Implement Smt struct (replacement to TieredSmt) (#254)

This commit is contained in:
Philippe Laferrière
2024-01-19 16:07:35 -05:00
committed by Bobbin Threadbare
parent a933ff2fa0
commit 5596db7868
4 changed files with 668 additions and 1 deletions

View File

@@ -0,0 +1,283 @@
use super::*;
use crate::{
merkle::{EmptySubtreeRoots, MerkleStore},
ONE, WORD_SIZE,
};
/// This test checks that inserting twice at the same key functions as expected. The test covers
/// only the case where the key is alone in its leaf
#[test]
fn test_smt_insert_at_same_key() {
let mut smt = Smt::default();
let mut store: MerkleStore = MerkleStore::default();
assert_eq!(smt.root(), *EmptySubtreeRoots::entry(SMT_DEPTH, 0));
let key_1: RpoDigest = {
let raw = 0b_01101001_01101100_00011111_11111111_10010110_10010011_11100000_00000000_u64;
RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)])
};
let key_1_index: NodeIndex = LeafIndex::<SMT_DEPTH>::from(key_1).into();
let value_1 = [ONE; WORD_SIZE];
let value_2 = [ONE + ONE; WORD_SIZE];
// Insert value 1 and ensure root is as expected
{
let leaf_node = build_single_leaf_node(key_1, value_1);
let tree_root = store.set_node(smt.root(), key_1_index, leaf_node).unwrap().root;
let old_value_1 = smt.insert(key_1, value_1);
assert_eq!(old_value_1, EMPTY_WORD);
assert_eq!(smt.root(), tree_root);
}
// Insert value 2 and ensure root is as expected
{
let leaf_node = build_single_leaf_node(key_1, value_2);
let tree_root = store.set_node(smt.root(), key_1_index, leaf_node).unwrap().root;
let old_value_2 = smt.insert(key_1, value_2);
assert_eq!(old_value_2, value_1);
assert_eq!(smt.root(), tree_root);
}
}
/// This test checks that inserting twice at the same key functions as expected. The test covers
/// only the case where the leaf type is `SmtLeaf::Multiple`
#[test]
fn test_smt_insert_at_same_key_2() {
// The most significant u64 used for both keys (to ensure they map to the same leaf)
let key_msb: u64 = 42;
let key_already_present: RpoDigest =
RpoDigest::from([2_u64.into(), 2_u64.into(), 2_u64.into(), Felt::new(key_msb)]);
let key_already_present_index: NodeIndex =
LeafIndex::<SMT_DEPTH>::from(key_already_present).into();
let value_already_present = [ONE + ONE + ONE; WORD_SIZE];
let mut smt =
Smt::with_entries(core::iter::once((key_already_present, value_already_present))).unwrap();
let mut store: MerkleStore = {
let mut store = MerkleStore::default();
let leaf_node = build_single_leaf_node(key_already_present, value_already_present);
store
.set_node(*EmptySubtreeRoots::entry(SMT_DEPTH, 0), key_already_present_index, leaf_node)
.unwrap();
store
};
let key_1: RpoDigest = RpoDigest::from([ONE, ONE, ONE, Felt::new(key_msb)]);
let key_1_index: NodeIndex = LeafIndex::<SMT_DEPTH>::from(key_1).into();
assert_eq!(key_1_index, key_already_present_index);
let value_1 = [ONE; WORD_SIZE];
let value_2 = [ONE + ONE; WORD_SIZE];
// Insert value 1 and ensure root is as expected
{
// Note: key_1 comes first because it is smaller
let leaf_node = build_multiple_leaf_node(&[
(key_1, value_1),
(key_already_present, value_already_present),
]);
let tree_root = store.set_node(smt.root(), key_1_index, leaf_node).unwrap().root;
let old_value_1 = smt.insert(key_1, value_1);
assert_eq!(old_value_1, EMPTY_WORD);
assert_eq!(smt.root(), tree_root);
}
// Insert value 2 and ensure root is as expected
{
let leaf_node = build_multiple_leaf_node(&[
(key_1, value_2),
(key_already_present, value_already_present),
]);
let tree_root = store.set_node(smt.root(), key_1_index, leaf_node).unwrap().root;
let old_value_2 = smt.insert(key_1, value_2);
assert_eq!(old_value_2, value_1);
assert_eq!(smt.root(), tree_root);
}
}
/// This test ensures that the root of the tree is as expected when we add 3 items at 3 different
/// keys. This also tests that the merkle paths produced are as expected.
#[test]
fn test_smt_insert_multiple_values() {
let mut smt = Smt::default();
let mut store: MerkleStore = MerkleStore::default();
assert_eq!(smt.root(), *EmptySubtreeRoots::entry(SMT_DEPTH, 0));
let key_1: RpoDigest = {
let raw = 0b_01101001_01101100_00011111_11111111_10010110_10010011_11100000_00000000_u64;
RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)])
};
let key_2: RpoDigest = {
let raw = 0b_11111111_11111111_11111111_11111111_11111111_11111111_11111111_11111111_u64;
RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)])
};
let key_3: RpoDigest = {
let raw = 0b_00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000_u64;
RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)])
};
let value_1 = [ONE; WORD_SIZE];
let value_2 = [ONE + ONE; WORD_SIZE];
let value_3 = [ONE + ONE + ONE; WORD_SIZE];
let key_values = [(key_1, value_1), (key_2, value_2), (key_3, value_3)];
for (key, value) in key_values {
let key_index: NodeIndex = LeafIndex::<SMT_DEPTH>::from(key).into();
let leaf_node = build_single_leaf_node(key, value);
let tree_root = store.set_node(smt.root(), key_index, leaf_node).unwrap().root;
let old_value = smt.insert(key, value);
assert_eq!(old_value, EMPTY_WORD);
assert_eq!(smt.root(), tree_root);
let expected_path = store.get_path(tree_root, key_index).unwrap();
assert_eq!(smt.open(&key).0, expected_path.path);
}
}
/// This tests that inserting the empty value does indeed remove the key-value contained at the
/// leaf. We insert & remove 3 values at the same leaf to ensure that all cases are covered (empty,
/// single, multiple).
#[test]
fn test_smt_removal() {
let mut smt = Smt::default();
let raw = 0b_01101001_01101100_00011111_11111111_10010110_10010011_11100000_00000000_u64;
let key_1: RpoDigest = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)]);
let key_2: RpoDigest =
RpoDigest::from([2_u64.into(), 2_u64.into(), 2_u64.into(), Felt::new(raw)]);
let key_3: RpoDigest =
RpoDigest::from([3_u64.into(), 3_u64.into(), 3_u64.into(), Felt::new(raw)]);
let value_1 = [ONE; WORD_SIZE];
let value_2 = [2_u64.into(); WORD_SIZE];
let value_3: [Felt; 4] = [3_u64.into(); WORD_SIZE];
// insert key-value 1
{
let old_value_1 = smt.insert(key_1, value_1);
assert_eq!(old_value_1, EMPTY_WORD);
assert_eq!(smt.get_leaf(&key_1), SmtLeaf::Single((key_1, value_1)));
}
// insert key-value 2
{
let old_value_2 = smt.insert(key_2, value_2);
assert_eq!(old_value_2, EMPTY_WORD);
assert_eq!(
smt.get_leaf(&key_2),
SmtLeaf::Multiple(vec![(key_1, value_1), (key_2, value_2)])
);
}
// insert key-value 3
{
let old_value_3 = smt.insert(key_3, value_3);
assert_eq!(old_value_3, EMPTY_WORD);
assert_eq!(
smt.get_leaf(&key_3),
SmtLeaf::Multiple(vec![(key_1, value_1), (key_2, value_2), (key_3, value_3)])
);
}
// remove key 3
{
let old_value_3 = smt.insert(key_3, EMPTY_WORD);
assert_eq!(old_value_3, value_3);
assert_eq!(
smt.get_leaf(&key_3),
SmtLeaf::Multiple(vec![(key_1, value_1), (key_2, value_2)])
);
}
// remove key 2
{
let old_value_2 = smt.insert(key_2, EMPTY_WORD);
assert_eq!(old_value_2, value_2);
assert_eq!(smt.get_leaf(&key_2), SmtLeaf::Single((key_1, value_1)));
}
// remove key 1
{
let old_value_1 = smt.insert(key_1, EMPTY_WORD);
assert_eq!(old_value_1, value_1);
assert_eq!(smt.get_leaf(&key_1), SmtLeaf::Empty);
}
}
/// Tests that 2 key-value pairs stored in the same leaf have the same path
#[test]
fn test_smt_path_to_keys_in_same_leaf_are_equal() {
let raw = 0b_01101001_01101100_00011111_11111111_10010110_10010011_11100000_00000000_u64;
let key_1: RpoDigest = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)]);
let key_2: RpoDigest =
RpoDigest::from([2_u64.into(), 2_u64.into(), 2_u64.into(), Felt::new(raw)]);
let value_1 = [ONE; WORD_SIZE];
let value_2 = [2_u64.into(); WORD_SIZE];
let smt = Smt::with_entries([(key_1, value_1), (key_2, value_2)]).unwrap();
assert_eq!(smt.open(&key_1), smt.open(&key_2));
}
/// Tests that an empty leaf hashes to the empty word
#[test]
fn test_empty_leaf_hash() {
let smt = Smt::default();
let leaf = smt.get_leaf(&RpoDigest::default());
assert_eq!(leaf.hash(), EMPTY_WORD.into());
}
// HELPERS
// --------------------------------------------------------------------------------------------
fn build_single_leaf_node(key: RpoDigest, value: Word) -> RpoDigest {
SmtLeaf::Single((key, value)).hash()
}
fn build_multiple_leaf_node(kv_pairs: &[(RpoDigest, Word)]) -> RpoDigest {
let elements: Vec<Felt> = kv_pairs
.iter()
.flat_map(|(key, value)| {
let key_elements = key.into_iter();
let value_elements = (*value).into_iter();
key_elements.chain(value_elements)
})
.collect();
Rpo256::hash_elements(&elements)
}