mirror of
https://github.com/arnaucube/miden-crypto.git
synced 2026-01-12 17:11:28 +01:00
feat: RPX (xHash12) hash function implementation
This commit is contained in:
committed by
Bobbin Threadbare
parent
f33a982f29
commit
3125144445
299
src/hash/rescue/rpx/digest.rs
Normal file
299
src/hash/rescue/rpx/digest.rs
Normal file
@@ -0,0 +1,299 @@
|
||||
use super::{Digest, Felt, StarkField, DIGEST_SIZE, ZERO};
|
||||
use crate::utils::{
|
||||
bytes_to_hex_string, hex_to_bytes, string::String, ByteReader, ByteWriter, Deserializable,
|
||||
DeserializationError, HexParseError, Serializable,
|
||||
};
|
||||
use core::{cmp::Ordering, fmt::Display, ops::Deref};
|
||||
use winter_utils::Randomizable;
|
||||
|
||||
/// The number of bytes needed to encoded a digest
|
||||
pub const DIGEST_BYTES: usize = 32;
|
||||
|
||||
// DIGEST TRAIT IMPLEMENTATIONS
|
||||
// ================================================================================================
|
||||
|
||||
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq)]
|
||||
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
|
||||
#[cfg_attr(feature = "serde", serde(into = "String", try_from = "&str"))]
|
||||
pub struct RpxDigest([Felt; DIGEST_SIZE]);
|
||||
|
||||
impl RpxDigest {
|
||||
pub const fn new(value: [Felt; DIGEST_SIZE]) -> Self {
|
||||
Self(value)
|
||||
}
|
||||
|
||||
pub fn as_elements(&self) -> &[Felt] {
|
||||
self.as_ref()
|
||||
}
|
||||
|
||||
pub fn as_bytes(&self) -> [u8; DIGEST_BYTES] {
|
||||
<Self as Digest>::as_bytes(self)
|
||||
}
|
||||
|
||||
pub fn digests_as_elements<'a, I>(digests: I) -> impl Iterator<Item = &'a Felt>
|
||||
where
|
||||
I: Iterator<Item = &'a Self>,
|
||||
{
|
||||
digests.flat_map(|d| d.0.iter())
|
||||
}
|
||||
}
|
||||
|
||||
impl Digest for RpxDigest {
|
||||
fn as_bytes(&self) -> [u8; DIGEST_BYTES] {
|
||||
let mut result = [0; DIGEST_BYTES];
|
||||
|
||||
result[..8].copy_from_slice(&self.0[0].as_int().to_le_bytes());
|
||||
result[8..16].copy_from_slice(&self.0[1].as_int().to_le_bytes());
|
||||
result[16..24].copy_from_slice(&self.0[2].as_int().to_le_bytes());
|
||||
result[24..].copy_from_slice(&self.0[3].as_int().to_le_bytes());
|
||||
|
||||
result
|
||||
}
|
||||
}
|
||||
|
||||
impl Deref for RpxDigest {
|
||||
type Target = [Felt; DIGEST_SIZE];
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl Ord for RpxDigest {
|
||||
fn cmp(&self, other: &Self) -> Ordering {
|
||||
// compare the inner u64 of both elements.
|
||||
//
|
||||
// it will iterate the elements and will return the first computation different than
|
||||
// `Equal`. Otherwise, the ordering is equal.
|
||||
//
|
||||
// the endianness is irrelevant here because since, this being a cryptographically secure
|
||||
// hash computation, the digest shouldn't have any ordered property of its input.
|
||||
//
|
||||
// finally, we use `Felt::inner` instead of `Felt::as_int` so we avoid performing a
|
||||
// montgomery reduction for every limb. that is safe because every inner element of the
|
||||
// digest is guaranteed to be in its canonical form (that is, `x in [0,p)`).
|
||||
self.0.iter().map(Felt::inner).zip(other.0.iter().map(Felt::inner)).fold(
|
||||
Ordering::Equal,
|
||||
|ord, (a, b)| match ord {
|
||||
Ordering::Equal => a.cmp(&b),
|
||||
_ => ord,
|
||||
},
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for RpxDigest {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||||
Some(self.cmp(other))
|
||||
}
|
||||
}
|
||||
|
||||
impl Display for RpxDigest {
|
||||
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
|
||||
let encoded: String = self.into();
|
||||
write!(f, "{}", encoded)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl Randomizable for RpxDigest {
|
||||
const VALUE_SIZE: usize = DIGEST_BYTES;
|
||||
|
||||
fn from_random_bytes(bytes: &[u8]) -> Option<Self> {
|
||||
let bytes_array: Option<[u8; 32]> = bytes.try_into().ok();
|
||||
if let Some(bytes_array) = bytes_array {
|
||||
Self::try_from(bytes_array).ok()
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// CONVERSIONS: FROM RPX DIGEST
|
||||
// ================================================================================================
|
||||
|
||||
impl From<&RpxDigest> for [Felt; DIGEST_SIZE] {
|
||||
fn from(value: &RpxDigest) -> Self {
|
||||
value.0
|
||||
}
|
||||
}
|
||||
|
||||
impl From<RpxDigest> for [Felt; DIGEST_SIZE] {
|
||||
fn from(value: RpxDigest) -> Self {
|
||||
value.0
|
||||
}
|
||||
}
|
||||
|
||||
impl From<&RpxDigest> for [u64; DIGEST_SIZE] {
|
||||
fn from(value: &RpxDigest) -> Self {
|
||||
[
|
||||
value.0[0].as_int(),
|
||||
value.0[1].as_int(),
|
||||
value.0[2].as_int(),
|
||||
value.0[3].as_int(),
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
impl From<RpxDigest> for [u64; DIGEST_SIZE] {
|
||||
fn from(value: RpxDigest) -> Self {
|
||||
[
|
||||
value.0[0].as_int(),
|
||||
value.0[1].as_int(),
|
||||
value.0[2].as_int(),
|
||||
value.0[3].as_int(),
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
impl From<&RpxDigest> for [u8; DIGEST_BYTES] {
|
||||
fn from(value: &RpxDigest) -> Self {
|
||||
value.as_bytes()
|
||||
}
|
||||
}
|
||||
|
||||
impl From<RpxDigest> for [u8; DIGEST_BYTES] {
|
||||
fn from(value: RpxDigest) -> Self {
|
||||
value.as_bytes()
|
||||
}
|
||||
}
|
||||
|
||||
impl From<RpxDigest> for String {
|
||||
/// The returned string starts with `0x`.
|
||||
fn from(value: RpxDigest) -> Self {
|
||||
bytes_to_hex_string(value.as_bytes())
|
||||
}
|
||||
}
|
||||
|
||||
impl From<&RpxDigest> for String {
|
||||
/// The returned string starts with `0x`.
|
||||
fn from(value: &RpxDigest) -> Self {
|
||||
(*value).into()
|
||||
}
|
||||
}
|
||||
|
||||
// CONVERSIONS: TO RPX DIGEST
|
||||
// ================================================================================================
|
||||
|
||||
impl From<[Felt; DIGEST_SIZE]> for RpxDigest {
|
||||
fn from(value: [Felt; DIGEST_SIZE]) -> Self {
|
||||
Self(value)
|
||||
}
|
||||
}
|
||||
|
||||
impl TryFrom<[u8; DIGEST_BYTES]> for RpxDigest {
|
||||
type Error = HexParseError;
|
||||
|
||||
fn try_from(value: [u8; DIGEST_BYTES]) -> Result<Self, Self::Error> {
|
||||
// Note: the input length is known, the conversion from slice to array must succeed so the
|
||||
// `unwrap`s below are safe
|
||||
let a = u64::from_le_bytes(value[0..8].try_into().unwrap());
|
||||
let b = u64::from_le_bytes(value[8..16].try_into().unwrap());
|
||||
let c = u64::from_le_bytes(value[16..24].try_into().unwrap());
|
||||
let d = u64::from_le_bytes(value[24..32].try_into().unwrap());
|
||||
|
||||
if [a, b, c, d].iter().any(|v| *v >= Felt::MODULUS) {
|
||||
return Err(HexParseError::OutOfRange);
|
||||
}
|
||||
|
||||
Ok(RpxDigest([Felt::new(a), Felt::new(b), Felt::new(c), Felt::new(d)]))
|
||||
}
|
||||
}
|
||||
|
||||
impl TryFrom<&str> for RpxDigest {
|
||||
type Error = HexParseError;
|
||||
|
||||
/// Expects the string to start with `0x`.
|
||||
fn try_from(value: &str) -> Result<Self, Self::Error> {
|
||||
hex_to_bytes(value).and_then(|v| v.try_into())
|
||||
}
|
||||
}
|
||||
|
||||
impl TryFrom<String> for RpxDigest {
|
||||
type Error = HexParseError;
|
||||
|
||||
/// Expects the string to start with `0x`.
|
||||
fn try_from(value: String) -> Result<Self, Self::Error> {
|
||||
value.as_str().try_into()
|
||||
}
|
||||
}
|
||||
|
||||
impl TryFrom<&String> for RpxDigest {
|
||||
type Error = HexParseError;
|
||||
|
||||
/// Expects the string to start with `0x`.
|
||||
fn try_from(value: &String) -> Result<Self, Self::Error> {
|
||||
value.as_str().try_into()
|
||||
}
|
||||
}
|
||||
|
||||
// SERIALIZATION / DESERIALIZATION
|
||||
// ================================================================================================
|
||||
|
||||
impl Serializable for RpxDigest {
|
||||
fn write_into<W: ByteWriter>(&self, target: &mut W) {
|
||||
target.write_bytes(&self.as_bytes());
|
||||
}
|
||||
}
|
||||
|
||||
impl Deserializable for RpxDigest {
|
||||
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
|
||||
let mut inner: [Felt; DIGEST_SIZE] = [ZERO; DIGEST_SIZE];
|
||||
for inner in inner.iter_mut() {
|
||||
let e = source.read_u64()?;
|
||||
if e >= Felt::MODULUS {
|
||||
return Err(DeserializationError::InvalidValue(String::from(
|
||||
"Value not in the appropriate range",
|
||||
)));
|
||||
}
|
||||
*inner = Felt::new(e);
|
||||
}
|
||||
|
||||
Ok(Self(inner))
|
||||
}
|
||||
}
|
||||
|
||||
// TESTS
|
||||
// ================================================================================================
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::{Deserializable, Felt, RpxDigest, Serializable, DIGEST_BYTES};
|
||||
use crate::utils::SliceReader;
|
||||
use rand_utils::rand_value;
|
||||
|
||||
#[test]
|
||||
fn digest_serialization() {
|
||||
let e1 = Felt::new(rand_value());
|
||||
let e2 = Felt::new(rand_value());
|
||||
let e3 = Felt::new(rand_value());
|
||||
let e4 = Felt::new(rand_value());
|
||||
|
||||
let d1 = RpxDigest([e1, e2, e3, e4]);
|
||||
|
||||
let mut bytes = vec![];
|
||||
d1.write_into(&mut bytes);
|
||||
assert_eq!(DIGEST_BYTES, bytes.len());
|
||||
|
||||
let mut reader = SliceReader::new(&bytes);
|
||||
let d2 = RpxDigest::read_from(&mut reader).unwrap();
|
||||
|
||||
assert_eq!(d1, d2);
|
||||
}
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
#[test]
|
||||
fn digest_encoding() {
|
||||
let digest = RpxDigest([
|
||||
Felt::new(rand_value()),
|
||||
Felt::new(rand_value()),
|
||||
Felt::new(rand_value()),
|
||||
Felt::new(rand_value()),
|
||||
]);
|
||||
|
||||
let string: String = digest.into();
|
||||
let round_trip: RpxDigest = string.try_into().expect("decoding failed");
|
||||
|
||||
assert_eq!(digest, round_trip);
|
||||
}
|
||||
}
|
||||
379
src/hash/rescue/rpx/mod.rs
Normal file
379
src/hash/rescue/rpx/mod.rs
Normal file
@@ -0,0 +1,379 @@
|
||||
use super::{
|
||||
add_constants, apply_inv_sbox, apply_mds, apply_sbox,
|
||||
optimized_add_constants_and_apply_inv_sbox, optimized_add_constants_and_apply_sbox,
|
||||
CubeExtension, Digest, ElementHasher, Felt, FieldElement, Hasher, StarkField, ARK1, ARK2,
|
||||
BINARY_CHUNK_SIZE, CAPACITY_RANGE, DIGEST_RANGE, DIGEST_SIZE, INPUT1_RANGE, INPUT2_RANGE, MDS,
|
||||
NUM_ROUNDS, ONE, RATE_RANGE, RATE_WIDTH, STATE_WIDTH, ZERO,
|
||||
};
|
||||
use core::{convert::TryInto, ops::Range};
|
||||
|
||||
mod digest;
|
||||
pub use digest::RpxDigest;
|
||||
|
||||
#[cfg(all(target_feature = "sve", feature = "sve"))]
|
||||
#[link(name = "rpo_sve", kind = "static")]
|
||||
extern "C" {
|
||||
fn add_constants_and_apply_sbox(
|
||||
state: *mut std::ffi::c_ulong,
|
||||
constants: *const std::ffi::c_ulong,
|
||||
) -> bool;
|
||||
fn add_constants_and_apply_inv_sbox(
|
||||
state: *mut std::ffi::c_ulong,
|
||||
constants: *const std::ffi::c_ulong,
|
||||
) -> bool;
|
||||
}
|
||||
|
||||
pub type CubicExtElement = CubeExtension<Felt>;
|
||||
|
||||
// HASHER IMPLEMENTATION
|
||||
// ================================================================================================
|
||||
|
||||
/// Implementation of the Rescue Prime eXtension hash function with 256-bit output.
|
||||
///
|
||||
/// The hash function is based on the XHash12 construction in [specifications](https://eprint.iacr.org/2023/1045)
|
||||
///
|
||||
/// The parameters used to instantiate the function are:
|
||||
/// * Field: 64-bit prime field with modulus 2^64 - 2^32 + 1.
|
||||
/// * State width: 12 field elements.
|
||||
/// * Capacity size: 4 field elements.
|
||||
/// * S-Box degree: 7.
|
||||
/// * Rounds: There are 3 different types of rounds:
|
||||
/// - (FB): `apply_mds` → `add_constants` → `apply_sbox` → `apply_mds` → `add_constants` → `apply_inv_sbox`.
|
||||
/// - (E): `add_constants` → `ext_sbox` (which is raising to power 7 in the degree 3 extension field).
|
||||
/// - (M): `apply_mds` → `add_constants`.
|
||||
/// * Permutation: (FB) (E) (FB) (E) (FB) (E) (M).
|
||||
///
|
||||
/// The above parameters target 128-bit security level. The digest consists of four field elements
|
||||
/// and it can be serialized into 32 bytes (256 bits).
|
||||
///
|
||||
/// ## Hash output consistency
|
||||
/// Functions [hash_elements()](Rpx256::hash_elements), [merge()](Rpx256::merge), and
|
||||
/// [merge_with_int()](Rpx256::merge_with_int) are internally consistent. That is, computing
|
||||
/// a hash for the same set of elements using these functions will always produce the same
|
||||
/// result. For example, merging two digests using [merge()](Rpx256::merge) will produce the
|
||||
/// same result as hashing 8 elements which make up these digests using
|
||||
/// [hash_elements()](Rpx256::hash_elements) function.
|
||||
///
|
||||
/// However, [hash()](Rpx256::hash) function is not consistent with functions mentioned above.
|
||||
/// For example, if we take two field elements, serialize them to bytes and hash them using
|
||||
/// [hash()](Rpx256::hash), the result will differ from the result obtained by hashing these
|
||||
/// elements directly using [hash_elements()](Rpx256::hash_elements) function. The reason for
|
||||
/// this difference is that [hash()](Rpx256::hash) function needs to be able to handle
|
||||
/// arbitrary binary strings, which may or may not encode valid field elements - and thus,
|
||||
/// deserialization procedure used by this function is different from the procedure used to
|
||||
/// deserialize valid field elements.
|
||||
///
|
||||
/// Thus, if the underlying data consists of valid field elements, it might make more sense
|
||||
/// to deserialize them into field elements and then hash them using
|
||||
/// [hash_elements()](Rpx256::hash_elements) function rather then hashing the serialized bytes
|
||||
/// using [hash()](Rpx256::hash) function.
|
||||
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
|
||||
pub struct Rpx256();
|
||||
|
||||
impl Hasher for Rpx256 {
|
||||
/// Rpx256 collision resistance is the same as the security level, that is 128-bits.
|
||||
///
|
||||
/// #### Collision resistance
|
||||
///
|
||||
/// However, our setup of the capacity registers might drop it to 126.
|
||||
///
|
||||
/// Related issue: [#69](https://github.com/0xPolygonMiden/crypto/issues/69)
|
||||
const COLLISION_RESISTANCE: u32 = 128;
|
||||
|
||||
type Digest = RpxDigest;
|
||||
|
||||
fn hash(bytes: &[u8]) -> Self::Digest {
|
||||
// initialize the state with zeroes
|
||||
let mut state = [ZERO; STATE_WIDTH];
|
||||
|
||||
// set the capacity (first element) to a flag on whether or not the input length is evenly
|
||||
// divided by the rate. this will prevent collisions between padded and non-padded inputs,
|
||||
// and will rule out the need to perform an extra permutation in case of evenly divided
|
||||
// inputs.
|
||||
let is_rate_multiple = bytes.len() % RATE_WIDTH == 0;
|
||||
if !is_rate_multiple {
|
||||
state[CAPACITY_RANGE.start] = ONE;
|
||||
}
|
||||
|
||||
// initialize a buffer to receive the little-endian elements.
|
||||
let mut buf = [0_u8; 8];
|
||||
|
||||
// iterate the chunks of bytes, creating a field element from each chunk and copying it
|
||||
// into the state.
|
||||
//
|
||||
// every time the rate range is filled, a permutation is performed. if the final value of
|
||||
// `i` is not zero, then the chunks count wasn't enough to fill the state range, and an
|
||||
// additional permutation must be performed.
|
||||
let i = bytes.chunks(BINARY_CHUNK_SIZE).fold(0, |i, chunk| {
|
||||
// the last element of the iteration may or may not be a full chunk. if it's not, then
|
||||
// we need to pad the remainder bytes of the chunk with zeroes, separated by a `1`.
|
||||
// this will avoid collisions.
|
||||
if chunk.len() == BINARY_CHUNK_SIZE {
|
||||
buf[..BINARY_CHUNK_SIZE].copy_from_slice(chunk);
|
||||
} else {
|
||||
buf.fill(0);
|
||||
buf[..chunk.len()].copy_from_slice(chunk);
|
||||
buf[chunk.len()] = 1;
|
||||
}
|
||||
|
||||
// set the current rate element to the input. since we take at most 7 bytes, we are
|
||||
// guaranteed that the inputs data will fit into a single field element.
|
||||
state[RATE_RANGE.start + i] = Felt::new(u64::from_le_bytes(buf));
|
||||
|
||||
// proceed filling the range. if it's full, then we apply a permutation and reset the
|
||||
// counter to the beginning of the range.
|
||||
if i == RATE_WIDTH - 1 {
|
||||
Self::apply_permutation(&mut state);
|
||||
0
|
||||
} else {
|
||||
i + 1
|
||||
}
|
||||
});
|
||||
|
||||
// if we absorbed some elements but didn't apply a permutation to them (would happen when
|
||||
// the number of elements is not a multiple of RATE_WIDTH), apply the RPX permutation. we
|
||||
// don't need to apply any extra padding because the first capacity element containts a
|
||||
// flag indicating whether the input is evenly divisible by the rate.
|
||||
if i != 0 {
|
||||
state[RATE_RANGE.start + i..RATE_RANGE.end].fill(ZERO);
|
||||
state[RATE_RANGE.start + i] = ONE;
|
||||
Self::apply_permutation(&mut state);
|
||||
}
|
||||
|
||||
// return the first 4 elements of the rate as hash result.
|
||||
RpxDigest::new(state[DIGEST_RANGE].try_into().unwrap())
|
||||
}
|
||||
|
||||
fn merge(values: &[Self::Digest; 2]) -> Self::Digest {
|
||||
// initialize the state by copying the digest elements into the rate portion of the state
|
||||
// (8 total elements), and set the capacity elements to 0.
|
||||
let mut state = [ZERO; STATE_WIDTH];
|
||||
let it = Self::Digest::digests_as_elements(values.iter());
|
||||
for (i, v) in it.enumerate() {
|
||||
state[RATE_RANGE.start + i] = *v;
|
||||
}
|
||||
|
||||
// apply the RPX permutation and return the first four elements of the state
|
||||
Self::apply_permutation(&mut state);
|
||||
RpxDigest::new(state[DIGEST_RANGE].try_into().unwrap())
|
||||
}
|
||||
|
||||
fn merge_with_int(seed: Self::Digest, value: u64) -> Self::Digest {
|
||||
// initialize the state as follows:
|
||||
// - seed is copied into the first 4 elements of the rate portion of the state.
|
||||
// - if the value fits into a single field element, copy it into the fifth rate element
|
||||
// and set the sixth rate element to 1.
|
||||
// - if the value doesn't fit into a single field element, split it into two field
|
||||
// elements, copy them into rate elements 5 and 6, and set the seventh rate element
|
||||
// to 1.
|
||||
// - set the first capacity element to 1
|
||||
let mut state = [ZERO; STATE_WIDTH];
|
||||
state[INPUT1_RANGE].copy_from_slice(seed.as_elements());
|
||||
state[INPUT2_RANGE.start] = Felt::new(value);
|
||||
if value < Felt::MODULUS {
|
||||
state[INPUT2_RANGE.start + 1] = ONE;
|
||||
} else {
|
||||
state[INPUT2_RANGE.start + 1] = Felt::new(value / Felt::MODULUS);
|
||||
state[INPUT2_RANGE.start + 2] = ONE;
|
||||
}
|
||||
|
||||
// common padding for both cases
|
||||
state[CAPACITY_RANGE.start] = ONE;
|
||||
|
||||
// apply the RPX permutation and return the first four elements of the state
|
||||
Self::apply_permutation(&mut state);
|
||||
RpxDigest::new(state[DIGEST_RANGE].try_into().unwrap())
|
||||
}
|
||||
}
|
||||
|
||||
impl ElementHasher for Rpx256 {
|
||||
type BaseField = Felt;
|
||||
|
||||
fn hash_elements<E: FieldElement<BaseField = Self::BaseField>>(elements: &[E]) -> Self::Digest {
|
||||
// convert the elements into a list of base field elements
|
||||
let elements = E::slice_as_base_elements(elements);
|
||||
|
||||
// initialize state to all zeros, except for the first element of the capacity part, which
|
||||
// is set to 1 if the number of elements is not a multiple of RATE_WIDTH.
|
||||
let mut state = [ZERO; STATE_WIDTH];
|
||||
if elements.len() % RATE_WIDTH != 0 {
|
||||
state[CAPACITY_RANGE.start] = ONE;
|
||||
}
|
||||
|
||||
// absorb elements into the state one by one until the rate portion of the state is filled
|
||||
// up; then apply the Rescue permutation and start absorbing again; repeat until all
|
||||
// elements have been absorbed
|
||||
let mut i = 0;
|
||||
for &element in elements.iter() {
|
||||
state[RATE_RANGE.start + i] = element;
|
||||
i += 1;
|
||||
if i % RATE_WIDTH == 0 {
|
||||
Self::apply_permutation(&mut state);
|
||||
i = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// if we absorbed some elements but didn't apply a permutation to them (would happen when
|
||||
// the number of elements is not a multiple of RATE_WIDTH), apply the RPX permutation after
|
||||
// padding by appending a 1 followed by as many 0 as necessary to make the input length a
|
||||
// multiple of the RATE_WIDTH.
|
||||
if i > 0 {
|
||||
state[RATE_RANGE.start + i] = ONE;
|
||||
i += 1;
|
||||
while i != RATE_WIDTH {
|
||||
state[RATE_RANGE.start + i] = ZERO;
|
||||
i += 1;
|
||||
}
|
||||
Self::apply_permutation(&mut state);
|
||||
}
|
||||
|
||||
// return the first 4 elements of the state as hash result
|
||||
RpxDigest::new(state[DIGEST_RANGE].try_into().unwrap())
|
||||
}
|
||||
}
|
||||
|
||||
// HASH FUNCTION IMPLEMENTATION
|
||||
// ================================================================================================
|
||||
|
||||
impl Rpx256 {
|
||||
// CONSTANTS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Sponge state is set to 12 field elements or 768 bytes; 8 elements are reserved for rate and
|
||||
/// the remaining 4 elements are reserved for capacity.
|
||||
pub const STATE_WIDTH: usize = STATE_WIDTH;
|
||||
|
||||
/// The rate portion of the state is located in elements 4 through 11 (inclusive).
|
||||
pub const RATE_RANGE: Range<usize> = RATE_RANGE;
|
||||
|
||||
/// The capacity portion of the state is located in elements 0, 1, 2, and 3.
|
||||
pub const CAPACITY_RANGE: Range<usize> = CAPACITY_RANGE;
|
||||
|
||||
/// The output of the hash function can be read from state elements 4, 5, 6, and 7.
|
||||
pub const DIGEST_RANGE: Range<usize> = DIGEST_RANGE;
|
||||
|
||||
/// MDS matrix used for computing the linear layer in the (FB) and (E) rounds.
|
||||
pub const MDS: [[Felt; STATE_WIDTH]; STATE_WIDTH] = MDS;
|
||||
|
||||
/// Round constants added to the hasher state in the first half of the round.
|
||||
pub const ARK1: [[Felt; STATE_WIDTH]; NUM_ROUNDS] = ARK1;
|
||||
|
||||
/// Round constants added to the hasher state in the second half of the round.
|
||||
pub const ARK2: [[Felt; STATE_WIDTH]; NUM_ROUNDS] = ARK2;
|
||||
|
||||
// TRAIT PASS-THROUGH FUNCTIONS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Returns a hash of the provided sequence of bytes.
|
||||
#[inline(always)]
|
||||
pub fn hash(bytes: &[u8]) -> RpxDigest {
|
||||
<Self as Hasher>::hash(bytes)
|
||||
}
|
||||
|
||||
/// Returns a hash of two digests. This method is intended for use in construction of
|
||||
/// Merkle trees and verification of Merkle paths.
|
||||
#[inline(always)]
|
||||
pub fn merge(values: &[RpxDigest; 2]) -> RpxDigest {
|
||||
<Self as Hasher>::merge(values)
|
||||
}
|
||||
|
||||
/// Returns a hash of the provided field elements.
|
||||
#[inline(always)]
|
||||
pub fn hash_elements<E: FieldElement<BaseField = Felt>>(elements: &[E]) -> RpxDigest {
|
||||
<Self as ElementHasher>::hash_elements(elements)
|
||||
}
|
||||
|
||||
// DOMAIN IDENTIFIER
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Returns a hash of two digests and a domain identifier.
|
||||
pub fn merge_in_domain(values: &[RpxDigest; 2], domain: Felt) -> RpxDigest {
|
||||
// initialize the state by copying the digest elements into the rate portion of the state
|
||||
// (8 total elements), and set the capacity elements to 0.
|
||||
let mut state = [ZERO; STATE_WIDTH];
|
||||
let it = RpxDigest::digests_as_elements(values.iter());
|
||||
for (i, v) in it.enumerate() {
|
||||
state[RATE_RANGE.start + i] = *v;
|
||||
}
|
||||
|
||||
// set the second capacity element to the domain value. The first capacity element is used
|
||||
// for padding purposes.
|
||||
state[CAPACITY_RANGE.start + 1] = domain;
|
||||
|
||||
// apply the RPX permutation and return the first four elements of the state
|
||||
Self::apply_permutation(&mut state);
|
||||
RpxDigest::new(state[DIGEST_RANGE].try_into().unwrap())
|
||||
}
|
||||
|
||||
// RPX PERMUTATION
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Applies RPX permutation to the provided state.
|
||||
#[inline(always)]
|
||||
pub fn apply_permutation(state: &mut [Felt; STATE_WIDTH]) {
|
||||
Self::apply_fb_round(state, 0);
|
||||
Self::apply_ext_round(state, 1);
|
||||
Self::apply_fb_round(state, 2);
|
||||
Self::apply_ext_round(state, 3);
|
||||
Self::apply_fb_round(state, 4);
|
||||
Self::apply_ext_round(state, 5);
|
||||
Self::apply_final_round(state, 6);
|
||||
}
|
||||
|
||||
// RPX PERMUTATION ROUND FUNCTIONS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// (FB) round function.
|
||||
#[inline(always)]
|
||||
pub fn apply_fb_round(state: &mut [Felt; STATE_WIDTH], round: usize) {
|
||||
apply_mds(state);
|
||||
if !optimized_add_constants_and_apply_sbox(state, &ARK1[round]) {
|
||||
add_constants(state, &ARK1[round]);
|
||||
apply_sbox(state);
|
||||
}
|
||||
|
||||
apply_mds(state);
|
||||
if !optimized_add_constants_and_apply_inv_sbox(state, &ARK2[round]) {
|
||||
add_constants(state, &ARK2[round]);
|
||||
apply_inv_sbox(state);
|
||||
}
|
||||
}
|
||||
|
||||
/// (E) round function.
|
||||
#[inline(always)]
|
||||
pub fn apply_ext_round(state: &mut [Felt; STATE_WIDTH], round: usize) {
|
||||
// add constants
|
||||
add_constants(state, &ARK1[round]);
|
||||
|
||||
// decompose the state into 4 elements in the cubic extension field and apply the power 7
|
||||
// map to each of the elements
|
||||
let [s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] = *state;
|
||||
let ext0 = Self::exp7(CubicExtElement::new(s0, s1, s2));
|
||||
let ext1 = Self::exp7(CubicExtElement::new(s3, s4, s5));
|
||||
let ext2 = Self::exp7(CubicExtElement::new(s6, s7, s8));
|
||||
let ext3 = Self::exp7(CubicExtElement::new(s9, s10, s11));
|
||||
|
||||
// decompose the state back into 12 base field elements
|
||||
let arr_ext = [ext0, ext1, ext2, ext3];
|
||||
*state = CubicExtElement::slice_as_base_elements(&arr_ext)
|
||||
.try_into()
|
||||
.expect("shouldn't fail");
|
||||
}
|
||||
|
||||
/// (M) round function.
|
||||
#[inline(always)]
|
||||
pub fn apply_final_round(state: &mut [Felt; STATE_WIDTH], round: usize) {
|
||||
apply_mds(state);
|
||||
add_constants(state, &ARK1[round]);
|
||||
}
|
||||
|
||||
/// Computes an exponentiation to the power 7 in cubic extension field
|
||||
#[inline(always)]
|
||||
pub fn exp7(x: CubeExtension<Felt>) -> CubeExtension<Felt> {
|
||||
let x2 = x.square();
|
||||
let x4 = x2.square();
|
||||
|
||||
let x3 = x2 * x;
|
||||
x3 * x4
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user