mirror of
https://github.com/arnaucube/miden-crypto.git
synced 2026-01-11 16:41:29 +01:00
feat: reverse mutations generation, mutations serialization (#355)
* feat: revert mutations generation, mutations serialization * tests: check both `apply_mutations` and `apply_mutations_with_reversion` * feat: add `num_leaves` method for `Smt` * refactor: improve ad-hoc benchmarks * chore: update crate version to v0.13.1
This commit is contained in:
162
src/main.rs
162
src/main.rs
@@ -4,8 +4,9 @@ use clap::Parser;
|
||||
use miden_crypto::{
|
||||
hash::rpo::{Rpo256, RpoDigest},
|
||||
merkle::{MerkleError, Smt},
|
||||
Felt, Word, ONE,
|
||||
Felt, Word, EMPTY_WORD, ONE,
|
||||
};
|
||||
use rand::{prelude::IteratorRandom, thread_rng, Rng};
|
||||
use rand_utils::rand_value;
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
@@ -13,7 +14,7 @@ use rand_utils::rand_value;
|
||||
pub struct BenchmarkCmd {
|
||||
/// Size of the tree
|
||||
#[clap(short = 's', long = "size")]
|
||||
size: u64,
|
||||
size: usize,
|
||||
}
|
||||
|
||||
fn main() {
|
||||
@@ -29,101 +30,153 @@ pub fn benchmark_smt() {
|
||||
let mut entries = Vec::new();
|
||||
for i in 0..tree_size {
|
||||
let key = rand_value::<RpoDigest>();
|
||||
let value = [ONE, ONE, ONE, Felt::new(i)];
|
||||
let value = [ONE, ONE, ONE, Felt::new(i as u64)];
|
||||
entries.push((key, value));
|
||||
}
|
||||
|
||||
let mut tree = construction(entries, tree_size).unwrap();
|
||||
insertion(&mut tree, tree_size).unwrap();
|
||||
batched_insertion(&mut tree, tree_size).unwrap();
|
||||
proof_generation(&mut tree, tree_size).unwrap();
|
||||
let mut tree = construction(entries.clone(), tree_size).unwrap();
|
||||
insertion(&mut tree).unwrap();
|
||||
batched_insertion(&mut tree).unwrap();
|
||||
batched_update(&mut tree, entries).unwrap();
|
||||
proof_generation(&mut tree).unwrap();
|
||||
}
|
||||
|
||||
/// Runs the construction benchmark for [`Smt`], returning the constructed tree.
|
||||
pub fn construction(entries: Vec<(RpoDigest, Word)>, size: u64) -> Result<Smt, MerkleError> {
|
||||
pub fn construction(entries: Vec<(RpoDigest, Word)>, size: usize) -> Result<Smt, MerkleError> {
|
||||
println!("Running a construction benchmark:");
|
||||
let now = Instant::now();
|
||||
let tree = Smt::with_entries(entries)?;
|
||||
let elapsed = now.elapsed();
|
||||
println!(
|
||||
"Constructed a SMT with {} key-value pairs in {:.3} seconds",
|
||||
size,
|
||||
elapsed.as_secs_f32(),
|
||||
);
|
||||
let elapsed = now.elapsed().as_secs_f32();
|
||||
|
||||
println!("Constructed a SMT with {size} key-value pairs in {elapsed:.1} seconds");
|
||||
println!("Number of leaf nodes: {}\n", tree.leaves().count());
|
||||
|
||||
Ok(tree)
|
||||
}
|
||||
|
||||
/// Runs the insertion benchmark for the [`Smt`].
|
||||
pub fn insertion(tree: &mut Smt, size: u64) -> Result<(), MerkleError> {
|
||||
pub fn insertion(tree: &mut Smt) -> Result<(), MerkleError> {
|
||||
const NUM_INSERTIONS: usize = 1_000;
|
||||
|
||||
println!("Running an insertion benchmark:");
|
||||
|
||||
let size = tree.num_leaves();
|
||||
|
||||
let mut insertion_times = Vec::new();
|
||||
|
||||
for i in 0..20 {
|
||||
for i in 0..NUM_INSERTIONS {
|
||||
let test_key = Rpo256::hash(&rand_value::<u64>().to_be_bytes());
|
||||
let test_value = [ONE, ONE, ONE, Felt::new(size + i)];
|
||||
let test_value = [ONE, ONE, ONE, Felt::new((size + i) as u64)];
|
||||
|
||||
let now = Instant::now();
|
||||
tree.insert(test_key, test_value);
|
||||
let elapsed = now.elapsed();
|
||||
insertion_times.push(elapsed.as_secs_f32());
|
||||
insertion_times.push(elapsed.as_micros());
|
||||
}
|
||||
|
||||
println!(
|
||||
"An average insertion time measured by 20 inserts into a SMT with {} key-value pairs is {:.3} milliseconds\n",
|
||||
size,
|
||||
// calculate the average by dividing by 20 and convert to milliseconds by multiplying by
|
||||
// 1000. As a result, we can only multiply by 50
|
||||
insertion_times.iter().sum::<f32>() * 50f32,
|
||||
"An average insertion time measured by {NUM_INSERTIONS} inserts into an SMT with {size} leaves is {:.0} μs\n",
|
||||
// calculate the average
|
||||
insertion_times.iter().sum::<u128>() as f64 / (NUM_INSERTIONS as f64),
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn batched_insertion(tree: &mut Smt, size: u64) -> Result<(), MerkleError> {
|
||||
pub fn batched_insertion(tree: &mut Smt) -> Result<(), MerkleError> {
|
||||
const NUM_INSERTIONS: usize = 1_000;
|
||||
|
||||
println!("Running a batched insertion benchmark:");
|
||||
|
||||
let new_pairs: Vec<(RpoDigest, Word)> = (0..1000)
|
||||
let size = tree.num_leaves();
|
||||
|
||||
let new_pairs: Vec<(RpoDigest, Word)> = (0..NUM_INSERTIONS)
|
||||
.map(|i| {
|
||||
let key = Rpo256::hash(&rand_value::<u64>().to_be_bytes());
|
||||
let value = [ONE, ONE, ONE, Felt::new(size + i)];
|
||||
let value = [ONE, ONE, ONE, Felt::new((size + i) as u64)];
|
||||
(key, value)
|
||||
})
|
||||
.collect();
|
||||
|
||||
let now = Instant::now();
|
||||
let mutations = tree.compute_mutations(new_pairs);
|
||||
let compute_elapsed = now.elapsed();
|
||||
let compute_elapsed = now.elapsed().as_secs_f64() * 1000_f64; // time in ms
|
||||
|
||||
let now = Instant::now();
|
||||
tree.apply_mutations(mutations).unwrap();
|
||||
let apply_elapsed = now.elapsed();
|
||||
tree.apply_mutations(mutations)?;
|
||||
let apply_elapsed = now.elapsed().as_secs_f64() * 1000_f64; // time in ms
|
||||
|
||||
println!(
|
||||
"An average batch computation time measured by a 1k-batch into an SMT with {} key-value pairs over {:.3} milliseconds is {:.3} milliseconds",
|
||||
size,
|
||||
compute_elapsed.as_secs_f32() * 1000f32,
|
||||
// Dividing by the number of iterations, 1000, and then multiplying by 1000 to get
|
||||
// milliseconds, cancels out.
|
||||
compute_elapsed.as_secs_f32(),
|
||||
"An average insert-batch computation time measured by a {NUM_INSERTIONS}-batch into an SMT with {size} leaves over {:.1} ms is {:.0} μs",
|
||||
compute_elapsed,
|
||||
compute_elapsed * 1000_f64 / NUM_INSERTIONS as f64, // time in μs
|
||||
);
|
||||
|
||||
println!(
|
||||
"An average batch application time measured by a 1k-batch into an SMT with {} key-value pairs over {:.3} milliseconds is {:.3} milliseconds",
|
||||
size,
|
||||
apply_elapsed.as_secs_f32() * 1000f32,
|
||||
// Dividing by the number of iterations, 1000, and then multiplying by 1000 to get
|
||||
// milliseconds, cancels out.
|
||||
apply_elapsed.as_secs_f32(),
|
||||
"An average insert-batch application time measured by a {NUM_INSERTIONS}-batch into an SMT with {size} leaves over {:.1} ms is {:.0} μs",
|
||||
apply_elapsed,
|
||||
apply_elapsed * 1000_f64 / NUM_INSERTIONS as f64, // time in μs
|
||||
);
|
||||
|
||||
println!(
|
||||
"An average batch insertion time measured by a 1k-batch into an SMT with {} key-value pairs totals to {:.3} milliseconds",
|
||||
size,
|
||||
(compute_elapsed + apply_elapsed).as_secs_f32() * 1000f32,
|
||||
"An average batch insertion time measured by a 1k-batch into an SMT with {size} leaves totals to {:.1} ms",
|
||||
(compute_elapsed + apply_elapsed),
|
||||
);
|
||||
|
||||
println!();
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn batched_update(tree: &mut Smt, entries: Vec<(RpoDigest, Word)>) -> Result<(), MerkleError> {
|
||||
const NUM_UPDATES: usize = 1_000;
|
||||
const REMOVAL_PROBABILITY: f64 = 0.2;
|
||||
|
||||
println!("Running a batched update benchmark:");
|
||||
|
||||
let size = tree.num_leaves();
|
||||
let mut rng = thread_rng();
|
||||
|
||||
let new_pairs =
|
||||
entries
|
||||
.into_iter()
|
||||
.choose_multiple(&mut rng, NUM_UPDATES)
|
||||
.into_iter()
|
||||
.map(|(key, _)| {
|
||||
let value = if rng.gen_bool(REMOVAL_PROBABILITY) {
|
||||
EMPTY_WORD
|
||||
} else {
|
||||
[ONE, ONE, ONE, Felt::new(rng.gen())]
|
||||
};
|
||||
|
||||
(key, value)
|
||||
});
|
||||
|
||||
assert_eq!(new_pairs.len(), NUM_UPDATES);
|
||||
|
||||
let now = Instant::now();
|
||||
let mutations = tree.compute_mutations(new_pairs);
|
||||
let compute_elapsed = now.elapsed().as_secs_f64() * 1000_f64; // time in ms
|
||||
|
||||
let now = Instant::now();
|
||||
tree.apply_mutations(mutations)?;
|
||||
let apply_elapsed = now.elapsed().as_secs_f64() * 1000_f64; // time in ms
|
||||
|
||||
println!(
|
||||
"An average update-batch computation time measured by a {NUM_UPDATES}-batch into an SMT with {size} leaves over {:.1} ms is {:.0} μs",
|
||||
compute_elapsed,
|
||||
compute_elapsed * 1000_f64 / NUM_UPDATES as f64, // time in μs
|
||||
);
|
||||
|
||||
println!(
|
||||
"An average update-batch application time measured by a {NUM_UPDATES}-batch into an SMT with {size} leaves over {:.1} ms is {:.0} μs",
|
||||
apply_elapsed,
|
||||
apply_elapsed * 1000_f64 / NUM_UPDATES as f64, // time in μs
|
||||
);
|
||||
|
||||
println!(
|
||||
"An average batch update time measured by a 1k-batch into an SMT with {size} leaves totals to {:.1} ms",
|
||||
(compute_elapsed + apply_elapsed),
|
||||
);
|
||||
|
||||
println!();
|
||||
@@ -132,28 +185,29 @@ pub fn batched_insertion(tree: &mut Smt, size: u64) -> Result<(), MerkleError> {
|
||||
}
|
||||
|
||||
/// Runs the proof generation benchmark for the [`Smt`].
|
||||
pub fn proof_generation(tree: &mut Smt, size: u64) -> Result<(), MerkleError> {
|
||||
pub fn proof_generation(tree: &mut Smt) -> Result<(), MerkleError> {
|
||||
const NUM_PROOFS: usize = 100;
|
||||
|
||||
println!("Running a proof generation benchmark:");
|
||||
|
||||
let mut insertion_times = Vec::new();
|
||||
|
||||
for i in 0..20 {
|
||||
let size = tree.num_leaves();
|
||||
|
||||
for i in 0..NUM_PROOFS {
|
||||
let test_key = Rpo256::hash(&rand_value::<u64>().to_be_bytes());
|
||||
let test_value = [ONE, ONE, ONE, Felt::new(size + i)];
|
||||
let test_value = [ONE, ONE, ONE, Felt::new((size + i) as u64)];
|
||||
tree.insert(test_key, test_value);
|
||||
|
||||
let now = Instant::now();
|
||||
let _proof = tree.open(&test_key);
|
||||
let elapsed = now.elapsed();
|
||||
insertion_times.push(elapsed.as_secs_f32());
|
||||
insertion_times.push(now.elapsed().as_micros());
|
||||
}
|
||||
|
||||
println!(
|
||||
"An average proving time measured by 20 value proofs in a SMT with {} key-value pairs in {:.3} microseconds",
|
||||
size,
|
||||
// calculate the average by dividing by 20 and convert to microseconds by multiplying by
|
||||
// 1000000. As a result, we can only multiply by 50000
|
||||
insertion_times.iter().sum::<f32>() * 50000f32,
|
||||
"An average proving time measured by {NUM_PROOFS} value proofs in an SMT with {size} leaves in {:.0} μs",
|
||||
// calculate the average
|
||||
insertion_times.iter().sum::<u128>() as f64 / (NUM_PROOFS as f64),
|
||||
);
|
||||
|
||||
Ok(())
|
||||
|
||||
Reference in New Issue
Block a user