feat: RPX (xHash12) hash function implementation

This commit is contained in:
Al-Kindi-0
2023-10-24 11:34:02 +02:00
committed by Bobbin Threadbare
parent f33a982f29
commit 3125144445
20 changed files with 1716 additions and 993 deletions

194
src/hash/rescue/mds/freq.rs Normal file
View File

@@ -0,0 +1,194 @@
// FFT-BASED MDS MULTIPLICATION HELPER FUNCTIONS
// ================================================================================================
/// This module contains helper functions as well as constants used to perform the vector-matrix
/// multiplication step of the Rescue prime permutation. The special form of our MDS matrix
/// i.e. being circular, allows us to reduce the vector-matrix multiplication to a Hadamard product
/// of two vectors in "frequency domain". This follows from the simple fact that every circulant
/// matrix has the columns of the discrete Fourier transform matrix as orthogonal eigenvectors.
/// The implementation also avoids the use of 3-point FFTs, and 3-point iFFTs, and substitutes that
/// with explicit expressions. It also avoids, due to the form of our matrix in the frequency domain,
/// divisions by 2 and repeated modular reductions. This is because of our explicit choice of
/// an MDS matrix that has small powers of 2 entries in frequency domain.
/// The following implementation has benefited greatly from the discussions and insights of
/// Hamish Ivey-Law and Jacqueline Nabaglo of Polygon Zero and is base on Nabaglo's Plonky2
/// implementation.
// Rescue MDS matrix in frequency domain.
// More precisely, this is the output of the three 4-point (real) FFTs of the first column of
// the MDS matrix i.e. just before the multiplication with the appropriate twiddle factors
// and application of the final four 3-point FFT in order to get the full 12-point FFT.
// The entries have been scaled appropriately in order to avoid divisions by 2 in iFFT2 and iFFT4.
// The code to generate the matrix in frequency domain is based on an adaptation of a code, to generate
// MDS matrices efficiently in original domain, that was developed by the Polygon Zero team.
const MDS_FREQ_BLOCK_ONE: [i64; 3] = [16, 8, 16];
const MDS_FREQ_BLOCK_TWO: [(i64, i64); 3] = [(-1, 2), (-1, 1), (4, 8)];
const MDS_FREQ_BLOCK_THREE: [i64; 3] = [-8, 1, 1];
// We use split 3 x 4 FFT transform in order to transform our vectors into the frequency domain.
#[inline(always)]
pub const fn mds_multiply_freq(state: [u64; 12]) -> [u64; 12] {
let [s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] = state;
let (u0, u1, u2) = fft4_real([s0, s3, s6, s9]);
let (u4, u5, u6) = fft4_real([s1, s4, s7, s10]);
let (u8, u9, u10) = fft4_real([s2, s5, s8, s11]);
// This where the multiplication in frequency domain is done. More precisely, and with
// the appropriate permutations in between, the sequence of
// 3-point FFTs --> multiplication by twiddle factors --> Hadamard multiplication -->
// 3 point iFFTs --> multiplication by (inverse) twiddle factors
// is "squashed" into one step composed of the functions "block1", "block2" and "block3".
// The expressions in the aforementioned functions are the result of explicit computations
// combined with the Karatsuba trick for the multiplication of Complex numbers.
let [v0, v4, v8] = block1([u0, u4, u8], MDS_FREQ_BLOCK_ONE);
let [v1, v5, v9] = block2([u1, u5, u9], MDS_FREQ_BLOCK_TWO);
let [v2, v6, v10] = block3([u2, u6, u10], MDS_FREQ_BLOCK_THREE);
// The 4th block is not computed as it is similar to the 2nd one, up to complex conjugation,
// and is, due to the use of the real FFT and iFFT, redundant.
let [s0, s3, s6, s9] = ifft4_real((v0, v1, v2));
let [s1, s4, s7, s10] = ifft4_real((v4, v5, v6));
let [s2, s5, s8, s11] = ifft4_real((v8, v9, v10));
[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11]
}
// We use the real FFT to avoid redundant computations. See https://www.mdpi.com/2076-3417/12/9/4700
#[inline(always)]
const fn fft2_real(x: [u64; 2]) -> [i64; 2] {
[(x[0] as i64 + x[1] as i64), (x[0] as i64 - x[1] as i64)]
}
#[inline(always)]
const fn ifft2_real(y: [i64; 2]) -> [u64; 2] {
// We avoid divisions by 2 by appropriately scaling the MDS matrix constants.
[(y[0] + y[1]) as u64, (y[0] - y[1]) as u64]
}
#[inline(always)]
const fn fft4_real(x: [u64; 4]) -> (i64, (i64, i64), i64) {
let [z0, z2] = fft2_real([x[0], x[2]]);
let [z1, z3] = fft2_real([x[1], x[3]]);
let y0 = z0 + z1;
let y1 = (z2, -z3);
let y2 = z0 - z1;
(y0, y1, y2)
}
#[inline(always)]
const fn ifft4_real(y: (i64, (i64, i64), i64)) -> [u64; 4] {
// In calculating 'z0' and 'z1', division by 2 is avoided by appropriately scaling
// the MDS matrix constants.
let z0 = y.0 + y.2;
let z1 = y.0 - y.2;
let z2 = y.1 .0;
let z3 = -y.1 .1;
let [x0, x2] = ifft2_real([z0, z2]);
let [x1, x3] = ifft2_real([z1, z3]);
[x0, x1, x2, x3]
}
#[inline(always)]
const fn block1(x: [i64; 3], y: [i64; 3]) -> [i64; 3] {
let [x0, x1, x2] = x;
let [y0, y1, y2] = y;
let z0 = x0 * y0 + x1 * y2 + x2 * y1;
let z1 = x0 * y1 + x1 * y0 + x2 * y2;
let z2 = x0 * y2 + x1 * y1 + x2 * y0;
[z0, z1, z2]
}
#[inline(always)]
const fn block2(x: [(i64, i64); 3], y: [(i64, i64); 3]) -> [(i64, i64); 3] {
let [(x0r, x0i), (x1r, x1i), (x2r, x2i)] = x;
let [(y0r, y0i), (y1r, y1i), (y2r, y2i)] = y;
let x0s = x0r + x0i;
let x1s = x1r + x1i;
let x2s = x2r + x2i;
let y0s = y0r + y0i;
let y1s = y1r + y1i;
let y2s = y2r + y2i;
// Compute x0y0 ix1y2 ix2y1 using Karatsuba for complex numbers multiplication
let m0 = (x0r * y0r, x0i * y0i);
let m1 = (x1r * y2r, x1i * y2i);
let m2 = (x2r * y1r, x2i * y1i);
let z0r = (m0.0 - m0.1) + (x1s * y2s - m1.0 - m1.1) + (x2s * y1s - m2.0 - m2.1);
let z0i = (x0s * y0s - m0.0 - m0.1) + (-m1.0 + m1.1) + (-m2.0 + m2.1);
let z0 = (z0r, z0i);
// Compute x0y1 + x1y0 ix2y2 using Karatsuba for complex numbers multiplication
let m0 = (x0r * y1r, x0i * y1i);
let m1 = (x1r * y0r, x1i * y0i);
let m2 = (x2r * y2r, x2i * y2i);
let z1r = (m0.0 - m0.1) + (m1.0 - m1.1) + (x2s * y2s - m2.0 - m2.1);
let z1i = (x0s * y1s - m0.0 - m0.1) + (x1s * y0s - m1.0 - m1.1) + (-m2.0 + m2.1);
let z1 = (z1r, z1i);
// Compute x0y2 + x1y1 + x2y0 using Karatsuba for complex numbers multiplication
let m0 = (x0r * y2r, x0i * y2i);
let m1 = (x1r * y1r, x1i * y1i);
let m2 = (x2r * y0r, x2i * y0i);
let z2r = (m0.0 - m0.1) + (m1.0 - m1.1) + (m2.0 - m2.1);
let z2i = (x0s * y2s - m0.0 - m0.1) + (x1s * y1s - m1.0 - m1.1) + (x2s * y0s - m2.0 - m2.1);
let z2 = (z2r, z2i);
[z0, z1, z2]
}
#[inline(always)]
const fn block3(x: [i64; 3], y: [i64; 3]) -> [i64; 3] {
let [x0, x1, x2] = x;
let [y0, y1, y2] = y;
let z0 = x0 * y0 - x1 * y2 - x2 * y1;
let z1 = x0 * y1 + x1 * y0 - x2 * y2;
let z2 = x0 * y2 + x1 * y1 + x2 * y0;
[z0, z1, z2]
}
// TESTS
// ================================================================================================
#[cfg(test)]
mod tests {
use super::super::{apply_mds, Felt, MDS, ZERO};
use proptest::prelude::*;
const STATE_WIDTH: usize = 12;
#[inline(always)]
fn apply_mds_naive(state: &mut [Felt; STATE_WIDTH]) {
let mut result = [ZERO; STATE_WIDTH];
result.iter_mut().zip(MDS).for_each(|(r, mds_row)| {
state.iter().zip(mds_row).for_each(|(&s, m)| {
*r += m * s;
});
});
*state = result;
}
proptest! {
#[test]
fn mds_freq_proptest(a in any::<[u64; STATE_WIDTH]>()) {
let mut v1 = [ZERO; STATE_WIDTH];
let mut v2;
for i in 0..STATE_WIDTH {
v1[i] = Felt::new(a[i]);
}
v2 = v1;
apply_mds_naive(&mut v1);
apply_mds(&mut v2);
prop_assert_eq!(v1, v2);
}
}
}

214
src/hash/rescue/mds/mod.rs Normal file
View File

@@ -0,0 +1,214 @@
use super::{Felt, STATE_WIDTH, ZERO};
mod freq;
pub use freq::mds_multiply_freq;
// MDS MULTIPLICATION
// ================================================================================================
#[inline(always)]
pub fn apply_mds(state: &mut [Felt; STATE_WIDTH]) {
let mut result = [ZERO; STATE_WIDTH];
// Using the linearity of the operations we can split the state into a low||high decomposition
// and operate on each with no overflow and then combine/reduce the result to a field element.
// The no overflow is guaranteed by the fact that the MDS matrix is a small powers of two in
// frequency domain.
let mut state_l = [0u64; STATE_WIDTH];
let mut state_h = [0u64; STATE_WIDTH];
for r in 0..STATE_WIDTH {
let s = state[r].inner();
state_h[r] = s >> 32;
state_l[r] = (s as u32) as u64;
}
let state_h = mds_multiply_freq(state_h);
let state_l = mds_multiply_freq(state_l);
for r in 0..STATE_WIDTH {
let s = state_l[r] as u128 + ((state_h[r] as u128) << 32);
let s_hi = (s >> 64) as u64;
let s_lo = s as u64;
let z = (s_hi << 32) - s_hi;
let (res, over) = s_lo.overflowing_add(z);
result[r] = Felt::from_mont(res.wrapping_add(0u32.wrapping_sub(over as u32) as u64));
}
*state = result;
}
// MDS MATRIX
// ================================================================================================
/// RPO MDS matrix
pub const MDS: [[Felt; STATE_WIDTH]; STATE_WIDTH] = [
[
Felt::new(7),
Felt::new(23),
Felt::new(8),
Felt::new(26),
Felt::new(13),
Felt::new(10),
Felt::new(9),
Felt::new(7),
Felt::new(6),
Felt::new(22),
Felt::new(21),
Felt::new(8),
],
[
Felt::new(8),
Felt::new(7),
Felt::new(23),
Felt::new(8),
Felt::new(26),
Felt::new(13),
Felt::new(10),
Felt::new(9),
Felt::new(7),
Felt::new(6),
Felt::new(22),
Felt::new(21),
],
[
Felt::new(21),
Felt::new(8),
Felt::new(7),
Felt::new(23),
Felt::new(8),
Felt::new(26),
Felt::new(13),
Felt::new(10),
Felt::new(9),
Felt::new(7),
Felt::new(6),
Felt::new(22),
],
[
Felt::new(22),
Felt::new(21),
Felt::new(8),
Felt::new(7),
Felt::new(23),
Felt::new(8),
Felt::new(26),
Felt::new(13),
Felt::new(10),
Felt::new(9),
Felt::new(7),
Felt::new(6),
],
[
Felt::new(6),
Felt::new(22),
Felt::new(21),
Felt::new(8),
Felt::new(7),
Felt::new(23),
Felt::new(8),
Felt::new(26),
Felt::new(13),
Felt::new(10),
Felt::new(9),
Felt::new(7),
],
[
Felt::new(7),
Felt::new(6),
Felt::new(22),
Felt::new(21),
Felt::new(8),
Felt::new(7),
Felt::new(23),
Felt::new(8),
Felt::new(26),
Felt::new(13),
Felt::new(10),
Felt::new(9),
],
[
Felt::new(9),
Felt::new(7),
Felt::new(6),
Felt::new(22),
Felt::new(21),
Felt::new(8),
Felt::new(7),
Felt::new(23),
Felt::new(8),
Felt::new(26),
Felt::new(13),
Felt::new(10),
],
[
Felt::new(10),
Felt::new(9),
Felt::new(7),
Felt::new(6),
Felt::new(22),
Felt::new(21),
Felt::new(8),
Felt::new(7),
Felt::new(23),
Felt::new(8),
Felt::new(26),
Felt::new(13),
],
[
Felt::new(13),
Felt::new(10),
Felt::new(9),
Felt::new(7),
Felt::new(6),
Felt::new(22),
Felt::new(21),
Felt::new(8),
Felt::new(7),
Felt::new(23),
Felt::new(8),
Felt::new(26),
],
[
Felt::new(26),
Felt::new(13),
Felt::new(10),
Felt::new(9),
Felt::new(7),
Felt::new(6),
Felt::new(22),
Felt::new(21),
Felt::new(8),
Felt::new(7),
Felt::new(23),
Felt::new(8),
],
[
Felt::new(8),
Felt::new(26),
Felt::new(13),
Felt::new(10),
Felt::new(9),
Felt::new(7),
Felt::new(6),
Felt::new(22),
Felt::new(21),
Felt::new(8),
Felt::new(7),
Felt::new(23),
],
[
Felt::new(23),
Felt::new(8),
Felt::new(26),
Felt::new(13),
Felt::new(10),
Felt::new(9),
Felt::new(7),
Felt::new(6),
Felt::new(22),
Felt::new(21),
Felt::new(8),
Felt::new(7),
],
];

398
src/hash/rescue/mod.rs Normal file
View File

@@ -0,0 +1,398 @@
use super::{
CubeExtension, Digest, ElementHasher, Felt, FieldElement, Hasher, StarkField, ONE, ZERO,
};
use core::ops::Range;
mod mds;
use mds::{apply_mds, MDS};
mod rpo;
pub use rpo::{Rpo256, RpoDigest};
mod rpx;
pub use rpx::{Rpx256, RpxDigest};
#[cfg(test)]
mod tests;
// CONSTANTS
// ================================================================================================
/// The number of rounds is set to 7. For the RPO hash functions all rounds are uniform. For the
/// RPX hash function, there are 3 different types of rounds.
const NUM_ROUNDS: usize = 7;
/// Sponge state is set to 12 field elements or 96 bytes; 8 elements are reserved for rate and
/// the remaining 4 elements are reserved for capacity.
const STATE_WIDTH: usize = 12;
/// The rate portion of the state is located in elements 4 through 11.
const RATE_RANGE: Range<usize> = 4..12;
const RATE_WIDTH: usize = RATE_RANGE.end - RATE_RANGE.start;
const INPUT1_RANGE: Range<usize> = 4..8;
const INPUT2_RANGE: Range<usize> = 8..12;
/// The capacity portion of the state is located in elements 0, 1, 2, and 3.
const CAPACITY_RANGE: Range<usize> = 0..4;
/// The output of the hash function is a digest which consists of 4 field elements or 32 bytes.
///
/// The digest is returned from state elements 4, 5, 6, and 7 (the first four elements of the
/// rate portion).
const DIGEST_RANGE: Range<usize> = 4..8;
const DIGEST_SIZE: usize = DIGEST_RANGE.end - DIGEST_RANGE.start;
/// The number of byte chunks defining a field element when hashing a sequence of bytes
const BINARY_CHUNK_SIZE: usize = 7;
/// S-Box and Inverse S-Box powers;
///
/// The constants are defined for tests only because the exponentiations in the code are unrolled
/// for efficiency reasons.
#[cfg(test)]
const ALPHA: u64 = 7;
#[cfg(test)]
const INV_ALPHA: u64 = 10540996611094048183;
// SBOX FUNCTION
// ================================================================================================
#[inline(always)]
fn apply_sbox(state: &mut [Felt; STATE_WIDTH]) {
state[0] = state[0].exp7();
state[1] = state[1].exp7();
state[2] = state[2].exp7();
state[3] = state[3].exp7();
state[4] = state[4].exp7();
state[5] = state[5].exp7();
state[6] = state[6].exp7();
state[7] = state[7].exp7();
state[8] = state[8].exp7();
state[9] = state[9].exp7();
state[10] = state[10].exp7();
state[11] = state[11].exp7();
}
// INVERSE SBOX FUNCTION
// ================================================================================================
#[inline(always)]
fn apply_inv_sbox(state: &mut [Felt; STATE_WIDTH]) {
// compute base^10540996611094048183 using 72 multiplications per array element
// 10540996611094048183 = b1001001001001001001001001001000110110110110110110110110110110111
// compute base^10
let mut t1 = *state;
t1.iter_mut().for_each(|t| *t = t.square());
// compute base^100
let mut t2 = t1;
t2.iter_mut().for_each(|t| *t = t.square());
// compute base^100100
let t3 = exp_acc::<Felt, STATE_WIDTH, 3>(t2, t2);
// compute base^100100100100
let t4 = exp_acc::<Felt, STATE_WIDTH, 6>(t3, t3);
// compute base^100100100100100100100100
let t5 = exp_acc::<Felt, STATE_WIDTH, 12>(t4, t4);
// compute base^100100100100100100100100100100
let t6 = exp_acc::<Felt, STATE_WIDTH, 6>(t5, t3);
// compute base^1001001001001001001001001001000100100100100100100100100100100
let t7 = exp_acc::<Felt, STATE_WIDTH, 31>(t6, t6);
// compute base^1001001001001001001001001001000110110110110110110110110110110111
for (i, s) in state.iter_mut().enumerate() {
let a = (t7[i].square() * t6[i]).square().square();
let b = t1[i] * t2[i] * *s;
*s = a * b;
}
#[inline(always)]
fn exp_acc<B: StarkField, const N: usize, const M: usize>(
base: [B; N],
tail: [B; N],
) -> [B; N] {
let mut result = base;
for _ in 0..M {
result.iter_mut().for_each(|r| *r = r.square());
}
result.iter_mut().zip(tail).for_each(|(r, t)| *r *= t);
result
}
}
// OPTIMIZATIONS
// ================================================================================================
#[cfg(all(target_feature = "sve", feature = "sve"))]
#[link(name = "rpo_sve", kind = "static")]
extern "C" {
fn add_constants_and_apply_sbox(
state: *mut std::ffi::c_ulong,
constants: *const std::ffi::c_ulong,
) -> bool;
fn add_constants_and_apply_inv_sbox(
state: *mut std::ffi::c_ulong,
constants: *const std::ffi::c_ulong,
) -> bool;
}
#[inline(always)]
#[cfg(all(target_feature = "sve", feature = "sve"))]
fn optimized_add_constants_and_apply_sbox(
state: &mut [Felt; STATE_WIDTH],
ark: &[Felt; STATE_WIDTH],
) -> bool {
unsafe {
add_constants_and_apply_sbox(state.as_mut_ptr() as *mut u64, ark.as_ptr() as *const u64)
}
}
#[inline(always)]
#[cfg(not(all(target_feature = "sve", feature = "sve")))]
fn optimized_add_constants_and_apply_sbox(
_state: &mut [Felt; STATE_WIDTH],
_ark: &[Felt; STATE_WIDTH],
) -> bool {
false
}
#[inline(always)]
#[cfg(all(target_feature = "sve", feature = "sve"))]
fn optimized_add_constants_and_apply_inv_sbox(
state: &mut [Felt; STATE_WIDTH],
ark: &[Felt; STATE_WIDTH],
) -> bool {
unsafe {
add_constants_and_apply_inv_sbox(state.as_mut_ptr() as *mut u64, ark.as_ptr() as *const u64)
}
}
#[inline(always)]
#[cfg(not(all(target_feature = "sve", feature = "sve")))]
fn optimized_add_constants_and_apply_inv_sbox(
_state: &mut [Felt; STATE_WIDTH],
_ark: &[Felt; STATE_WIDTH],
) -> bool {
false
}
#[inline(always)]
fn add_constants(state: &mut [Felt; STATE_WIDTH], ark: &[Felt; STATE_WIDTH]) {
state.iter_mut().zip(ark).for_each(|(s, &k)| *s += k);
}
// ROUND CONSTANTS
// ================================================================================================
/// Rescue round constants;
/// computed as in [specifications](https://github.com/ASDiscreteMathematics/rpo)
///
/// The constants are broken up into two arrays ARK1 and ARK2; ARK1 contains the constants for the
/// first half of RPO round, and ARK2 contains constants for the second half of RPO round.
const ARK1: [[Felt; STATE_WIDTH]; NUM_ROUNDS] = [
[
Felt::new(5789762306288267392),
Felt::new(6522564764413701783),
Felt::new(17809893479458208203),
Felt::new(107145243989736508),
Felt::new(6388978042437517382),
Felt::new(15844067734406016715),
Felt::new(9975000513555218239),
Felt::new(3344984123768313364),
Felt::new(9959189626657347191),
Felt::new(12960773468763563665),
Felt::new(9602914297752488475),
Felt::new(16657542370200465908),
],
[
Felt::new(12987190162843096997),
Felt::new(653957632802705281),
Felt::new(4441654670647621225),
Felt::new(4038207883745915761),
Felt::new(5613464648874830118),
Felt::new(13222989726778338773),
Felt::new(3037761201230264149),
Felt::new(16683759727265180203),
Felt::new(8337364536491240715),
Felt::new(3227397518293416448),
Felt::new(8110510111539674682),
Felt::new(2872078294163232137),
],
[
Felt::new(18072785500942327487),
Felt::new(6200974112677013481),
Felt::new(17682092219085884187),
Felt::new(10599526828986756440),
Felt::new(975003873302957338),
Felt::new(8264241093196931281),
Felt::new(10065763900435475170),
Felt::new(2181131744534710197),
Felt::new(6317303992309418647),
Felt::new(1401440938888741532),
Felt::new(8884468225181997494),
Felt::new(13066900325715521532),
],
[
Felt::new(5674685213610121970),
Felt::new(5759084860419474071),
Felt::new(13943282657648897737),
Felt::new(1352748651966375394),
Felt::new(17110913224029905221),
Felt::new(1003883795902368422),
Felt::new(4141870621881018291),
Felt::new(8121410972417424656),
Felt::new(14300518605864919529),
Felt::new(13712227150607670181),
Felt::new(17021852944633065291),
Felt::new(6252096473787587650),
],
[
Felt::new(4887609836208846458),
Felt::new(3027115137917284492),
Felt::new(9595098600469470675),
Felt::new(10528569829048484079),
Felt::new(7864689113198939815),
Felt::new(17533723827845969040),
Felt::new(5781638039037710951),
Felt::new(17024078752430719006),
Felt::new(109659393484013511),
Felt::new(7158933660534805869),
Felt::new(2955076958026921730),
Felt::new(7433723648458773977),
],
[
Felt::new(16308865189192447297),
Felt::new(11977192855656444890),
Felt::new(12532242556065780287),
Felt::new(14594890931430968898),
Felt::new(7291784239689209784),
Felt::new(5514718540551361949),
Felt::new(10025733853830934803),
Felt::new(7293794580341021693),
Felt::new(6728552937464861756),
Felt::new(6332385040983343262),
Felt::new(13277683694236792804),
Felt::new(2600778905124452676),
],
[
Felt::new(7123075680859040534),
Felt::new(1034205548717903090),
Felt::new(7717824418247931797),
Felt::new(3019070937878604058),
Felt::new(11403792746066867460),
Felt::new(10280580802233112374),
Felt::new(337153209462421218),
Felt::new(13333398568519923717),
Felt::new(3596153696935337464),
Felt::new(8104208463525993784),
Felt::new(14345062289456085693),
Felt::new(17036731477169661256),
],
];
const ARK2: [[Felt; STATE_WIDTH]; NUM_ROUNDS] = [
[
Felt::new(6077062762357204287),
Felt::new(15277620170502011191),
Felt::new(5358738125714196705),
Felt::new(14233283787297595718),
Felt::new(13792579614346651365),
Felt::new(11614812331536767105),
Felt::new(14871063686742261166),
Felt::new(10148237148793043499),
Felt::new(4457428952329675767),
Felt::new(15590786458219172475),
Felt::new(10063319113072092615),
Felt::new(14200078843431360086),
],
[
Felt::new(6202948458916099932),
Felt::new(17690140365333231091),
Felt::new(3595001575307484651),
Felt::new(373995945117666487),
Felt::new(1235734395091296013),
Felt::new(14172757457833931602),
Felt::new(707573103686350224),
Felt::new(15453217512188187135),
Felt::new(219777875004506018),
Felt::new(17876696346199469008),
Felt::new(17731621626449383378),
Felt::new(2897136237748376248),
],
[
Felt::new(8023374565629191455),
Felt::new(15013690343205953430),
Felt::new(4485500052507912973),
Felt::new(12489737547229155153),
Felt::new(9500452585969030576),
Felt::new(2054001340201038870),
Felt::new(12420704059284934186),
Felt::new(355990932618543755),
Felt::new(9071225051243523860),
Felt::new(12766199826003448536),
Felt::new(9045979173463556963),
Felt::new(12934431667190679898),
],
[
Felt::new(18389244934624494276),
Felt::new(16731736864863925227),
Felt::new(4440209734760478192),
Felt::new(17208448209698888938),
Felt::new(8739495587021565984),
Felt::new(17000774922218161967),
Felt::new(13533282547195532087),
Felt::new(525402848358706231),
Felt::new(16987541523062161972),
Felt::new(5466806524462797102),
Felt::new(14512769585918244983),
Felt::new(10973956031244051118),
],
[
Felt::new(6982293561042362913),
Felt::new(14065426295947720331),
Felt::new(16451845770444974180),
Felt::new(7139138592091306727),
Felt::new(9012006439959783127),
Felt::new(14619614108529063361),
Felt::new(1394813199588124371),
Felt::new(4635111139507788575),
Felt::new(16217473952264203365),
Felt::new(10782018226466330683),
Felt::new(6844229992533662050),
Felt::new(7446486531695178711),
],
[
Felt::new(3736792340494631448),
Felt::new(577852220195055341),
Felt::new(6689998335515779805),
Felt::new(13886063479078013492),
Felt::new(14358505101923202168),
Felt::new(7744142531772274164),
Felt::new(16135070735728404443),
Felt::new(12290902521256031137),
Felt::new(12059913662657709804),
Felt::new(16456018495793751911),
Felt::new(4571485474751953524),
Felt::new(17200392109565783176),
],
[
Felt::new(17130398059294018733),
Felt::new(519782857322261988),
Felt::new(9625384390925085478),
Felt::new(1664893052631119222),
Felt::new(7629576092524553570),
Felt::new(3485239601103661425),
Felt::new(9755891797164033838),
Felt::new(15218148195153269027),
Felt::new(16460604813734957368),
Felt::new(9643968136937729763),
Felt::new(3611348709641382851),
Felt::new(18256379591337759196),
],
];

View File

@@ -0,0 +1,348 @@
use super::{Digest, Felt, StarkField, DIGEST_SIZE, ZERO};
use crate::utils::{
bytes_to_hex_string, hex_to_bytes, string::String, ByteReader, ByteWriter, Deserializable,
DeserializationError, HexParseError, Serializable,
};
use core::{cmp::Ordering, fmt::Display, ops::Deref};
use winter_utils::Randomizable;
/// The number of bytes needed to encoded a digest
pub const DIGEST_BYTES: usize = 32;
// DIGEST TRAIT IMPLEMENTATIONS
// ================================================================================================
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[cfg_attr(feature = "serde", serde(into = "String", try_from = "&str"))]
pub struct RpoDigest([Felt; DIGEST_SIZE]);
impl RpoDigest {
pub const fn new(value: [Felt; DIGEST_SIZE]) -> Self {
Self(value)
}
pub fn as_elements(&self) -> &[Felt] {
self.as_ref()
}
pub fn as_bytes(&self) -> [u8; DIGEST_BYTES] {
<Self as Digest>::as_bytes(self)
}
pub fn digests_as_elements<'a, I>(digests: I) -> impl Iterator<Item = &'a Felt>
where
I: Iterator<Item = &'a Self>,
{
digests.flat_map(|d| d.0.iter())
}
}
impl Digest for RpoDigest {
fn as_bytes(&self) -> [u8; DIGEST_BYTES] {
let mut result = [0; DIGEST_BYTES];
result[..8].copy_from_slice(&self.0[0].as_int().to_le_bytes());
result[8..16].copy_from_slice(&self.0[1].as_int().to_le_bytes());
result[16..24].copy_from_slice(&self.0[2].as_int().to_le_bytes());
result[24..].copy_from_slice(&self.0[3].as_int().to_le_bytes());
result
}
}
impl Deref for RpoDigest {
type Target = [Felt; DIGEST_SIZE];
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl Ord for RpoDigest {
fn cmp(&self, other: &Self) -> Ordering {
// compare the inner u64 of both elements.
//
// it will iterate the elements and will return the first computation different than
// `Equal`. Otherwise, the ordering is equal.
//
// the endianness is irrelevant here because since, this being a cryptographically secure
// hash computation, the digest shouldn't have any ordered property of its input.
//
// finally, we use `Felt::inner` instead of `Felt::as_int` so we avoid performing a
// montgomery reduction for every limb. that is safe because every inner element of the
// digest is guaranteed to be in its canonical form (that is, `x in [0,p)`).
self.0.iter().map(Felt::inner).zip(other.0.iter().map(Felt::inner)).fold(
Ordering::Equal,
|ord, (a, b)| match ord {
Ordering::Equal => a.cmp(&b),
_ => ord,
},
)
}
}
impl PartialOrd for RpoDigest {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Display for RpoDigest {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
let encoded: String = self.into();
write!(f, "{}", encoded)?;
Ok(())
}
}
impl Randomizable for RpoDigest {
const VALUE_SIZE: usize = DIGEST_BYTES;
fn from_random_bytes(bytes: &[u8]) -> Option<Self> {
let bytes_array: Option<[u8; 32]> = bytes.try_into().ok();
if let Some(bytes_array) = bytes_array {
Self::try_from(bytes_array).ok()
} else {
None
}
}
}
// CONVERSIONS: FROM RPO DIGEST
// ================================================================================================
impl From<&RpoDigest> for [Felt; DIGEST_SIZE] {
fn from(value: &RpoDigest) -> Self {
value.0
}
}
impl From<RpoDigest> for [Felt; DIGEST_SIZE] {
fn from(value: RpoDigest) -> Self {
value.0
}
}
impl From<&RpoDigest> for [u64; DIGEST_SIZE] {
fn from(value: &RpoDigest) -> Self {
[
value.0[0].as_int(),
value.0[1].as_int(),
value.0[2].as_int(),
value.0[3].as_int(),
]
}
}
impl From<RpoDigest> for [u64; DIGEST_SIZE] {
fn from(value: RpoDigest) -> Self {
[
value.0[0].as_int(),
value.0[1].as_int(),
value.0[2].as_int(),
value.0[3].as_int(),
]
}
}
impl From<&RpoDigest> for [u8; DIGEST_BYTES] {
fn from(value: &RpoDigest) -> Self {
value.as_bytes()
}
}
impl From<RpoDigest> for [u8; DIGEST_BYTES] {
fn from(value: RpoDigest) -> Self {
value.as_bytes()
}
}
impl From<RpoDigest> for String {
/// The returned string starts with `0x`.
fn from(value: RpoDigest) -> Self {
bytes_to_hex_string(value.as_bytes())
}
}
impl From<&RpoDigest> for String {
/// The returned string starts with `0x`.
fn from(value: &RpoDigest) -> Self {
(*value).into()
}
}
// CONVERSIONS: TO DIGEST
// ================================================================================================
impl From<[Felt; DIGEST_SIZE]> for RpoDigest {
fn from(value: [Felt; DIGEST_SIZE]) -> Self {
Self(value)
}
}
impl TryFrom<[u8; DIGEST_BYTES]> for RpoDigest {
type Error = HexParseError;
fn try_from(value: [u8; DIGEST_BYTES]) -> Result<Self, Self::Error> {
// Note: the input length is known, the conversion from slice to array must succeed so the
// `unwrap`s below are safe
let a = u64::from_le_bytes(value[0..8].try_into().unwrap());
let b = u64::from_le_bytes(value[8..16].try_into().unwrap());
let c = u64::from_le_bytes(value[16..24].try_into().unwrap());
let d = u64::from_le_bytes(value[24..32].try_into().unwrap());
if [a, b, c, d].iter().any(|v| *v >= Felt::MODULUS) {
return Err(HexParseError::OutOfRange);
}
Ok(RpoDigest([Felt::new(a), Felt::new(b), Felt::new(c), Felt::new(d)]))
}
}
impl TryFrom<&str> for RpoDigest {
type Error = HexParseError;
/// Expects the string to start with `0x`.
fn try_from(value: &str) -> Result<Self, Self::Error> {
hex_to_bytes(value).and_then(|v| v.try_into())
}
}
impl TryFrom<String> for RpoDigest {
type Error = HexParseError;
/// Expects the string to start with `0x`.
fn try_from(value: String) -> Result<Self, Self::Error> {
value.as_str().try_into()
}
}
impl TryFrom<&String> for RpoDigest {
type Error = HexParseError;
/// Expects the string to start with `0x`.
fn try_from(value: &String) -> Result<Self, Self::Error> {
value.as_str().try_into()
}
}
// SERIALIZATION / DESERIALIZATION
// ================================================================================================
impl Serializable for RpoDigest {
fn write_into<W: ByteWriter>(&self, target: &mut W) {
target.write_bytes(&self.as_bytes());
}
}
impl Deserializable for RpoDigest {
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
let mut inner: [Felt; DIGEST_SIZE] = [ZERO; DIGEST_SIZE];
for inner in inner.iter_mut() {
let e = source.read_u64()?;
if e >= Felt::MODULUS {
return Err(DeserializationError::InvalidValue(String::from(
"Value not in the appropriate range",
)));
}
*inner = Felt::new(e);
}
Ok(Self(inner))
}
}
// TESTS
// ================================================================================================
#[cfg(test)]
mod tests {
use super::{Deserializable, Felt, RpoDigest, Serializable, DIGEST_BYTES};
use crate::utils::SliceReader;
use rand_utils::rand_value;
#[test]
fn digest_serialization() {
let e1 = Felt::new(rand_value());
let e2 = Felt::new(rand_value());
let e3 = Felt::new(rand_value());
let e4 = Felt::new(rand_value());
let d1 = RpoDigest([e1, e2, e3, e4]);
let mut bytes = vec![];
d1.write_into(&mut bytes);
assert_eq!(DIGEST_BYTES, bytes.len());
let mut reader = SliceReader::new(&bytes);
let d2 = RpoDigest::read_from(&mut reader).unwrap();
assert_eq!(d1, d2);
}
#[test]
fn digest_encoding() {
let digest = RpoDigest([
Felt::new(rand_value()),
Felt::new(rand_value()),
Felt::new(rand_value()),
Felt::new(rand_value()),
]);
let string: String = digest.into();
let round_trip: RpoDigest = string.try_into().expect("decoding failed");
assert_eq!(digest, round_trip);
}
#[test]
fn test_conversions() {
let digest = RpoDigest([
Felt::new(rand_value()),
Felt::new(rand_value()),
Felt::new(rand_value()),
Felt::new(rand_value()),
]);
let v: [Felt; DIGEST_SIZE] = digest.into();
let v2: RpoDigest = v.into();
assert_eq!(digest, v2);
let v: [Felt; DIGEST_SIZE] = (&digest).into();
let v2: RpoDigest = v.into();
assert_eq!(digest, v2);
let v: [u64; DIGEST_SIZE] = digest.into();
let v2: RpoDigest = v.try_into().unwrap();
assert_eq!(digest, v2);
let v: [u64; DIGEST_SIZE] = (&digest).into();
let v2: RpoDigest = v.try_into().unwrap();
assert_eq!(digest, v2);
let v: [u8; DIGEST_BYTES] = digest.into();
let v2: RpoDigest = v.try_into().unwrap();
assert_eq!(digest, v2);
let v: [u8; DIGEST_BYTES] = (&digest).into();
let v2: RpoDigest = v.try_into().unwrap();
assert_eq!(digest, v2);
let v: String = digest.into();
let v2: RpoDigest = v.try_into().unwrap();
assert_eq!(digest, v2);
let v: String = (&digest).into();
let v2: RpoDigest = v.try_into().unwrap();
assert_eq!(digest, v2);
let v: [u8; DIGEST_BYTES] = digest.into();
let v2: RpoDigest = (&v).try_into().unwrap();
assert_eq!(digest, v2);
let v: [u8; DIGEST_BYTES] = (&digest).into();
let v2: RpoDigest = (&v).try_into().unwrap();
assert_eq!(digest, v2);
}
}

324
src/hash/rescue/rpo/mod.rs Normal file
View File

@@ -0,0 +1,324 @@
use super::{
add_constants, apply_inv_sbox, apply_mds, apply_sbox,
optimized_add_constants_and_apply_inv_sbox, optimized_add_constants_and_apply_sbox, Digest,
ElementHasher, Felt, FieldElement, Hasher, StarkField, ARK1, ARK2, BINARY_CHUNK_SIZE,
CAPACITY_RANGE, DIGEST_RANGE, DIGEST_SIZE, INPUT1_RANGE, INPUT2_RANGE, MDS, NUM_ROUNDS, ONE,
RATE_RANGE, RATE_WIDTH, STATE_WIDTH, ZERO,
};
use core::{convert::TryInto, ops::Range};
mod digest;
pub use digest::RpoDigest;
#[cfg(test)]
mod tests;
// HASHER IMPLEMENTATION
// ================================================================================================
/// Implementation of the Rescue Prime Optimized hash function with 256-bit output.
///
/// The hash function is implemented according to the Rescue Prime Optimized
/// [specifications](https://eprint.iacr.org/2022/1577)
///
/// The parameters used to instantiate the function are:
/// * Field: 64-bit prime field with modulus 2^64 - 2^32 + 1.
/// * State width: 12 field elements.
/// * Capacity size: 4 field elements.
/// * Number of founds: 7.
/// * S-Box degree: 7.
///
/// The above parameters target 128-bit security level. The digest consists of four field elements
/// and it can be serialized into 32 bytes (256 bits).
///
/// ## Hash output consistency
/// Functions [hash_elements()](Rpo256::hash_elements), [merge()](Rpo256::merge), and
/// [merge_with_int()](Rpo256::merge_with_int) are internally consistent. That is, computing
/// a hash for the same set of elements using these functions will always produce the same
/// result. For example, merging two digests using [merge()](Rpo256::merge) will produce the
/// same result as hashing 8 elements which make up these digests using
/// [hash_elements()](Rpo256::hash_elements) function.
///
/// However, [hash()](Rpo256::hash) function is not consistent with functions mentioned above.
/// For example, if we take two field elements, serialize them to bytes and hash them using
/// [hash()](Rpo256::hash), the result will differ from the result obtained by hashing these
/// elements directly using [hash_elements()](Rpo256::hash_elements) function. The reason for
/// this difference is that [hash()](Rpo256::hash) function needs to be able to handle
/// arbitrary binary strings, which may or may not encode valid field elements - and thus,
/// deserialization procedure used by this function is different from the procedure used to
/// deserialize valid field elements.
///
/// Thus, if the underlying data consists of valid field elements, it might make more sense
/// to deserialize them into field elements and then hash them using
/// [hash_elements()](Rpo256::hash_elements) function rather then hashing the serialized bytes
/// using [hash()](Rpo256::hash) function.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct Rpo256();
impl Hasher for Rpo256 {
/// Rpo256 collision resistance is the same as the security level, that is 128-bits.
///
/// #### Collision resistance
///
/// However, our setup of the capacity registers might drop it to 126.
///
/// Related issue: [#69](https://github.com/0xPolygonMiden/crypto/issues/69)
const COLLISION_RESISTANCE: u32 = 128;
type Digest = RpoDigest;
fn hash(bytes: &[u8]) -> Self::Digest {
// initialize the state with zeroes
let mut state = [ZERO; STATE_WIDTH];
// set the capacity (first element) to a flag on whether or not the input length is evenly
// divided by the rate. this will prevent collisions between padded and non-padded inputs,
// and will rule out the need to perform an extra permutation in case of evenly divided
// inputs.
let is_rate_multiple = bytes.len() % RATE_WIDTH == 0;
if !is_rate_multiple {
state[CAPACITY_RANGE.start] = ONE;
}
// initialize a buffer to receive the little-endian elements.
let mut buf = [0_u8; 8];
// iterate the chunks of bytes, creating a field element from each chunk and copying it
// into the state.
//
// every time the rate range is filled, a permutation is performed. if the final value of
// `i` is not zero, then the chunks count wasn't enough to fill the state range, and an
// additional permutation must be performed.
let i = bytes.chunks(BINARY_CHUNK_SIZE).fold(0, |i, chunk| {
// the last element of the iteration may or may not be a full chunk. if it's not, then
// we need to pad the remainder bytes of the chunk with zeroes, separated by a `1`.
// this will avoid collisions.
if chunk.len() == BINARY_CHUNK_SIZE {
buf[..BINARY_CHUNK_SIZE].copy_from_slice(chunk);
} else {
buf.fill(0);
buf[..chunk.len()].copy_from_slice(chunk);
buf[chunk.len()] = 1;
}
// set the current rate element to the input. since we take at most 7 bytes, we are
// guaranteed that the inputs data will fit into a single field element.
state[RATE_RANGE.start + i] = Felt::new(u64::from_le_bytes(buf));
// proceed filling the range. if it's full, then we apply a permutation and reset the
// counter to the beginning of the range.
if i == RATE_WIDTH - 1 {
Self::apply_permutation(&mut state);
0
} else {
i + 1
}
});
// if we absorbed some elements but didn't apply a permutation to them (would happen when
// the number of elements is not a multiple of RATE_WIDTH), apply the RPO permutation. we
// don't need to apply any extra padding because the first capacity element containts a
// flag indicating whether the input is evenly divisible by the rate.
if i != 0 {
state[RATE_RANGE.start + i..RATE_RANGE.end].fill(ZERO);
state[RATE_RANGE.start + i] = ONE;
Self::apply_permutation(&mut state);
}
// return the first 4 elements of the rate as hash result.
RpoDigest::new(state[DIGEST_RANGE].try_into().unwrap())
}
fn merge(values: &[Self::Digest; 2]) -> Self::Digest {
// initialize the state by copying the digest elements into the rate portion of the state
// (8 total elements), and set the capacity elements to 0.
let mut state = [ZERO; STATE_WIDTH];
let it = Self::Digest::digests_as_elements(values.iter());
for (i, v) in it.enumerate() {
state[RATE_RANGE.start + i] = *v;
}
// apply the RPO permutation and return the first four elements of the state
Self::apply_permutation(&mut state);
RpoDigest::new(state[DIGEST_RANGE].try_into().unwrap())
}
fn merge_with_int(seed: Self::Digest, value: u64) -> Self::Digest {
// initialize the state as follows:
// - seed is copied into the first 4 elements of the rate portion of the state.
// - if the value fits into a single field element, copy it into the fifth rate element
// and set the sixth rate element to 1.
// - if the value doesn't fit into a single field element, split it into two field
// elements, copy them into rate elements 5 and 6, and set the seventh rate element
// to 1.
// - set the first capacity element to 1
let mut state = [ZERO; STATE_WIDTH];
state[INPUT1_RANGE].copy_from_slice(seed.as_elements());
state[INPUT2_RANGE.start] = Felt::new(value);
if value < Felt::MODULUS {
state[INPUT2_RANGE.start + 1] = ONE;
} else {
state[INPUT2_RANGE.start + 1] = Felt::new(value / Felt::MODULUS);
state[INPUT2_RANGE.start + 2] = ONE;
}
// common padding for both cases
state[CAPACITY_RANGE.start] = ONE;
// apply the RPO permutation and return the first four elements of the state
Self::apply_permutation(&mut state);
RpoDigest::new(state[DIGEST_RANGE].try_into().unwrap())
}
}
impl ElementHasher for Rpo256 {
type BaseField = Felt;
fn hash_elements<E: FieldElement<BaseField = Self::BaseField>>(elements: &[E]) -> Self::Digest {
// convert the elements into a list of base field elements
let elements = E::slice_as_base_elements(elements);
// initialize state to all zeros, except for the first element of the capacity part, which
// is set to 1 if the number of elements is not a multiple of RATE_WIDTH.
let mut state = [ZERO; STATE_WIDTH];
if elements.len() % RATE_WIDTH != 0 {
state[CAPACITY_RANGE.start] = ONE;
}
// absorb elements into the state one by one until the rate portion of the state is filled
// up; then apply the Rescue permutation and start absorbing again; repeat until all
// elements have been absorbed
let mut i = 0;
for &element in elements.iter() {
state[RATE_RANGE.start + i] = element;
i += 1;
if i % RATE_WIDTH == 0 {
Self::apply_permutation(&mut state);
i = 0;
}
}
// if we absorbed some elements but didn't apply a permutation to them (would happen when
// the number of elements is not a multiple of RATE_WIDTH), apply the RPO permutation after
// padding by appending a 1 followed by as many 0 as necessary to make the input length a
// multiple of the RATE_WIDTH.
if i > 0 {
state[RATE_RANGE.start + i] = ONE;
i += 1;
while i != RATE_WIDTH {
state[RATE_RANGE.start + i] = ZERO;
i += 1;
}
Self::apply_permutation(&mut state);
}
// return the first 4 elements of the state as hash result
RpoDigest::new(state[DIGEST_RANGE].try_into().unwrap())
}
}
// HASH FUNCTION IMPLEMENTATION
// ================================================================================================
impl Rpo256 {
// CONSTANTS
// --------------------------------------------------------------------------------------------
/// The number of rounds is set to 7 to target 128-bit security level.
pub const NUM_ROUNDS: usize = NUM_ROUNDS;
/// Sponge state is set to 12 field elements or 768 bytes; 8 elements are reserved for rate and
/// the remaining 4 elements are reserved for capacity.
pub const STATE_WIDTH: usize = STATE_WIDTH;
/// The rate portion of the state is located in elements 4 through 11 (inclusive).
pub const RATE_RANGE: Range<usize> = RATE_RANGE;
/// The capacity portion of the state is located in elements 0, 1, 2, and 3.
pub const CAPACITY_RANGE: Range<usize> = CAPACITY_RANGE;
/// The output of the hash function can be read from state elements 4, 5, 6, and 7.
pub const DIGEST_RANGE: Range<usize> = DIGEST_RANGE;
/// MDS matrix used for computing the linear layer in a RPO round.
pub const MDS: [[Felt; STATE_WIDTH]; STATE_WIDTH] = MDS;
/// Round constants added to the hasher state in the first half of the RPO round.
pub const ARK1: [[Felt; STATE_WIDTH]; NUM_ROUNDS] = ARK1;
/// Round constants added to the hasher state in the second half of the RPO round.
pub const ARK2: [[Felt; STATE_WIDTH]; NUM_ROUNDS] = ARK2;
// TRAIT PASS-THROUGH FUNCTIONS
// --------------------------------------------------------------------------------------------
/// Returns a hash of the provided sequence of bytes.
#[inline(always)]
pub fn hash(bytes: &[u8]) -> RpoDigest {
<Self as Hasher>::hash(bytes)
}
/// Returns a hash of two digests. This method is intended for use in construction of
/// Merkle trees and verification of Merkle paths.
#[inline(always)]
pub fn merge(values: &[RpoDigest; 2]) -> RpoDigest {
<Self as Hasher>::merge(values)
}
/// Returns a hash of the provided field elements.
#[inline(always)]
pub fn hash_elements<E: FieldElement<BaseField = Felt>>(elements: &[E]) -> RpoDigest {
<Self as ElementHasher>::hash_elements(elements)
}
// DOMAIN IDENTIFIER
// --------------------------------------------------------------------------------------------
/// Returns a hash of two digests and a domain identifier.
pub fn merge_in_domain(values: &[RpoDigest; 2], domain: Felt) -> RpoDigest {
// initialize the state by copying the digest elements into the rate portion of the state
// (8 total elements), and set the capacity elements to 0.
let mut state = [ZERO; STATE_WIDTH];
let it = RpoDigest::digests_as_elements(values.iter());
for (i, v) in it.enumerate() {
state[RATE_RANGE.start + i] = *v;
}
// set the second capacity element to the domain value. The first capacity element is used
// for padding purposes.
state[CAPACITY_RANGE.start + 1] = domain;
// apply the RPO permutation and return the first four elements of the state
Self::apply_permutation(&mut state);
RpoDigest::new(state[DIGEST_RANGE].try_into().unwrap())
}
// RESCUE PERMUTATION
// --------------------------------------------------------------------------------------------
/// Applies RPO permutation to the provided state.
#[inline(always)]
pub fn apply_permutation(state: &mut [Felt; STATE_WIDTH]) {
for i in 0..NUM_ROUNDS {
Self::apply_round(state, i);
}
}
/// RPO round function.
#[inline(always)]
pub fn apply_round(state: &mut [Felt; STATE_WIDTH], round: usize) {
// apply first half of RPO round
apply_mds(state);
if !optimized_add_constants_and_apply_sbox(state, &ARK1[round]) {
add_constants(state, &ARK1[round]);
apply_sbox(state);
}
// apply second half of RPO round
apply_mds(state);
if !optimized_add_constants_and_apply_inv_sbox(state, &ARK2[round]) {
add_constants(state, &ARK2[round]);
apply_inv_sbox(state);
}
}
}

View File

@@ -0,0 +1,346 @@
use super::{
super::{apply_inv_sbox, apply_sbox, ALPHA, INV_ALPHA},
Felt, FieldElement, Hasher, Rpo256, RpoDigest, StarkField, ONE, STATE_WIDTH, ZERO,
};
use crate::{
utils::collections::{BTreeSet, Vec},
Word,
};
use core::convert::TryInto;
use proptest::prelude::*;
use rand_utils::rand_value;
#[test]
fn test_sbox() {
let state = [Felt::new(rand_value()); STATE_WIDTH];
let mut expected = state;
expected.iter_mut().for_each(|v| *v = v.exp(ALPHA));
let mut actual = state;
apply_sbox(&mut actual);
assert_eq!(expected, actual);
}
#[test]
fn test_inv_sbox() {
let state = [Felt::new(rand_value()); STATE_WIDTH];
let mut expected = state;
expected.iter_mut().for_each(|v| *v = v.exp(INV_ALPHA));
let mut actual = state;
apply_inv_sbox(&mut actual);
assert_eq!(expected, actual);
}
#[test]
fn hash_elements_vs_merge() {
let elements = [Felt::new(rand_value()); 8];
let digests: [RpoDigest; 2] = [
RpoDigest::new(elements[..4].try_into().unwrap()),
RpoDigest::new(elements[4..].try_into().unwrap()),
];
let m_result = Rpo256::merge(&digests);
let h_result = Rpo256::hash_elements(&elements);
assert_eq!(m_result, h_result);
}
#[test]
fn merge_vs_merge_in_domain() {
let elements = [Felt::new(rand_value()); 8];
let digests: [RpoDigest; 2] = [
RpoDigest::new(elements[..4].try_into().unwrap()),
RpoDigest::new(elements[4..].try_into().unwrap()),
];
let merge_result = Rpo256::merge(&digests);
// ------------- merge with domain = 0 ----------------------------------------------------------
// set domain to ZERO. This should not change the result.
let domain = ZERO;
let merge_in_domain_result = Rpo256::merge_in_domain(&digests, domain);
assert_eq!(merge_result, merge_in_domain_result);
// ------------- merge with domain = 1 ----------------------------------------------------------
// set domain to ONE. This should change the result.
let domain = ONE;
let merge_in_domain_result = Rpo256::merge_in_domain(&digests, domain);
assert_ne!(merge_result, merge_in_domain_result);
}
#[test]
fn hash_elements_vs_merge_with_int() {
let tmp = [Felt::new(rand_value()); 4];
let seed = RpoDigest::new(tmp);
// ----- value fits into a field element ------------------------------------------------------
let val: Felt = Felt::new(rand_value());
let m_result = Rpo256::merge_with_int(seed, val.as_int());
let mut elements = seed.as_elements().to_vec();
elements.push(val);
let h_result = Rpo256::hash_elements(&elements);
assert_eq!(m_result, h_result);
// ----- value does not fit into a field element ----------------------------------------------
let val = Felt::MODULUS + 2;
let m_result = Rpo256::merge_with_int(seed, val);
let mut elements = seed.as_elements().to_vec();
elements.push(Felt::new(val));
elements.push(ONE);
let h_result = Rpo256::hash_elements(&elements);
assert_eq!(m_result, h_result);
}
#[test]
fn hash_padding() {
// adding a zero bytes at the end of a byte string should result in a different hash
let r1 = Rpo256::hash(&[1_u8, 2, 3]);
let r2 = Rpo256::hash(&[1_u8, 2, 3, 0]);
assert_ne!(r1, r2);
// same as above but with bigger inputs
let r1 = Rpo256::hash(&[1_u8, 2, 3, 4, 5, 6]);
let r2 = Rpo256::hash(&[1_u8, 2, 3, 4, 5, 6, 0]);
assert_ne!(r1, r2);
// same as above but with input splitting over two elements
let r1 = Rpo256::hash(&[1_u8, 2, 3, 4, 5, 6, 7]);
let r2 = Rpo256::hash(&[1_u8, 2, 3, 4, 5, 6, 7, 0]);
assert_ne!(r1, r2);
// same as above but with multiple zeros
let r1 = Rpo256::hash(&[1_u8, 2, 3, 4, 5, 6, 7, 0, 0]);
let r2 = Rpo256::hash(&[1_u8, 2, 3, 4, 5, 6, 7, 0, 0, 0, 0]);
assert_ne!(r1, r2);
}
#[test]
fn hash_elements_padding() {
let e1 = [Felt::new(rand_value()); 2];
let e2 = [e1[0], e1[1], ZERO];
let r1 = Rpo256::hash_elements(&e1);
let r2 = Rpo256::hash_elements(&e2);
assert_ne!(r1, r2);
}
#[test]
fn hash_elements() {
let elements = [
ZERO,
ONE,
Felt::new(2),
Felt::new(3),
Felt::new(4),
Felt::new(5),
Felt::new(6),
Felt::new(7),
];
let digests: [RpoDigest; 2] = [
RpoDigest::new(elements[..4].try_into().unwrap()),
RpoDigest::new(elements[4..8].try_into().unwrap()),
];
let m_result = Rpo256::merge(&digests);
let h_result = Rpo256::hash_elements(&elements);
assert_eq!(m_result, h_result);
}
#[test]
fn hash_test_vectors() {
let elements = [
ZERO,
ONE,
Felt::new(2),
Felt::new(3),
Felt::new(4),
Felt::new(5),
Felt::new(6),
Felt::new(7),
Felt::new(8),
Felt::new(9),
Felt::new(10),
Felt::new(11),
Felt::new(12),
Felt::new(13),
Felt::new(14),
Felt::new(15),
Felt::new(16),
Felt::new(17),
Felt::new(18),
];
for i in 0..elements.len() {
let expected = RpoDigest::new(EXPECTED[i]);
let result = Rpo256::hash_elements(&elements[..(i + 1)]);
assert_eq!(result, expected);
}
}
#[test]
fn sponge_bytes_with_remainder_length_wont_panic() {
// this test targets to assert that no panic will happen with the edge case of having an inputs
// with length that is not divisible by the used binary chunk size. 113 is a non-negligible
// input length that is prime; hence guaranteed to not be divisible by any choice of chunk
// size.
//
// this is a preliminary test to the fuzzy-stress of proptest.
Rpo256::hash(&[0; 113]);
}
#[test]
fn sponge_collision_for_wrapped_field_element() {
let a = Rpo256::hash(&[0; 8]);
let b = Rpo256::hash(&Felt::MODULUS.to_le_bytes());
assert_ne!(a, b);
}
#[test]
fn sponge_zeroes_collision() {
let mut zeroes = Vec::with_capacity(255);
let mut set = BTreeSet::new();
(0..255).for_each(|_| {
let hash = Rpo256::hash(&zeroes);
zeroes.push(0);
// panic if a collision was found
assert!(set.insert(hash));
});
}
proptest! {
#[test]
fn rpo256_wont_panic_with_arbitrary_input(ref bytes in any::<Vec<u8>>()) {
Rpo256::hash(bytes);
}
}
const EXPECTED: [Word; 19] = [
[
Felt::new(1502364727743950833),
Felt::new(5880949717274681448),
Felt::new(162790463902224431),
Felt::new(6901340476773664264),
],
[
Felt::new(7478710183745780580),
Felt::new(3308077307559720969),
Felt::new(3383561985796182409),
Felt::new(17205078494700259815),
],
[
Felt::new(17439912364295172999),
Felt::new(17979156346142712171),
Felt::new(8280795511427637894),
Felt::new(9349844417834368814),
],
[
Felt::new(5105868198472766874),
Felt::new(13090564195691924742),
Felt::new(1058904296915798891),
Felt::new(18379501748825152268),
],
[
Felt::new(9133662113608941286),
Felt::new(12096627591905525991),
Felt::new(14963426595993304047),
Felt::new(13290205840019973377),
],
[
Felt::new(3134262397541159485),
Felt::new(10106105871979362399),
Felt::new(138768814855329459),
Felt::new(15044809212457404677),
],
[
Felt::new(162696376578462826),
Felt::new(4991300494838863586),
Felt::new(660346084748120605),
Felt::new(13179389528641752698),
],
[
Felt::new(2242391899857912644),
Felt::new(12689382052053305418),
Felt::new(235236990017815546),
Felt::new(5046143039268215739),
],
[
Felt::new(9585630502158073976),
Felt::new(1310051013427303477),
Felt::new(7491921222636097758),
Felt::new(9417501558995216762),
],
[
Felt::new(1994394001720334744),
Felt::new(10866209900885216467),
Felt::new(13836092831163031683),
Felt::new(10814636682252756697),
],
[
Felt::new(17486854790732826405),
Felt::new(17376549265955727562),
Felt::new(2371059831956435003),
Felt::new(17585704935858006533),
],
[
Felt::new(11368277489137713825),
Felt::new(3906270146963049287),
Felt::new(10236262408213059745),
Felt::new(78552867005814007),
],
[
Felt::new(17899847381280262181),
Felt::new(14717912805498651446),
Felt::new(10769146203951775298),
Felt::new(2774289833490417856),
],
[
Felt::new(3794717687462954368),
Felt::new(4386865643074822822),
Felt::new(8854162840275334305),
Felt::new(7129983987107225269),
],
[
Felt::new(7244773535611633983),
Felt::new(19359923075859320),
Felt::new(10898655967774994333),
Felt::new(9319339563065736480),
],
[
Felt::new(4935426252518736883),
Felt::new(12584230452580950419),
Felt::new(8762518969632303998),
Felt::new(18159875708229758073),
],
[
Felt::new(14871230873837295931),
Felt::new(11225255908868362971),
Felt::new(18100987641405432308),
Felt::new(1559244340089644233),
],
[
Felt::new(8348203744950016968),
Felt::new(4041411241960726733),
Felt::new(17584743399305468057),
Felt::new(16836952610803537051),
],
[
Felt::new(16139797453633030050),
Felt::new(1090233424040889412),
Felt::new(10770255347785669036),
Felt::new(16982398877290254028),
],
];

View File

@@ -0,0 +1,299 @@
use super::{Digest, Felt, StarkField, DIGEST_SIZE, ZERO};
use crate::utils::{
bytes_to_hex_string, hex_to_bytes, string::String, ByteReader, ByteWriter, Deserializable,
DeserializationError, HexParseError, Serializable,
};
use core::{cmp::Ordering, fmt::Display, ops::Deref};
use winter_utils::Randomizable;
/// The number of bytes needed to encoded a digest
pub const DIGEST_BYTES: usize = 32;
// DIGEST TRAIT IMPLEMENTATIONS
// ================================================================================================
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[cfg_attr(feature = "serde", serde(into = "String", try_from = "&str"))]
pub struct RpxDigest([Felt; DIGEST_SIZE]);
impl RpxDigest {
pub const fn new(value: [Felt; DIGEST_SIZE]) -> Self {
Self(value)
}
pub fn as_elements(&self) -> &[Felt] {
self.as_ref()
}
pub fn as_bytes(&self) -> [u8; DIGEST_BYTES] {
<Self as Digest>::as_bytes(self)
}
pub fn digests_as_elements<'a, I>(digests: I) -> impl Iterator<Item = &'a Felt>
where
I: Iterator<Item = &'a Self>,
{
digests.flat_map(|d| d.0.iter())
}
}
impl Digest for RpxDigest {
fn as_bytes(&self) -> [u8; DIGEST_BYTES] {
let mut result = [0; DIGEST_BYTES];
result[..8].copy_from_slice(&self.0[0].as_int().to_le_bytes());
result[8..16].copy_from_slice(&self.0[1].as_int().to_le_bytes());
result[16..24].copy_from_slice(&self.0[2].as_int().to_le_bytes());
result[24..].copy_from_slice(&self.0[3].as_int().to_le_bytes());
result
}
}
impl Deref for RpxDigest {
type Target = [Felt; DIGEST_SIZE];
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl Ord for RpxDigest {
fn cmp(&self, other: &Self) -> Ordering {
// compare the inner u64 of both elements.
//
// it will iterate the elements and will return the first computation different than
// `Equal`. Otherwise, the ordering is equal.
//
// the endianness is irrelevant here because since, this being a cryptographically secure
// hash computation, the digest shouldn't have any ordered property of its input.
//
// finally, we use `Felt::inner` instead of `Felt::as_int` so we avoid performing a
// montgomery reduction for every limb. that is safe because every inner element of the
// digest is guaranteed to be in its canonical form (that is, `x in [0,p)`).
self.0.iter().map(Felt::inner).zip(other.0.iter().map(Felt::inner)).fold(
Ordering::Equal,
|ord, (a, b)| match ord {
Ordering::Equal => a.cmp(&b),
_ => ord,
},
)
}
}
impl PartialOrd for RpxDigest {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Display for RpxDigest {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
let encoded: String = self.into();
write!(f, "{}", encoded)?;
Ok(())
}
}
impl Randomizable for RpxDigest {
const VALUE_SIZE: usize = DIGEST_BYTES;
fn from_random_bytes(bytes: &[u8]) -> Option<Self> {
let bytes_array: Option<[u8; 32]> = bytes.try_into().ok();
if let Some(bytes_array) = bytes_array {
Self::try_from(bytes_array).ok()
} else {
None
}
}
}
// CONVERSIONS: FROM RPX DIGEST
// ================================================================================================
impl From<&RpxDigest> for [Felt; DIGEST_SIZE] {
fn from(value: &RpxDigest) -> Self {
value.0
}
}
impl From<RpxDigest> for [Felt; DIGEST_SIZE] {
fn from(value: RpxDigest) -> Self {
value.0
}
}
impl From<&RpxDigest> for [u64; DIGEST_SIZE] {
fn from(value: &RpxDigest) -> Self {
[
value.0[0].as_int(),
value.0[1].as_int(),
value.0[2].as_int(),
value.0[3].as_int(),
]
}
}
impl From<RpxDigest> for [u64; DIGEST_SIZE] {
fn from(value: RpxDigest) -> Self {
[
value.0[0].as_int(),
value.0[1].as_int(),
value.0[2].as_int(),
value.0[3].as_int(),
]
}
}
impl From<&RpxDigest> for [u8; DIGEST_BYTES] {
fn from(value: &RpxDigest) -> Self {
value.as_bytes()
}
}
impl From<RpxDigest> for [u8; DIGEST_BYTES] {
fn from(value: RpxDigest) -> Self {
value.as_bytes()
}
}
impl From<RpxDigest> for String {
/// The returned string starts with `0x`.
fn from(value: RpxDigest) -> Self {
bytes_to_hex_string(value.as_bytes())
}
}
impl From<&RpxDigest> for String {
/// The returned string starts with `0x`.
fn from(value: &RpxDigest) -> Self {
(*value).into()
}
}
// CONVERSIONS: TO RPX DIGEST
// ================================================================================================
impl From<[Felt; DIGEST_SIZE]> for RpxDigest {
fn from(value: [Felt; DIGEST_SIZE]) -> Self {
Self(value)
}
}
impl TryFrom<[u8; DIGEST_BYTES]> for RpxDigest {
type Error = HexParseError;
fn try_from(value: [u8; DIGEST_BYTES]) -> Result<Self, Self::Error> {
// Note: the input length is known, the conversion from slice to array must succeed so the
// `unwrap`s below are safe
let a = u64::from_le_bytes(value[0..8].try_into().unwrap());
let b = u64::from_le_bytes(value[8..16].try_into().unwrap());
let c = u64::from_le_bytes(value[16..24].try_into().unwrap());
let d = u64::from_le_bytes(value[24..32].try_into().unwrap());
if [a, b, c, d].iter().any(|v| *v >= Felt::MODULUS) {
return Err(HexParseError::OutOfRange);
}
Ok(RpxDigest([Felt::new(a), Felt::new(b), Felt::new(c), Felt::new(d)]))
}
}
impl TryFrom<&str> for RpxDigest {
type Error = HexParseError;
/// Expects the string to start with `0x`.
fn try_from(value: &str) -> Result<Self, Self::Error> {
hex_to_bytes(value).and_then(|v| v.try_into())
}
}
impl TryFrom<String> for RpxDigest {
type Error = HexParseError;
/// Expects the string to start with `0x`.
fn try_from(value: String) -> Result<Self, Self::Error> {
value.as_str().try_into()
}
}
impl TryFrom<&String> for RpxDigest {
type Error = HexParseError;
/// Expects the string to start with `0x`.
fn try_from(value: &String) -> Result<Self, Self::Error> {
value.as_str().try_into()
}
}
// SERIALIZATION / DESERIALIZATION
// ================================================================================================
impl Serializable for RpxDigest {
fn write_into<W: ByteWriter>(&self, target: &mut W) {
target.write_bytes(&self.as_bytes());
}
}
impl Deserializable for RpxDigest {
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
let mut inner: [Felt; DIGEST_SIZE] = [ZERO; DIGEST_SIZE];
for inner in inner.iter_mut() {
let e = source.read_u64()?;
if e >= Felt::MODULUS {
return Err(DeserializationError::InvalidValue(String::from(
"Value not in the appropriate range",
)));
}
*inner = Felt::new(e);
}
Ok(Self(inner))
}
}
// TESTS
// ================================================================================================
#[cfg(test)]
mod tests {
use super::{Deserializable, Felt, RpxDigest, Serializable, DIGEST_BYTES};
use crate::utils::SliceReader;
use rand_utils::rand_value;
#[test]
fn digest_serialization() {
let e1 = Felt::new(rand_value());
let e2 = Felt::new(rand_value());
let e3 = Felt::new(rand_value());
let e4 = Felt::new(rand_value());
let d1 = RpxDigest([e1, e2, e3, e4]);
let mut bytes = vec![];
d1.write_into(&mut bytes);
assert_eq!(DIGEST_BYTES, bytes.len());
let mut reader = SliceReader::new(&bytes);
let d2 = RpxDigest::read_from(&mut reader).unwrap();
assert_eq!(d1, d2);
}
#[cfg(feature = "std")]
#[test]
fn digest_encoding() {
let digest = RpxDigest([
Felt::new(rand_value()),
Felt::new(rand_value()),
Felt::new(rand_value()),
Felt::new(rand_value()),
]);
let string: String = digest.into();
let round_trip: RpxDigest = string.try_into().expect("decoding failed");
assert_eq!(digest, round_trip);
}
}

379
src/hash/rescue/rpx/mod.rs Normal file
View File

@@ -0,0 +1,379 @@
use super::{
add_constants, apply_inv_sbox, apply_mds, apply_sbox,
optimized_add_constants_and_apply_inv_sbox, optimized_add_constants_and_apply_sbox,
CubeExtension, Digest, ElementHasher, Felt, FieldElement, Hasher, StarkField, ARK1, ARK2,
BINARY_CHUNK_SIZE, CAPACITY_RANGE, DIGEST_RANGE, DIGEST_SIZE, INPUT1_RANGE, INPUT2_RANGE, MDS,
NUM_ROUNDS, ONE, RATE_RANGE, RATE_WIDTH, STATE_WIDTH, ZERO,
};
use core::{convert::TryInto, ops::Range};
mod digest;
pub use digest::RpxDigest;
#[cfg(all(target_feature = "sve", feature = "sve"))]
#[link(name = "rpo_sve", kind = "static")]
extern "C" {
fn add_constants_and_apply_sbox(
state: *mut std::ffi::c_ulong,
constants: *const std::ffi::c_ulong,
) -> bool;
fn add_constants_and_apply_inv_sbox(
state: *mut std::ffi::c_ulong,
constants: *const std::ffi::c_ulong,
) -> bool;
}
pub type CubicExtElement = CubeExtension<Felt>;
// HASHER IMPLEMENTATION
// ================================================================================================
/// Implementation of the Rescue Prime eXtension hash function with 256-bit output.
///
/// The hash function is based on the XHash12 construction in [specifications](https://eprint.iacr.org/2023/1045)
///
/// The parameters used to instantiate the function are:
/// * Field: 64-bit prime field with modulus 2^64 - 2^32 + 1.
/// * State width: 12 field elements.
/// * Capacity size: 4 field elements.
/// * S-Box degree: 7.
/// * Rounds: There are 3 different types of rounds:
/// - (FB): `apply_mds` → `add_constants` → `apply_sbox` → `apply_mds` → `add_constants` → `apply_inv_sbox`.
/// - (E): `add_constants` → `ext_sbox` (which is raising to power 7 in the degree 3 extension field).
/// - (M): `apply_mds` → `add_constants`.
/// * Permutation: (FB) (E) (FB) (E) (FB) (E) (M).
///
/// The above parameters target 128-bit security level. The digest consists of four field elements
/// and it can be serialized into 32 bytes (256 bits).
///
/// ## Hash output consistency
/// Functions [hash_elements()](Rpx256::hash_elements), [merge()](Rpx256::merge), and
/// [merge_with_int()](Rpx256::merge_with_int) are internally consistent. That is, computing
/// a hash for the same set of elements using these functions will always produce the same
/// result. For example, merging two digests using [merge()](Rpx256::merge) will produce the
/// same result as hashing 8 elements which make up these digests using
/// [hash_elements()](Rpx256::hash_elements) function.
///
/// However, [hash()](Rpx256::hash) function is not consistent with functions mentioned above.
/// For example, if we take two field elements, serialize them to bytes and hash them using
/// [hash()](Rpx256::hash), the result will differ from the result obtained by hashing these
/// elements directly using [hash_elements()](Rpx256::hash_elements) function. The reason for
/// this difference is that [hash()](Rpx256::hash) function needs to be able to handle
/// arbitrary binary strings, which may or may not encode valid field elements - and thus,
/// deserialization procedure used by this function is different from the procedure used to
/// deserialize valid field elements.
///
/// Thus, if the underlying data consists of valid field elements, it might make more sense
/// to deserialize them into field elements and then hash them using
/// [hash_elements()](Rpx256::hash_elements) function rather then hashing the serialized bytes
/// using [hash()](Rpx256::hash) function.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct Rpx256();
impl Hasher for Rpx256 {
/// Rpx256 collision resistance is the same as the security level, that is 128-bits.
///
/// #### Collision resistance
///
/// However, our setup of the capacity registers might drop it to 126.
///
/// Related issue: [#69](https://github.com/0xPolygonMiden/crypto/issues/69)
const COLLISION_RESISTANCE: u32 = 128;
type Digest = RpxDigest;
fn hash(bytes: &[u8]) -> Self::Digest {
// initialize the state with zeroes
let mut state = [ZERO; STATE_WIDTH];
// set the capacity (first element) to a flag on whether or not the input length is evenly
// divided by the rate. this will prevent collisions between padded and non-padded inputs,
// and will rule out the need to perform an extra permutation in case of evenly divided
// inputs.
let is_rate_multiple = bytes.len() % RATE_WIDTH == 0;
if !is_rate_multiple {
state[CAPACITY_RANGE.start] = ONE;
}
// initialize a buffer to receive the little-endian elements.
let mut buf = [0_u8; 8];
// iterate the chunks of bytes, creating a field element from each chunk and copying it
// into the state.
//
// every time the rate range is filled, a permutation is performed. if the final value of
// `i` is not zero, then the chunks count wasn't enough to fill the state range, and an
// additional permutation must be performed.
let i = bytes.chunks(BINARY_CHUNK_SIZE).fold(0, |i, chunk| {
// the last element of the iteration may or may not be a full chunk. if it's not, then
// we need to pad the remainder bytes of the chunk with zeroes, separated by a `1`.
// this will avoid collisions.
if chunk.len() == BINARY_CHUNK_SIZE {
buf[..BINARY_CHUNK_SIZE].copy_from_slice(chunk);
} else {
buf.fill(0);
buf[..chunk.len()].copy_from_slice(chunk);
buf[chunk.len()] = 1;
}
// set the current rate element to the input. since we take at most 7 bytes, we are
// guaranteed that the inputs data will fit into a single field element.
state[RATE_RANGE.start + i] = Felt::new(u64::from_le_bytes(buf));
// proceed filling the range. if it's full, then we apply a permutation and reset the
// counter to the beginning of the range.
if i == RATE_WIDTH - 1 {
Self::apply_permutation(&mut state);
0
} else {
i + 1
}
});
// if we absorbed some elements but didn't apply a permutation to them (would happen when
// the number of elements is not a multiple of RATE_WIDTH), apply the RPX permutation. we
// don't need to apply any extra padding because the first capacity element containts a
// flag indicating whether the input is evenly divisible by the rate.
if i != 0 {
state[RATE_RANGE.start + i..RATE_RANGE.end].fill(ZERO);
state[RATE_RANGE.start + i] = ONE;
Self::apply_permutation(&mut state);
}
// return the first 4 elements of the rate as hash result.
RpxDigest::new(state[DIGEST_RANGE].try_into().unwrap())
}
fn merge(values: &[Self::Digest; 2]) -> Self::Digest {
// initialize the state by copying the digest elements into the rate portion of the state
// (8 total elements), and set the capacity elements to 0.
let mut state = [ZERO; STATE_WIDTH];
let it = Self::Digest::digests_as_elements(values.iter());
for (i, v) in it.enumerate() {
state[RATE_RANGE.start + i] = *v;
}
// apply the RPX permutation and return the first four elements of the state
Self::apply_permutation(&mut state);
RpxDigest::new(state[DIGEST_RANGE].try_into().unwrap())
}
fn merge_with_int(seed: Self::Digest, value: u64) -> Self::Digest {
// initialize the state as follows:
// - seed is copied into the first 4 elements of the rate portion of the state.
// - if the value fits into a single field element, copy it into the fifth rate element
// and set the sixth rate element to 1.
// - if the value doesn't fit into a single field element, split it into two field
// elements, copy them into rate elements 5 and 6, and set the seventh rate element
// to 1.
// - set the first capacity element to 1
let mut state = [ZERO; STATE_WIDTH];
state[INPUT1_RANGE].copy_from_slice(seed.as_elements());
state[INPUT2_RANGE.start] = Felt::new(value);
if value < Felt::MODULUS {
state[INPUT2_RANGE.start + 1] = ONE;
} else {
state[INPUT2_RANGE.start + 1] = Felt::new(value / Felt::MODULUS);
state[INPUT2_RANGE.start + 2] = ONE;
}
// common padding for both cases
state[CAPACITY_RANGE.start] = ONE;
// apply the RPX permutation and return the first four elements of the state
Self::apply_permutation(&mut state);
RpxDigest::new(state[DIGEST_RANGE].try_into().unwrap())
}
}
impl ElementHasher for Rpx256 {
type BaseField = Felt;
fn hash_elements<E: FieldElement<BaseField = Self::BaseField>>(elements: &[E]) -> Self::Digest {
// convert the elements into a list of base field elements
let elements = E::slice_as_base_elements(elements);
// initialize state to all zeros, except for the first element of the capacity part, which
// is set to 1 if the number of elements is not a multiple of RATE_WIDTH.
let mut state = [ZERO; STATE_WIDTH];
if elements.len() % RATE_WIDTH != 0 {
state[CAPACITY_RANGE.start] = ONE;
}
// absorb elements into the state one by one until the rate portion of the state is filled
// up; then apply the Rescue permutation and start absorbing again; repeat until all
// elements have been absorbed
let mut i = 0;
for &element in elements.iter() {
state[RATE_RANGE.start + i] = element;
i += 1;
if i % RATE_WIDTH == 0 {
Self::apply_permutation(&mut state);
i = 0;
}
}
// if we absorbed some elements but didn't apply a permutation to them (would happen when
// the number of elements is not a multiple of RATE_WIDTH), apply the RPX permutation after
// padding by appending a 1 followed by as many 0 as necessary to make the input length a
// multiple of the RATE_WIDTH.
if i > 0 {
state[RATE_RANGE.start + i] = ONE;
i += 1;
while i != RATE_WIDTH {
state[RATE_RANGE.start + i] = ZERO;
i += 1;
}
Self::apply_permutation(&mut state);
}
// return the first 4 elements of the state as hash result
RpxDigest::new(state[DIGEST_RANGE].try_into().unwrap())
}
}
// HASH FUNCTION IMPLEMENTATION
// ================================================================================================
impl Rpx256 {
// CONSTANTS
// --------------------------------------------------------------------------------------------
/// Sponge state is set to 12 field elements or 768 bytes; 8 elements are reserved for rate and
/// the remaining 4 elements are reserved for capacity.
pub const STATE_WIDTH: usize = STATE_WIDTH;
/// The rate portion of the state is located in elements 4 through 11 (inclusive).
pub const RATE_RANGE: Range<usize> = RATE_RANGE;
/// The capacity portion of the state is located in elements 0, 1, 2, and 3.
pub const CAPACITY_RANGE: Range<usize> = CAPACITY_RANGE;
/// The output of the hash function can be read from state elements 4, 5, 6, and 7.
pub const DIGEST_RANGE: Range<usize> = DIGEST_RANGE;
/// MDS matrix used for computing the linear layer in the (FB) and (E) rounds.
pub const MDS: [[Felt; STATE_WIDTH]; STATE_WIDTH] = MDS;
/// Round constants added to the hasher state in the first half of the round.
pub const ARK1: [[Felt; STATE_WIDTH]; NUM_ROUNDS] = ARK1;
/// Round constants added to the hasher state in the second half of the round.
pub const ARK2: [[Felt; STATE_WIDTH]; NUM_ROUNDS] = ARK2;
// TRAIT PASS-THROUGH FUNCTIONS
// --------------------------------------------------------------------------------------------
/// Returns a hash of the provided sequence of bytes.
#[inline(always)]
pub fn hash(bytes: &[u8]) -> RpxDigest {
<Self as Hasher>::hash(bytes)
}
/// Returns a hash of two digests. This method is intended for use in construction of
/// Merkle trees and verification of Merkle paths.
#[inline(always)]
pub fn merge(values: &[RpxDigest; 2]) -> RpxDigest {
<Self as Hasher>::merge(values)
}
/// Returns a hash of the provided field elements.
#[inline(always)]
pub fn hash_elements<E: FieldElement<BaseField = Felt>>(elements: &[E]) -> RpxDigest {
<Self as ElementHasher>::hash_elements(elements)
}
// DOMAIN IDENTIFIER
// --------------------------------------------------------------------------------------------
/// Returns a hash of two digests and a domain identifier.
pub fn merge_in_domain(values: &[RpxDigest; 2], domain: Felt) -> RpxDigest {
// initialize the state by copying the digest elements into the rate portion of the state
// (8 total elements), and set the capacity elements to 0.
let mut state = [ZERO; STATE_WIDTH];
let it = RpxDigest::digests_as_elements(values.iter());
for (i, v) in it.enumerate() {
state[RATE_RANGE.start + i] = *v;
}
// set the second capacity element to the domain value. The first capacity element is used
// for padding purposes.
state[CAPACITY_RANGE.start + 1] = domain;
// apply the RPX permutation and return the first four elements of the state
Self::apply_permutation(&mut state);
RpxDigest::new(state[DIGEST_RANGE].try_into().unwrap())
}
// RPX PERMUTATION
// --------------------------------------------------------------------------------------------
/// Applies RPX permutation to the provided state.
#[inline(always)]
pub fn apply_permutation(state: &mut [Felt; STATE_WIDTH]) {
Self::apply_fb_round(state, 0);
Self::apply_ext_round(state, 1);
Self::apply_fb_round(state, 2);
Self::apply_ext_round(state, 3);
Self::apply_fb_round(state, 4);
Self::apply_ext_round(state, 5);
Self::apply_final_round(state, 6);
}
// RPX PERMUTATION ROUND FUNCTIONS
// --------------------------------------------------------------------------------------------
/// (FB) round function.
#[inline(always)]
pub fn apply_fb_round(state: &mut [Felt; STATE_WIDTH], round: usize) {
apply_mds(state);
if !optimized_add_constants_and_apply_sbox(state, &ARK1[round]) {
add_constants(state, &ARK1[round]);
apply_sbox(state);
}
apply_mds(state);
if !optimized_add_constants_and_apply_inv_sbox(state, &ARK2[round]) {
add_constants(state, &ARK2[round]);
apply_inv_sbox(state);
}
}
/// (E) round function.
#[inline(always)]
pub fn apply_ext_round(state: &mut [Felt; STATE_WIDTH], round: usize) {
// add constants
add_constants(state, &ARK1[round]);
// decompose the state into 4 elements in the cubic extension field and apply the power 7
// map to each of the elements
let [s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] = *state;
let ext0 = Self::exp7(CubicExtElement::new(s0, s1, s2));
let ext1 = Self::exp7(CubicExtElement::new(s3, s4, s5));
let ext2 = Self::exp7(CubicExtElement::new(s6, s7, s8));
let ext3 = Self::exp7(CubicExtElement::new(s9, s10, s11));
// decompose the state back into 12 base field elements
let arr_ext = [ext0, ext1, ext2, ext3];
*state = CubicExtElement::slice_as_base_elements(&arr_ext)
.try_into()
.expect("shouldn't fail");
}
/// (M) round function.
#[inline(always)]
pub fn apply_final_round(state: &mut [Felt; STATE_WIDTH], round: usize) {
apply_mds(state);
add_constants(state, &ARK1[round]);
}
/// Computes an exponentiation to the power 7 in cubic extension field
#[inline(always)]
pub fn exp7(x: CubeExtension<Felt>) -> CubeExtension<Felt> {
let x2 = x.square();
let x4 = x2.square();
let x3 = x2 * x;
x3 * x4
}
}

9
src/hash/rescue/tests.rs Normal file
View File

@@ -0,0 +1,9 @@
use super::{Felt, FieldElement, ALPHA, INV_ALPHA};
use rand_utils::rand_value;
#[test]
fn test_alphas() {
let e: Felt = Felt::new(rand_value());
let e_exp = e.exp(ALPHA);
assert_eq!(e, e_exp.exp(INV_ALPHA));
}