r, x2i * y2i);
|
|||
let z1r = (m0.0 - m0.1) + (m1.0 - m1.1) + (x2s * y2s - m2.0 - m2.1);
|
|||
let z1i = (x0s * y1s - m0.0 - m0.1) + (x1s * y0s - m1.0 - m1.1) + (-m2.0 + m2.1);
|
|||
let z1 = (z1r, z1i);
|
|||
|
|||
// Compute x0y2 + x1y1 + x2y0 using Karatsuba for complex numbers multiplication
|
|||
let m0 = (x0r * y2r, x0i * y2i);
|
|||
let m1 = (x1r * y1r, x1i * y1i);
|
|||
let m2 = (x2r * y0r, x2i * y0i);
|
|||
let z2r = (m0.0 - m0.1) + (m1.0 - m1.1) + (m2.0 - m2.1);
|
|||
let z2i = (x0s * y2s - m0.0 - m0.1) + (x1s * y1s - m1.0 - m1.1) + (x2s * y0s - m2.0 - m2.1);
|
|||
let z2 = (z2r, z2i);
|
|||
|
|||
[z0, z1, z2]
|
|||
}
|
|||
|
|||
#[inline(always)]
|
|||
fn block3(x: [i64; 3], y: [i64; 3]) -> [i64; 3] {
|
|||
let [x0, x1, x2] = x;
|
|||
let [y0, y1, y2] = y;
|
|||
let z0 = x0 * y0 - x1 * y2 - x2 * y1;
|
|||
let z1 = x0 * y1 + x1 * y0 - x2 * y2;
|
|||
let z2 = x0 * y2 + x1 * y1 + x2 * y0;
|
|||
|
|||
[z0, z1, z2]
|
|||
}
|
|||
|
|||
// TESTS
|
|||
// ================================================================================================
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::super::Rpo;
|
|||
use crate::hash::rpo::MDS;
|
|||
use proptest::prelude::*;
|
|||
use winterfell::math::{fields::f64::BaseElement, FieldElement};
|
|||
|
|||
const STATE_WIDTH: usize = 12;
|
|||
|
|||
#[inline(always)]
|
|||
fn apply_mds_naive(state: &mut [BaseElement; STATE_WIDTH]) {
|
|||
let mut result = [BaseElement::ZERO; STATE_WIDTH];
|
|||
result.iter_mut().zip(MDS).for_each(|(r, mds_row)| {
|
|||
state.iter().zip(mds_row).for_each(|(&s, m)| {
|
|||
*r += m * s;
|
|||
});
|
|||
});
|
|||
*state = result;
|
|||
}
|
|||
|
|||
proptest! {
|
|||
#[test]
|
|||
fn mds_freq_proptest(a in any::<[u64;STATE_WIDTH]>()) {
|
|||
|
|||
let mut v1 = [BaseElement::ZERO;STATE_WIDTH];
|
|||
let mut v2;
|
|||
|
|||
for i in 0..STATE_WIDTH {
|
|||
v1[i] = BaseElement::new(a[i]);
|
|||
}
|
|||
v2 = v1.clone();
|
|||
|
|||
apply_mds_naive(&mut v1);
|
|||
Rpo::apply_mds(&mut v2);
|
|||
|
|||
prop_assert_eq!(v1, v2);
|
|||
}
|
|||
}
|
|||
}
|
@ -0,0 +1,912 @@ |
|||
use super::{exp_acc, ElementHasher, HashFn};
|
|||
use core::{convert::TryInto, ops::Range};
|
|||
use winterfell::math::{fields::f64::BaseElement, FieldElement, StarkField};
|
|||
|
|||
mod digest;
|
|||
pub use digest::ElementDigest;
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests;
|
|||
|
|||
mod mds_freq;
|
|||
use mds_freq::mds_multiply_freq;
|
|||
|
|||
// CONSTANTS
|
|||
// ================================================================================================
|
|||
|
|||
/// Sponge state is set to 12 field elements or 768 bytes; 8 elements are reserved for rate and
|
|||
/// the remaining 4 elements are reserved for capacity.
|
|||
const STATE_WIDTH: usize = 12;
|
|||
|
|||
/// The rate portion of the state is located in elements 4 through 11.
|
|||
const RATE_RANGE: Range<usize> = 4..12;
|
|||
const RATE_WIDTH: usize = RATE_RANGE.end - RATE_RANGE.start;
|
|||
|
|||
const INPUT1_RANGE: Range<usize> = 4..8;
|
|||
const INPUT2_RANGE: Range<usize> = 8..12;
|
|||
|
|||
/// The capacity portion of the state is located in elements 0, 1, 2, and 3.
|
|||
const CAPACITY_RANGE: Range<usize> = 0..4;
|
|||
|
|||
/// The output of the hash function is a digest which consists of 4 field elements or 32 bytes.
|
|||
///
|
|||
/// The digest is returned from state elements 4, 5, 6, and 7 (the first four elements of the
|
|||
/// rate portion).
|
|||
const DIGEST_RANGE: Range<usize> = 4..8;
|
|||
const DIGEST_SIZE: usize = DIGEST_RANGE.end - DIGEST_RANGE.start;
|
|||
|
|||
/// The number of rounds is set to 7 to target 128-bit security level
|
|||
const NUM_ROUNDS: usize = 7;
|
|||
|
|||
/// S-Box and Inverse S-Box powers;
|
|||
///
|
|||
/// The constants are defined for tests only because the exponentiations in the code are unrolled
|
|||
/// for efficiency reasons.
|
|||
#[cfg(test)]
|
|||
const ALPHA: u64 = 7;
|
|||
#[cfg(test)]
|
|||
const INV_ALPHA: u64 = 10540996611094048183;
|
|||
|
|||
// HASHER IMPLEMENTATION
|
|||
// ================================================================================================
|
|||
|
|||
/// Implementation of [Hasher] trait for Rescue Prime Optimized (RPO) hash function with 256-bit output.
|
|||
///
|
|||
/// The hash function is implemented according to the Rescue Prime Optimized
|
|||
/// [specifications](https://github.org/aszepieniec/rpo/)
|
|||
///
|
|||
/// The parameters used to instantiate the function are:
|
|||
/// * Field: 64-bit prime field with modulus 2^64 - 2^32 + 1.
|
|||
/// * State width: 12 field elements.
|
|||
/// * Capacity size: 4 field elements.
|
|||
/// * Number of founds: 7.
|
|||
/// * S-Box degree: 7.
|
|||
///
|
|||
/// The above parameters target 128-bit security level. The digest consists of four field elements
|
|||
/// and it can be serialized into 32 bytes (256 bits).
|
|||
///
|
|||
/// ## Hash output consistency
|
|||
/// Functions [hash_elements()](Rpo::hash_elements), [merge()](Rpo::merge), and
|
|||
/// [merge_with_int()](Rpo::merge_with_int) are internally consistent. That is, computing
|
|||
/// a hash for the same set of elements using these functions will always produce the same
|
|||
/// result. For example, merging two digests using [merge()](Rpo::merge) will produce the
|
|||
/// same result as hashing 8 elements which make up these digests using
|
|||
/// [hash_elements()](Rpo::hash_elements) function.
|
|||
///
|
|||
/// However, [hash()](Rpo::hash) function is not consistent with functions mentioned above.
|
|||
/// For example, if we take two field elements, serialize them to bytes and hash them using
|
|||
/// [hash()](Rpo::hash), the result will differ from the result obtained by hashing these
|
|||
/// elements directly using [hash_elements()](Rpo::hash_elements) function. The reason for
|
|||
/// this difference is that [hash()](Rpo::hash) function needs to be able to handle
|
|||
/// arbitrary binary strings, which may or may not encode valid field elements - and thus,
|
|||
/// deserialization procedure used by this function is different from the procedure used to
|
|||
/// deserialize valid field elements.
|
|||
///
|
|||
/// Thus, if the underlying data consists of valid field elements, it might make more sense
|
|||
/// to deserialize them into field elements and then hash them using
|
|||
/// [hash_elements()](Rpo::hash_elements) function rather then hashing the serialized bytes
|
|||
/// using [hash()](Rpo::hash) function.
|
|||
pub struct Rpo();
|
|||
|
|||
impl HashFn for Rpo {
|
|||
type Digest = ElementDigest;
|
|||
|
|||
fn hash(bytes: &[u8]) -> Self::Digest {
|
|||
// compute the number of elements required to represent the string; we will be processing
|
|||
// the string in 7-byte chunks, thus the number of elements will be equal to the number
|
|||
// of such chunks (including a potential partial chunk at the end).
|
|||
let num_elements = if bytes.len() % 7 == 0 {
|
|||
bytes.len() / 7
|
|||
} else {
|
|||
bytes.len() / 7 + 1
|
|||
};
|
|||
|
|||
// initialize state to all zeros, except for the first element of the capacity part, which
|
|||
// is set to the number of elements to be hashed. this is done so that adding zero elements
|
|||
// at the end of the list always results in a different hash.
|
|||
let mut state = [BaseElement::ZERO; STATE_WIDTH];
|
|||
state[CAPACITY_RANGE.start] = BaseElement::new(num_elements as u64);
|
|||
|
|||
// break the string into 7-byte chunks, convert each chunk into a field element, and
|
|||
// absorb the element into the rate portion of the state. we use 7-byte chunks because
|
|||
// every 7-byte chunk is guaranteed to map to some field element.
|
|||
let mut i = 0;
|
|||
let mut buf = [0_u8; 8];
|
|||
for chunk in bytes.chunks(7) {
|
|||
if i < num_elements - 1 {
|
|||
buf[..7].copy_from_slice(chunk);
|
|||
} else {
|
|||
// if we are dealing with the last chunk, it may be smaller than 7 bytes long, so
|
|||
// we need to handle it slightly differently. we also append a byte with value 1
|
|||
// to the end of the string; this pads the string in such a way that adding
|
|||
// trailing zeros results in different hash
|
|||
let chunk_len = chunk.len();
|
|||
buf = [0_u8; 8];
|
|||
buf[..chunk_len].copy_from_slice(chunk);
|
|||
buf[chunk_len] = 1;
|
|||
}
|
|||
|
|||
// convert the bytes into a field element and absorb it into the rate portion of the
|
|||
// state; if the rate is filled up, apply the Rescue permutation and start absorbing
|
|||
// again from zero index.
|
|||
state[RATE_RANGE.start + i] += BaseElement::new(u64::from_le_bytes(buf));
|
|||
i += 1;
|
|||
if i % RATE_WIDTH == 0 {
|
|||
Self::apply_permutation(&mut state);
|
|||
i = 0;
|
|||
}
|
|||
}
|
|||
|
|||
// if we absorbed some elements but didn't apply a permutation to them (would happen when
|
|||
// the number of elements is not a multiple of RATE_WIDTH), apply the Rescue permutation.
|
|||
// we don't need to apply any extra padding because we injected total number of elements
|
|||
// in the input list into the capacity portion of the state during initialization.
|
|||
if i > 0 {
|
|||
Self::apply_permutation(&mut state);
|
|||
}
|
|||
|
|||
// return the first 4 elements of the state as hash result
|
|||
ElementDigest::new(state[DIGEST_RANGE].try_into().unwrap())
|
|||
}
|
|||
|
|||
fn merge(values: &[Self::Digest; 2]) -> Self::Digest {
|
|||
// initialize the state by copying the digest elements into the rate portion of the state
|
|||
// (8 total elements), and set the capacity elements to 0.
|
|||
let mut state = [BaseElement::ZERO; STATE_WIDTH];
|
|||
state[RATE_RANGE].copy_from_slice(Self::Digest::digests_as_elements(values));
|
|||
|
|||
// apply the RPO permutation and return the first four elements of the state
|
|||
Self::apply_permutation(&mut state);
|
|||
ElementDigest::new(state[DIGEST_RANGE].try_into().unwrap())
|
|||
}
|
|||
|
|||
fn merge_with_int(seed: Self::Digest, value: u64) -> Self::Digest {
|
|||
// initialize the state as follows:
|
|||
// - seed is copied into the first 4 elements of the rate portion of the state.
|
|||
// - if the value fits into a single field element, copy it into the fifth rate element
|
|||
// and set the sixth rate element and first capacity element to 1.
|
|||
// - if the value doesn't fit into a single field element, split it into two field
|
|||
// elements, copy them into rate elements 5 and 6, and set the seventh rate element
|
|||
// and first capacity element to 1.
|
|||
let mut state = [BaseElement::ZERO; STATE_WIDTH];
|
|||
state[INPUT1_RANGE].copy_from_slice(seed.as_elements());
|
|||
state[INPUT2_RANGE.start] = BaseElement::new(value);
|
|||
if value < BaseElement::MODULUS {
|
|||
state[INPUT2_RANGE.start + 1] = BaseElement::ONE;
|
|||
} else {
|
|||
state[INPUT2_RANGE.start + 1] = BaseElement::new(value / BaseElement::MODULUS);
|
|||
state[INPUT2_RANGE.start + 2] = BaseElement::ONE;
|
|||
}
|
|||
|
|||
// common padding for both cases
|
|||
state[CAPACITY_RANGE.start] = BaseElement::ONE;
|
|||
|
|||
// apply the RPO permutation and return the first four elements of the state
|
|||
Self::apply_permutation(&mut state);
|
|||
ElementDigest::new(state[DIGEST_RANGE].try_into().unwrap())
|
|||
}
|
|||
}
|
|||
|
|||
impl ElementHasher for Rpo {
|
|||
type BaseField = BaseElement;
|
|||
|
|||
fn hash_elements<E: FieldElement<BaseField = Self::BaseField>>(elements: &[E]) -> Self::Digest {
|
|||
// convert the elements into a list of base field elements
|
|||
let elements = E::as_base_elements(elements);
|
|||
|
|||
// initialize state to all zeros, except for the first element of the capacity part, which
|
|||
// is set to 1 if the number of elements is not a multiple of RATE_WIDTH.
|
|||
let mut state = [BaseElement::ZERO; STATE_WIDTH];
|
|||
if elements.len() % RATE_WIDTH != 0 {
|
|||
state[CAPACITY_RANGE.start] = BaseElement::ONE;
|
|||
}
|
|||
|
|||
// absorb elements into the state one by one until the rate portion of the state is filled
|
|||
// up; then apply the Rescue permutation and start absorbing again; repeat until all
|
|||
// elements have been absorbed
|
|||
let mut i = 0;
|
|||
for &element in elements.iter() {
|
|||
state[RATE_RANGE.start + i] = element;
|
|||
i += 1;
|
|||
if i % RATE_WIDTH == 0 {
|
|||
Self::apply_permutation(&mut state);
|
|||
i = 0;
|
|||
}
|
|||
}
|
|||
|
|||
// if we absorbed some elements but didn't apply a permutation to them (would happen when
|
|||
// the number of elements is not a multiple of RATE_WIDTH), apply the RPO permutation after
|
|||
// padding by appending a 1 followed by as many 0 as necessary to make the input length a
|
|||
// multiple of the RATE_WIDTH.
|
|||
if i > 0 {
|
|||
state[RATE_RANGE.start + i] = BaseElement::ONE;
|
|||
i += 1;
|
|||
while i != RATE_WIDTH {
|
|||
state[RATE_RANGE.start + i] = BaseElement::ZERO;
|
|||
i += 1;
|
|||
}
|
|||
Self::apply_permutation(&mut state);
|
|||
}
|
|||
|
|||
// return the first 4 elements of the state as hash result
|
|||
ElementDigest::new(state[DIGEST_RANGE].try_into().unwrap())
|
|||
}
|
|||
}
|
|||
|
|||
// HASH FUNCTION IMPLEMENTATION
|
|||
// ================================================================================================
|
|||
|
|||
impl Rpo {
|
|||
// RESCUE PERMUTATION
|
|||
// --------------------------------------------------------------------------------------------
|
|||
|
|||
/// Applies RPO permutation to the provided state.
|
|||
pub fn apply_permutation(state: &mut [BaseElement; STATE_WIDTH]) {
|
|||
for i in 0..NUM_ROUNDS {
|
|||
Self::apply_round(state, i);
|
|||
}
|
|||
}
|
|||
|
|||
/// RPO round function.
|
|||
#[inline(always)]
|
|||
pub fn apply_round(state: &mut [BaseElement; STATE_WIDTH], round: usize) {
|
|||
// apply first half of RPO round
|
|||
Self::apply_mds(state);
|
|||
Self::add_constants(state, &ARK1[round]);
|
|||
Self::apply_sbox(state);
|
|||
|
|||
// apply second half of RPO round
|
|||
Self::apply_mds(state);
|
|||
Self::add_constants(state, &ARK2[round]);
|
|||
Self::apply_inv_sbox(state);
|
|||
}
|
|||
|
|||
// HELPER FUNCTIONS
|
|||
// --------------------------------------------------------------------------------------------
|
|||
|
|||
#[inline(always)]
|
|||
fn apply_mds(state: &mut [BaseElement; STATE_WIDTH]) {
|
|||
let mut result = [BaseElement::ZERO; STATE_WIDTH];
|
|||
|
|||
// Using the linearity of the operations we can split the state into a low||high decomposition
|
|||
// and operate on each with no overflow and then combine/reduce the result to a field element.
|
|||
// The no overflow is guaranteed by the fact that the MDS matrix is a small powers of two in
|
|||
// frequency domain.
|
|||
let mut state_l = [0u64; STATE_WIDTH];
|
|||
let mut state_h = [0u64; STATE_WIDTH];
|
|||
|
|||
for r in 0..STATE_WIDTH {
|
|||
let s = state[r].inner();
|
|||
state_h[r] = s >> 32;
|
|||
state_l[r] = (s as u32) as u64;
|
|||
}
|
|||
|
|||
let state_h = mds_multiply_freq(state_h);
|
|||
let state_l = mds_multiply_freq(state_l);
|
|||
|
|||
for r in 0..STATE_WIDTH {
|
|||
let s = state_l[r] as u128 + ((state_h[r] as u128) << 32);
|
|||
let s_hi = (s >> 64) as u64;
|
|||
let s_lo = s as u64;
|
|||
let z = (s_hi << 32) - s_hi;
|
|||
let (res, over) = s_lo.overflowing_add(z);
|
|||
|
|||
result[r] =
|
|||
BaseElement::from_mont(res.wrapping_add(0u32.wrapping_sub(over as u32) as u64));
|
|||
}
|
|||
*state = result;
|
|||
}
|
|||
|
|||
#[inline(always)]
|
|||
fn add_constants(state: &mut [BaseElement; STATE_WIDTH], ark: &[BaseElement; STATE_WIDTH]) {
|
|||
state.iter_mut().zip(ark).for_each(|(s, &k)| *s += k);
|
|||
}
|
|||
|
|||
#[inline(always)]
|
|||
fn apply_sbox(state: &mut [BaseElement; STATE_WIDTH]) {
|
|||
state[0] = state[0].exp7();
|
|||
state[1] = state[1].exp7();
|
|||
state[2] = state[2].exp7();
|
|||
state[3] = state[3].exp7();
|
|||
state[4] = state[4].exp7();
|
|||
state[5] = state[5].exp7();
|
|||
state[6] = state[6].exp7();
|
|||
state[7] = state[7].exp7();
|
|||
state[8] = state[8].exp7();
|
|||
state[9] = state[9].exp7();
|
|||
state[10] = state[10].exp7();
|
|||
state[11] = state[11].exp7();
|
|||
}
|
|||
|
|||
#[inline(always)]
|
|||
fn apply_inv_sbox(state: &mut [BaseElement; STATE_WIDTH]) {
|
|||
// compute base^10540996611094048183 using 72 multiplications per array element
|
|||
// 10540996611094048183 = b1001001001001001001001001001000110110110110110110110110110110111
|
|||
|
|||
// compute base^10
|
|||
let mut t1 = *state;
|
|||
t1.iter_mut().for_each(|t| *t = t.square());
|
|||
|
|||
// compute base^100
|
|||
let mut t2 = t1;
|
|||
t2.iter_mut().for_each(|t| *t = t.square());
|
|||
|
|||
// compute base^100100
|
|||
let t3 = exp_acc::<BaseElement, STATE_WIDTH, 3>(t2, t2);
|
|||
|
|||
// compute base^100100100100
|
|||
let t4 = exp_acc::<BaseElement, STATE_WIDTH, 6>(t3, t3);
|
|||
|
|||
// compute base^100100100100100100100100
|
|||
let t5 = exp_acc::<BaseElement, STATE_WIDTH, 12>(t4, t4);
|
|||
|
|||
// compute base^100100100100100100100100100100
|
|||
let t6 = exp_acc::<BaseElement, STATE_WIDTH, 6>(t5, t3);
|
|||
|
|||
// compute base^1001001001001001001001001001000100100100100100100100100100100
|
|||
let t7 = exp_acc::<BaseElement, STATE_WIDTH, 31>(t6, t6);
|
|||
|
|||
// compute base^1001001001001001001001001001000110110110110110110110110110110111
|
|||
for (i, s) in state.iter_mut().enumerate() {
|
|||
let a = (t7[i].square() * t6[i]).square().square();
|
|||
let b = t1[i] * t2[i] * *s;
|
|||
*s = a * b;
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
// MDS
|
|||
// ================================================================================================
|
|||
/// RPO MDS matrix
|
|||
const MDS: [[BaseElement; STATE_WIDTH]; STATE_WIDTH] = [
|
|||
[
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(23),
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(26),
|
|||
BaseElement::new(13),
|
|||
BaseElement::new(10),
|
|||
BaseElement::new(9),
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(6),
|
|||
BaseElement::new(22),
|
|||
BaseElement::new(21),
|
|||
BaseElement::new(8),
|
|||
],
|
|||
[
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(23),
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(26),
|
|||
BaseElement::new(13),
|
|||
BaseElement::new(10),
|
|||
BaseElement::new(9),
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(6),
|
|||
BaseElement::new(22),
|
|||
BaseElement::new(21),
|
|||
],
|
|||
[
|
|||
BaseElement::new(21),
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(23),
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(26),
|
|||
BaseElement::new(13),
|
|||
BaseElement::new(10),
|
|||
BaseElement::new(9),
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(6),
|
|||
BaseElement::new(22),
|
|||
],
|
|||
[
|
|||
BaseElement::new(22),
|
|||
BaseElement::new(21),
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(23),
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(26),
|
|||
BaseElement::new(13),
|
|||
BaseElement::new(10),
|
|||
BaseElement::new(9),
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(6),
|
|||
],
|
|||
[
|
|||
BaseElement::new(6),
|
|||
BaseElement::new(22),
|
|||
BaseElement::new(21),
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(23),
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(26),
|
|||
BaseElement::new(13),
|
|||
BaseElement::new(10),
|
|||
BaseElement::new(9),
|
|||
BaseElement::new(7),
|
|||
],
|
|||
[
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(6),
|
|||
BaseElement::new(22),
|
|||
BaseElement::new(21),
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(23),
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(26),
|
|||
BaseElement::new(13),
|
|||
BaseElement::new(10),
|
|||
BaseElement::new(9),
|
|||
],
|
|||
[
|
|||
BaseElement::new(9),
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(6),
|
|||
BaseElement::new(22),
|
|||
BaseElement::new(21),
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(23),
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(26),
|
|||
BaseElement::new(13),
|
|||
BaseElement::new(10),
|
|||
],
|
|||
[
|
|||
BaseElement::new(10),
|
|||
BaseElement::new(9),
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(6),
|
|||
BaseElement::new(22),
|
|||
BaseElement::new(21),
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(23),
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(26),
|
|||
BaseElement::new(13),
|
|||
],
|
|||
[
|
|||
BaseElement::new(13),
|
|||
BaseElement::new(10),
|
|||
BaseElement::new(9),
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(6),
|
|||
BaseElement::new(22),
|
|||
BaseElement::new(21),
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(23),
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(26),
|
|||
],
|
|||
[
|
|||
BaseElement::new(26),
|
|||
BaseElement::new(13),
|
|||
BaseElement::new(10),
|
|||
BaseElement::new(9),
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(6),
|
|||
BaseElement::new(22),
|
|||
BaseElement::new(21),
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(23),
|
|||
BaseElement::new(8),
|
|||
],
|
|||
[
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(26),
|
|||
BaseElement::new(13),
|
|||
BaseElement::new(10),
|
|||
BaseElement::new(9),
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(6),
|
|||
BaseElement::new(22),
|
|||
BaseElement::new(21),
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(23),
|
|||
],
|
|||
[
|
|||
BaseElement::new(23),
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(26),
|
|||
BaseElement::new(13),
|
|||
BaseElement::new(10),
|
|||
BaseElement::new(9),
|
|||
BaseElement::new(7),
|
|||
BaseElement::new(6),
|
|||
BaseElement::new(22),
|
|||
BaseElement::new(21),
|
|||
BaseElement::new(8),
|
|||
BaseElement::new(7),
|
|||
],
|
|||
];
|
|||
|
|||
/// RPO Inverse MDS matrix
|
|||
const INV_MDS: [[BaseElement; STATE_WIDTH]; STATE_WIDTH] = [
|
|||
[
|
|||
BaseElement::new(14868391535953158196),
|
|||
BaseElement::new(13278298489594233127),
|
|||
BaseElement::new(389999932707070822),
|
|||
BaseElement::new(9782021734907796003),
|
|||
BaseElement::new(4829905704463175582),
|
|||
BaseElement::new(7567822018949214430),
|
|||
BaseElement::new(14205019324568680367),
|
|||
BaseElement::new(15489674211196160593),
|
|||
BaseElement::new(17636013826542227504),
|
|||
BaseElement::new(16254215311946436093),
|
|||
BaseElement::new(3641486184877122796),
|
|||
BaseElement::new(11069068059762973582),
|
|||
],
|
|||
[
|
|||
BaseElement::new(11069068059762973582),
|
|||
BaseElement::new(14868391535953158196),
|
|||
BaseElement::new(13278298489594233127),
|
|||
BaseElement::new(389999932707070822),
|
|||
BaseElement::new(9782021734907796003),
|
|||
BaseElement::new(4829905704463175582),
|
|||
BaseElement::new(7567822018949214430),
|
|||
BaseElement::new(14205019324568680367),
|
|||
BaseElement::new(15489674211196160593),
|
|||
BaseElement::new(17636013826542227504),
|
|||
BaseElement::new(16254215311946436093),
|
|||
BaseElement::new(3641486184877122796),
|
|||
],
|
|||
[
|
|||
BaseElement::new(3641486184877122796),
|
|||
BaseElement::new(11069068059762973582),
|
|||
BaseElement::new(14868391535953158196),
|
|||
BaseElement::new(13278298489594233127),
|
|||
BaseElement::new(389999932707070822),
|
|||
BaseElement::new(9782021734907796003),
|
|||
BaseElement::new(4829905704463175582),
|
|||
BaseElement::new(7567822018949214430),
|
|||
BaseElement::new(14205019324568680367),
|
|||
BaseElement::new(15489674211196160593),
|
|||
BaseElement::new(17636013826542227504),
|
|||
BaseElement::new(16254215311946436093),
|
|||
],
|
|||
[
|
|||
BaseElement::new(16254215311946436093),
|
|||
BaseElement::new(3641486184877122796),
|
|||
BaseElement::new(11069068059762973582),
|
|||
BaseElement::new(14868391535953158196),
|
|||
BaseElement::new(13278298489594233127),
|
|||
BaseElement::new(389999932707070822),
|
|||
BaseElement::new(9782021734907796003),
|
|||
BaseElement::new(4829905704463175582),
|
|||
BaseElement::new(7567822018949214430),
|
|||
BaseElement::new(14205019324568680367),
|
|||
BaseElement::new(15489674211196160593),
|
|||
BaseElement::new(17636013826542227504),
|
|||
],
|
|||
[
|
|||
BaseElement::new(17636013826542227504),
|
|||
BaseElement::new(16254215311946436093),
|
|||
BaseElement::new(3641486184877122796),
|
|||
BaseElement::new(11069068059762973582),
|
|||
BaseElement::new(14868391535953158196),
|
|||
BaseElement::new(13278298489594233127),
|
|||
BaseElement::new(389999932707070822),
|
|||
BaseElement::new(9782021734907796003),
|
|||
BaseElement::new(4829905704463175582),
|
|||
BaseElement::new(7567822018949214430),
|
|||
BaseElement::new(14205019324568680367),
|
|||
BaseElement::new(15489674211196160593),
|
|||
],
|
|||
[
|
|||
BaseElement::new(15489674211196160593),
|
|||
BaseElement::new(17636013826542227504),
|
|||
BaseElement::new(16254215311946436093),
|
|||
BaseElement::new(3641486184877122796),
|
|||
BaseElement::new(11069068059762973582),
|
|||
BaseElement::new(14868391535953158196),
|
|||
BaseElement::new(13278298489594233127),
|
|||
BaseElement::new(389999932707070822),
|
|||
BaseElement::new(9782021734907796003),
|
|||
BaseElement::new(4829905704463175582),
|
|||
BaseElement::new(7567822018949214430),
|
|||
BaseElement::new(14205019324568680367),
|
|||
],
|
|||
[
|
|||
BaseElement::new(14205019324568680367),
|
|||
BaseElement::new(15489674211196160593),
|
|||
BaseElement::new(17636013826542227504),
|
|||
BaseElement::new(16254215311946436093),
|
|||
BaseElement::new(3641486184877122796),
|
|||
BaseElement::new(11069068059762973582),
|
|||
BaseElement::new(14868391535953158196),
|
|||
BaseElement::new(13278298489594233127),
|
|||
BaseElement::new(389999932707070822),
|
|||
BaseElement::new(9782021734907796003),
|
|||
BaseElement::new(4829905704463175582),
|
|||
BaseElement::new(7567822018949214430),
|
|||
],
|
|||
[
|
|||
BaseElement::new(7567822018949214430),
|
|||
BaseElement::new(14205019324568680367),
|
|||
BaseElement::new(15489674211196160593),
|
|||
BaseElement::new(17636013826542227504),
|
|||
BaseElement::new(16254215311946436093),
|
|||
BaseElement::new(3641486184877122796),
|
|||
BaseElement::new(11069068059762973582),
|
|||
BaseElement::new(14868391535953158196),
|
|||
BaseElement::new(13278298489594233127),
|
|||
BaseElement::new(389999932707070822),
|
|||
BaseElement::new(9782021734907796003),
|
|||
BaseElement::new(4829905704463175582),
|
|||
],
|
|||
[
|
|||
BaseElement::new(4829905704463175582),
|
|||
BaseElement::new(7567822018949214430),
|
|||
BaseElement::new(14205019324568680367),
|
|||
BaseElement::new(15489674211196160593),
|
|||
BaseElement::new(17636013826542227504),
|
|||
BaseElement::new(16254215311946436093),
|
|||
BaseElement::new(3641486184877122796),
|
|||
BaseElement::new(11069068059762973582),
|
|||
BaseElement::new(14868391535953158196),
|
|||
BaseElement::new(13278298489594233127),
|
|||
BaseElement::new(389999932707070822),
|
|||
BaseElement::new(9782021734907796003),
|
|||
],
|
|||
[
|
|||
BaseElement::new(9782021734907796003),
|
|||
BaseElement::new(4829905704463175582),
|
|||
BaseElement::new(7567822018949214430),
|
|||
BaseElement::new(14205019324568680367),
|
|||
BaseElement::new(15489674211196160593),
|
|||
BaseElement::new(17636013826542227504),
|
|||
BaseElement::new(16254215311946436093),
|
|||
BaseElement::new(3641486184877122796),
|
|||
BaseElement::new(11069068059762973582),
|
|||
BaseElement::new(14868391535953158196),
|
|||
BaseElement::new(13278298489594233127),
|
|||
BaseElement::new(389999932707070822),
|
|||
],
|
|||
[
|
|||
BaseElement::new(389999932707070822),
|
|||
BaseElement::new(9782021734907796003),
|
|||
BaseElement::new(4829905704463175582),
|
|||
BaseElement::new(7567822018949214430),
|
|||
BaseElement::new(14205019324568680367),
|
|||
BaseElement::new(15489674211196160593),
|
|||
BaseElement::new(17636013826542227504),
|
|||
BaseElement::new(16254215311946436093),
|
|||
BaseElement::new(3641486184877122796),
|
|||
BaseElement::new(11069068059762973582),
|
|||
BaseElement::new(14868391535953158196),
|
|||
BaseElement::new(13278298489594233127),
|
|||
],
|
|||
[
|
|||
BaseElement::new(13278298489594233127),
|
|||
BaseElement::new(389999932707070822),
|
|||
BaseElement::new(9782021734907796003),
|
|||
BaseElement::new(4829905704463175582),
|
|||
BaseElement::new(7567822018949214430),
|
|||
BaseElement::new(14205019324568680367),
|
|||
BaseElement::new(15489674211196160593),
|
|||
BaseElement::new(17636013826542227504),
|
|||
BaseElement::new(16254215311946436093),
|
|||
BaseElement::new(3641486184877122796),
|
|||
BaseElement::new(11069068059762973582),
|
|||
BaseElement::new(14868391535953158196),
|
|||
],
|
|||
];
|
|||
|
|||
// ROUND CONSTANTS
|
|||
// ================================================================================================
|
|||
|
|||
/// Rescue round constants;
|
|||
/// computed as in section ?? from [specifications](https://github.org/aszepieniec/rpo/)
|
|||
///
|
|||
/// The constants are broken up into two arrays ARK1 and ARK2; ARK1 contains the constants for the
|
|||
/// first half of RPO round, and ARK2 contains constants for the second half of RPO round.
|
|||
const ARK1: [[BaseElement; STATE_WIDTH]; NUM_ROUNDS] = [
|
|||
[
|
|||
BaseElement::new(5789762306288267392),
|
|||
BaseElement::new(6522564764413701783),
|
|||
BaseElement::new(17809893479458208203),
|
|||
BaseElement::new(107145243989736508),
|
|||
BaseElement::new(6388978042437517382),
|
|||
BaseElement::new(15844067734406016715),
|
|||
BaseElement::new(9975000513555218239),
|
|||
BaseElement::new(3344984123768313364),
|
|||
BaseElement::new(9959189626657347191),
|
|||
BaseElement::new(12960773468763563665),
|
|||
BaseElement::new(9602914297752488475),
|
|||
BaseElement::new(16657542370200465908),
|
|||
],
|
|||
[
|
|||
BaseElement::new(12987190162843096997),
|
|||
BaseElement::new(653957632802705281),
|
|||
BaseElement::new(4441654670647621225),
|
|||
BaseElement::new(4038207883745915761),
|
|||
BaseElement::new(5613464648874830118),
|
|||
BaseElement::new(13222989726778338773),
|
|||
BaseElement::new(3037761201230264149),
|
|||
BaseElement::new(16683759727265180203),
|
|||
BaseElement::new(8337364536491240715),
|
|||
BaseElement::new(3227397518293416448),
|
|||
BaseElement::new(8110510111539674682),
|
|||
BaseElement::new(2872078294163232137),
|
|||
],
|
|||
[
|
|||
BaseElement::new(18072785500942327487),
|
|||
BaseElement::new(6200974112677013481),
|
|||
BaseElement::new(17682092219085884187),
|
|||
BaseElement::new(10599526828986756440),
|
|||
BaseElement::new(975003873302957338),
|
|||
BaseElement::new(8264241093196931281),
|
|||
BaseElement::new(10065763900435475170),
|
|||
BaseElement::new(2181131744534710197),
|
|||
BaseElement::new(6317303992309418647),
|
|||
BaseElement::new(1401440938888741532),
|
|||
BaseElement::new(8884468225181997494),
|
|||
BaseElement::new(13066900325715521532),
|
|||
],
|
|||
[
|
|||
BaseElement::new(5674685213610121970),
|
|||
BaseElement::new(5759084860419474071),
|
|||
BaseElement::new(13943282657648897737),
|
|||
BaseElement::new(1352748651966375394),
|
|||
BaseElement::new(17110913224029905221),
|
|||
BaseElement::new(1003883795902368422),
|
|||
BaseElement::new(4141870621881018291),
|
|||
BaseElement::new(8121410972417424656),
|
|||
BaseElement::new(14300518605864919529),
|
|||
BaseElement::new(13712227150607670181),
|
|||
BaseElement::new(17021852944633065291),
|
|||
BaseElement::new(6252096473787587650),
|
|||
],
|
|||
[
|
|||
BaseElement::new(4887609836208846458),
|
|||
BaseElement::new(3027115137917284492),
|
|||
BaseElement::new(9595098600469470675),
|
|||
BaseElement::new(10528569829048484079),
|
|||
BaseElement::new(7864689113198939815),
|
|||
BaseElement::new(17533723827845969040),
|
|||
BaseElement::new(5781638039037710951),
|
|||
BaseElement::new(17024078752430719006),
|
|||
BaseElement::new(109659393484013511),
|
|||
BaseElement::new(7158933660534805869),
|
|||
BaseElement::new(2955076958026921730),
|
|||
BaseElement::new(7433723648458773977),
|
|||
],
|
|||
[
|
|||
BaseElement::new(16308865189192447297),
|
|||
BaseElement::new(11977192855656444890),
|
|||
BaseElement::new(12532242556065780287),
|
|||
BaseElement::new(14594890931430968898),
|
|||
BaseElement::new(7291784239689209784),
|
|||
BaseElement::new(5514718540551361949),
|
|||
BaseElement::new(10025733853830934803),
|
|||
BaseElement::new(7293794580341021693),
|
|||
BaseElement::new(6728552937464861756),
|
|||
BaseElement::new(6332385040983343262),
|
|||
BaseElement::new(13277683694236792804),
|
|||
BaseElement::new(2600778905124452676),
|
|||
],
|
|||
[
|
|||
BaseElement::new(7123075680859040534),
|
|||
BaseElement::new(1034205548717903090),
|
|||
BaseElement::new(7717824418247931797),
|
|||
BaseElement::new(3019070937878604058),
|
|||
BaseElement::new(11403792746066867460),
|
|||
BaseElement::new(10280580802233112374),
|
|||
BaseElement::new(337153209462421218),
|
|||
BaseElement::new(13333398568519923717),
|
|||
BaseElement::new(3596153696935337464),
|
|||
BaseElement::new(8104208463525993784),
|
|||
BaseElement::new(14345062289456085693),
|
|||
BaseElement::new(17036731477169661256),
|
|||
],
|
|||
];
|
|||
|
|||
const ARK2: [[BaseElement; STATE_WIDTH]; NUM_ROUNDS] = [
|
|||
[
|
|||
BaseElement::new(6077062762357204287),
|
|||
BaseElement::new(15277620170502011191),
|
|||
BaseElement::new(5358738125714196705),
|
|||
BaseElement::new(14233283787297595718),
|
|||
BaseElement::new(13792579614346651365),
|
|||
BaseElement::new(11614812331536767105),
|
|||
BaseElement::new(14871063686742261166),
|
|||
BaseElement::new(10148237148793043499),
|
|||
BaseElement::new(4457428952329675767),
|
|||
BaseElement::new(15590786458219172475),
|
|||
BaseElement::new(10063319113072092615),
|
|||
BaseElement::new(14200078843431360086),
|
|||
],
|
|||
[
|
|||
BaseElement::new(6202948458916099932),
|
|||
BaseElement::new(17690140365333231091),
|
|||
BaseElement::new(3595001575307484651),
|
|||
BaseElement::new(373995945117666487),
|
|||
BaseElement::new(1235734395091296013),
|
|||
BaseElement::new(14172757457833931602),
|
|||
BaseElement::new(707573103686350224),
|
|||
BaseElement::new(15453217512188187135),
|
|||
BaseElement::new(219777875004506018),
|
|||
BaseElement::new(17876696346199469008),
|
|||
BaseElement::new(17731621626449383378),
|
|||
BaseElement::new(2897136237748376248),
|
|||
],
|
|||
[
|
|||
BaseElement::new(8023374565629191455),
|
|||
BaseElement::new(15013690343205953430),
|
|||
BaseElement::new(4485500052507912973),
|
|||
BaseElement::new(12489737547229155153),
|
|||
BaseElement::new(9500452585969030576),
|
|||
BaseElement::new(2054001340201038870),
|
|||
BaseElement::new(12420704059284934186),
|
|||
BaseElement::new(355990932618543755),
|
|||
BaseElement::new(9071225051243523860),
|
|||
BaseElement::new(12766199826003448536),
|
|||
BaseElement::new(9045979173463556963),
|
|||
BaseElement::new(12934431667190679898),
|
|||
],
|
|||
[
|
|||
BaseElement::new(18389244934624494276),
|
|||
BaseElement::new(16731736864863925227),
|
|||
BaseElement::new(4440209734760478192),
|
|||
BaseElement::new(17208448209698888938),
|
|||
BaseElement::new(8739495587021565984),
|
|||
BaseElement::new(17000774922218161967),
|
|||
BaseElement::new(13533282547195532087),
|
|||
BaseElement::new(525402848358706231),
|
|||
BaseElement::new(16987541523062161972),
|
|||
BaseElement::new(5466806524462797102),
|
|||
BaseElement::new(14512769585918244983),
|
|||
BaseElement::new(10973956031244051118),
|
|||
],
|
|||
[
|
|||
BaseElement::new(6982293561042362913),
|
|||
BaseElement::new(14065426295947720331),
|
|||
BaseElement::new(16451845770444974180),
|
|||
BaseElement::new(7139138592091306727),
|
|||
BaseElement::new(9012006439959783127),
|
|||
BaseElement::new(14619614108529063361),
|
|||
BaseElement::new(1394813199588124371),
|
|||
BaseElement::new(4635111139507788575),
|
|||
BaseElement::new(16217473952264203365),
|
|||
BaseElement::new(10782018226466330683),
|
|||
BaseElement::new(6844229992533662050),
|
|||
BaseElement::new(7446486531695178711),
|
|||
],
|
|||
[
|
|||
BaseElement::new(3736792340494631448),
|
|||
BaseElement::new(577852220195055341),
|
|||
BaseElement::new(6689998335515779805),
|
|||
BaseElement::new(13886063479078013492),
|
|||
BaseElement::new(14358505101923202168),
|
|||
BaseElement::new(7744142531772274164),
|
|||
BaseElement::new(16135070735728404443),
|
|||
BaseElement::new(12290902521256031137),
|
|||
BaseElement::new(12059913662657709804),
|
|||
BaseElement::new(16456018495793751911),
|
|||
BaseElement::new(4571485474751953524),
|
|||
BaseElement::new(17200392109565783176),
|
|||
],
|
|||
[
|
|||
BaseElement::new(17130398059294018733),
|
|||
BaseElement::new(519782857322261988),
|
|||
BaseElement::new(9625384390925085478),
|
|||
BaseElement::new(1664893052631119222),
|
|||
BaseElement::new(7629576092524553570),
|
|||
BaseElement::new(3485239601103661425),
|
|||
BaseElement::new(9755891797164033838),
|
|||
BaseElement::new(15218148195153269027),
|
|||
BaseElement::new(16460604813734957368),
|
|||
BaseElement::new(9643968136937729763),
|
|||
BaseElement::new(3611348709641382851),
|
|||
BaseElement::new(18256379591337759196),
|
|||
],
|
|||
];
|
@ -0,0 +1,161 @@ |
|||
use super::{
|
|||
BaseElement, ElementDigest, ElementHasher, FieldElement, HashFn, Rpo, StarkField, ALPHA,
|
|||
INV_ALPHA, INV_MDS, MDS, STATE_WIDTH,
|
|||
};
|
|||
|
|||
use core::convert::TryInto;
|
|||
|
|||
use rand_utils::rand_value;
|
|||
|
|||
#[test]
|
|||
fn mds_inv_test() {
|
|||
let mut mul_result = [[BaseElement::new(0); STATE_WIDTH]; STATE_WIDTH];
|
|||
for i in 0..STATE_WIDTH {
|
|||
for j in 0..STATE_WIDTH {
|
|||
let result = {
|
|||
let mut result = BaseElement::new(0);
|
|||
for k in 0..STATE_WIDTH {
|
|||
result += MDS[i][k] * INV_MDS[k][j]
|
|||
}
|
|||
result
|
|||
};
|
|||
mul_result[i][j] = result;
|
|||
if i == j {
|
|||
assert_eq!(result, BaseElement::new(1));
|
|||
} else {
|
|||
assert_eq!(result, BaseElement::new(0));
|
|||
}
|
|||
}
|
|||
}
|
|||
}
|
|||
#[test]
|
|||
fn test_alphas() {
|
|||
let e: BaseElement = BaseElement::new(rand_value());
|
|||
let e_exp = e.exp(ALPHA.into());
|
|||
assert_eq!(e, e_exp.exp(INV_ALPHA));
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_sbox() {
|
|||
let state = [BaseElement::new(rand_value()); STATE_WIDTH];
|
|||
|
|||
let mut expected = state;
|
|||
expected.iter_mut().for_each(|v| *v = v.exp(ALPHA));
|
|||
|
|||
let mut actual = state;
|
|||
Rpo::apply_sbox(&mut actual);
|
|||
|
|||
assert_eq!(expected, actual);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_inv_sbox() {
|
|||
let state = [BaseElement::new(rand_value()); STATE_WIDTH];
|
|||
|
|||
let mut expected = state;
|
|||
expected.iter_mut().for_each(|v| *v = v.exp(INV_ALPHA));
|
|||
|
|||
let mut actual = state;
|
|||
Rpo::apply_inv_sbox(&mut actual);
|
|||
|
|||
assert_eq!(expected, actual);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn hash_elements_vs_merge() {
|
|||
let elements = [BaseElement::new(rand_value()); 8];
|
|||
|
|||
let digests: [ElementDigest; 2] = [
|
|||
ElementDigest::new(elements[..4].try_into().unwrap()),
|
|||
ElementDigest::new(elements[4..].try_into().unwrap()),
|
|||
];
|
|||
|
|||
let m_result = Rpo::merge(&digests);
|
|||
let h_result = Rpo::hash_elements(&elements);
|
|||
assert_eq!(m_result, h_result);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn hash_elements_vs_merge_with_int() {
|
|||
let tmp = [BaseElement::new(rand_value()); 4];
|
|||
let seed = ElementDigest::new(tmp);
|
|||
|
|||
// ----- value fits into a field element ------------------------------------------------------
|
|||
let val: BaseElement = BaseElement::new(rand_value());
|
|||
let m_result = Rpo::merge_with_int(seed, val.as_int());
|
|||
|
|||
let mut elements = seed.as_elements().to_vec();
|
|||
elements.push(val);
|
|||
let h_result = Rpo::hash_elements(&elements);
|
|||
|
|||
assert_eq!(m_result, h_result);
|
|||
|
|||
// ----- value does not fit into a field element ----------------------------------------------
|
|||
let val = BaseElement::MODULUS + 2;
|
|||
let m_result = Rpo::merge_with_int(seed, val);
|
|||
|
|||
let mut elements = seed.as_elements().to_vec();
|
|||
elements.push(BaseElement::new(val));
|
|||
elements.push(BaseElement::new(1));
|
|||
let h_result = Rpo::hash_elements(&elements);
|
|||
|
|||
assert_eq!(m_result, h_result);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn hash_padding() {
|
|||
// adding a zero bytes at the end of a byte string should result in a different hash
|
|||
let r1 = Rpo::hash(&[1_u8, 2, 3]);
|
|||
let r2 = Rpo::hash(&[1_u8, 2, 3, 0]);
|
|||
assert_ne!(r1, r2);
|
|||
|
|||
// same as above but with bigger inputs
|
|||
let r1 = Rpo::hash(&[1_u8, 2, 3, 4, 5, 6]);
|
|||
let r2 = Rpo::hash(&[1_u8, 2, 3, 4, 5, 6, 0]);
|
|||
assert_ne!(r1, r2);
|
|||
|
|||
// same as above but with input splitting over two elements
|
|||
let r1 = Rpo::hash(&[1_u8, 2, 3, 4, 5, 6, 7]);
|
|||
let r2 = Rpo::hash(&[1_u8, 2, 3, 4, 5, 6, 7, 0]);
|
|||
assert_ne!(r1, r2);
|
|||
|
|||
// same as above but with multiple zeros
|
|||
let r1 = Rpo::hash(&[1_u8, 2, 3, 4, 5, 6, 7, 0, 0]);
|
|||
let r2 = Rpo::hash(&[1_u8, 2, 3, 4, 5, 6, 7, 0, 0, 0, 0]);
|
|||
assert_ne!(r1, r2);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn hash_elements_padding() {
|
|||
let e1 = [BaseElement::new(rand_value()); 2];
|
|||
let e2 = [e1[0], e1[1], BaseElement::ZERO];
|
|||
|
|||
let r1 = Rpo::hash_elements(&e1);
|
|||
let r2 = Rpo::hash_elements(&e2);
|
|||
assert_ne!(r1, r2);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn hash_elements() {
|
|||
let elements = [
|
|||
BaseElement::new(0),
|
|||
BaseElement::new(1),
|
|||
BaseElement::new(2),
|
|||
BaseElement::new(3),
|
|||
BaseElement::new(4),
|
|||
BaseElement::new(5),
|
|||
BaseElement::new(6),
|
|||
BaseElement::new(7)
|
|||
];
|
|||
|
|||
let digests: [ElementDigest; 2] = [
|
|||
ElementDigest::new(elements[..4].try_into().unwrap()),
|
|||
ElementDigest::new(elements[4..8].try_into().unwrap()),
|
|||
];
|
|||
|
|||
let m_result = Rpo::merge(&digests);
|
|||
let h_result = Rpo::hash_elements(&elements);
|
|||
let m_elements :Vec<u64> = m_result.as_elements().iter().map(|a| {a.as_int()}).collect();
|
|||
let h_elements :Vec<u64> = h_result.as_elements().iter().map(|a| {a.as_int()}).collect();
|
|||
assert_eq!(m_elements, h_elements);
|
|||
}
|