mirror of
https://github.com/arnaucube/miden-crypto.git
synced 2026-01-11 16:41:29 +01:00
Tracking PR for v0.9.0 release (#278)
* chore: update crate version to v0.9.0 * chore: remove deprecated re-exports * chore: remove Box re-export * feat: implement pure-Rust keygen and signing for RpoFalcon512 (#285) * feat: add reproducible builds (#296) * fix: address a few issues for migrating Miden VM (#298) * feat: add RngCore supertrait for FeltRng (#299) --------- Co-authored-by: Al-Kindi-0 <82364884+Al-Kindi-0@users.noreply.github.com> Co-authored-by: Paul-Henry Kajfasz <42912740+phklive@users.noreply.github.com>
This commit is contained in:
committed by
GitHub
parent
2be17b74fb
commit
5a2e917dd5
@@ -1,289 +1,373 @@
|
||||
use alloc::string::ToString;
|
||||
use core::cell::OnceCell;
|
||||
use alloc::{string::ToString, vec::Vec};
|
||||
use core::ops::Deref;
|
||||
|
||||
use super::{
|
||||
ByteReader, ByteWriter, Deserializable, DeserializationError, Felt, NonceBytes, NonceElements,
|
||||
Polynomial, PublicKeyBytes, Rpo256, Serializable, SignatureBytes, Word, MODULUS, N,
|
||||
SIG_L2_BOUND, ZERO,
|
||||
hash_to_point::hash_to_point_rpo256,
|
||||
keys::PubKeyPoly,
|
||||
math::{FalconFelt, FastFft, Polynomial},
|
||||
ByteReader, ByteWriter, Deserializable, DeserializationError, Felt, Nonce, Rpo256,
|
||||
Serializable, Word, LOG_N, MODULUS, N, SIG_L2_BOUND, SIG_POLY_BYTE_LEN,
|
||||
};
|
||||
use num::Zero;
|
||||
|
||||
// FALCON SIGNATURE
|
||||
// ================================================================================================
|
||||
|
||||
/// An RPO Falcon512 signature over a message.
|
||||
///
|
||||
/// The signature is a pair of polynomials (s1, s2) in (Z_p\[x\]/(phi))^2, where:
|
||||
/// The signature is a pair of polynomials (s1, s2) in (Z_p\[x\]/(phi))^2 a nonce `r`, and a public
|
||||
/// key polynomial `h` where:
|
||||
/// - p := 12289
|
||||
/// - phi := x^512 + 1
|
||||
/// - s1 = c - s2 * h
|
||||
/// - h is a polynomial representing the public key and c is a polynomial that is the hash-to-point
|
||||
/// of the message being signed.
|
||||
///
|
||||
/// The signature verifies if and only if:
|
||||
/// The signature verifies against a public key `pk` if and only if:
|
||||
/// 1. s1 = c - s2 * h
|
||||
/// 2. |s1|^2 + |s2|^2 <= SIG_L2_BOUND
|
||||
///
|
||||
/// where |.| is the norm.
|
||||
/// where |.| is the norm and:
|
||||
/// - c = HashToPoint(r || message)
|
||||
/// - pk = Rpo256::hash(h)
|
||||
///
|
||||
/// [Signature] also includes the extended public key which is serialized as:
|
||||
/// Here h is a polynomial representing the public key and pk is its digest using the Rpo256 hash
|
||||
/// function. c is a polynomial that is the hash-to-point of the message being signed.
|
||||
///
|
||||
/// The polynomial h is serialized as:
|
||||
/// 1. 1 byte representing the log2(512) i.e., 9.
|
||||
/// 2. 896 bytes for the public key. This is decoded into the `h` polynomial above.
|
||||
/// 2. 896 bytes for the public key itself.
|
||||
///
|
||||
/// The actual signature is serialized as:
|
||||
/// The signature is serialized as:
|
||||
/// 1. A header byte specifying the algorithm used to encode the coefficients of the `s2` polynomial
|
||||
/// together with the degree of the irreducible polynomial phi.
|
||||
/// The general format of this byte is 0b0cc1nnnn where:
|
||||
/// a. cc is either 01 when the compressed encoding algorithm is used and 10 when the
|
||||
/// uncompressed algorithm is used.
|
||||
/// b. nnnn is log2(N) where N is the degree of the irreducible polynomial phi.
|
||||
/// The current implementation works always with cc equal to 0b01 and nnnn equal to 0b1001 and
|
||||
/// thus the header byte is always equal to 0b00111001.
|
||||
/// together with the degree of the irreducible polynomial phi. For RPO Falcon512, the header
|
||||
/// byte is set to `10111001` which differentiates it from the standardized instantiation of
|
||||
/// the Falcon signature.
|
||||
/// 2. 40 bytes for the nonce.
|
||||
/// 3. 625 bytes encoding the `s2` polynomial above.
|
||||
/// 4. 625 bytes encoding the `s2` polynomial above.
|
||||
///
|
||||
/// The total size of the signature (including the extended public key) is 1563 bytes.
|
||||
#[derive(Debug, Clone)]
|
||||
/// The total size of the signature is (including the extended public key) is 1563 bytes.
|
||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||
pub struct Signature {
|
||||
pub(super) pk: PublicKeyBytes,
|
||||
pub(super) sig: SignatureBytes,
|
||||
|
||||
// Cached polynomial decoding for public key and signatures
|
||||
pub(super) pk_polynomial: OnceCell<Polynomial>,
|
||||
pub(super) sig_polynomial: OnceCell<Polynomial>,
|
||||
header: SignatureHeader,
|
||||
nonce: Nonce,
|
||||
s2: SignaturePoly,
|
||||
h: PubKeyPoly,
|
||||
}
|
||||
|
||||
impl Signature {
|
||||
// CONSTRUCTOR
|
||||
// --------------------------------------------------------------------------------------------
|
||||
pub fn new(nonce: Nonce, h: PubKeyPoly, s2: SignaturePoly) -> Signature {
|
||||
Self {
|
||||
header: SignatureHeader::default(),
|
||||
nonce,
|
||||
s2,
|
||||
h,
|
||||
}
|
||||
}
|
||||
|
||||
// PUBLIC ACCESSORS
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Returns the public key polynomial h.
|
||||
pub fn pub_key_poly(&self) -> Polynomial {
|
||||
*self.pk_polynomial.get_or_init(|| {
|
||||
// we assume that the signature was constructed with a valid public key, and thus
|
||||
// expect() is OK here.
|
||||
Polynomial::from_pub_key(&self.pk).expect("invalid public key")
|
||||
})
|
||||
}
|
||||
|
||||
/// Returns the nonce component of the signature represented as field elements.
|
||||
///
|
||||
/// Nonce bytes are converted to field elements by taking consecutive 5 byte chunks
|
||||
/// of the nonce and interpreting them as field elements.
|
||||
pub fn nonce(&self) -> NonceElements {
|
||||
// we assume that the signature was constructed with a valid signature, and thus
|
||||
// expect() is OK here.
|
||||
let nonce = self.sig[1..41].try_into().expect("invalid signature");
|
||||
decode_nonce(nonce)
|
||||
pub fn pk_poly(&self) -> &PubKeyPoly {
|
||||
&self.h
|
||||
}
|
||||
|
||||
// Returns the polynomial representation of the signature in Z_p[x]/(phi).
|
||||
pub fn sig_poly(&self) -> Polynomial {
|
||||
*self.sig_polynomial.get_or_init(|| {
|
||||
// we assume that the signature was constructed with a valid signature, and thus
|
||||
// expect() is OK here.
|
||||
Polynomial::from_signature(&self.sig).expect("invalid signature")
|
||||
})
|
||||
pub fn sig_poly(&self) -> &Polynomial<FalconFelt> {
|
||||
&self.s2
|
||||
}
|
||||
|
||||
// HASH-TO-POINT
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Returns a polynomial in Z_p\[x\]/(phi) representing the hash of the provided message.
|
||||
pub fn hash_to_point(&self, message: Word) -> Polynomial {
|
||||
hash_to_point(message, &self.nonce())
|
||||
/// Returns the nonce component of the signature.
|
||||
pub fn nonce(&self) -> &Nonce {
|
||||
&self.nonce
|
||||
}
|
||||
|
||||
// SIGNATURE VERIFICATION
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Returns true if this signature is a valid signature for the specified message generated
|
||||
/// against key pair matching the specified public key commitment.
|
||||
/// against the secret key matching the specified public key commitment.
|
||||
pub fn verify(&self, message: Word, pubkey_com: Word) -> bool {
|
||||
// Make sure the expanded public key matches the provided public key commitment
|
||||
let h = self.pub_key_poly();
|
||||
let h_digest: Word = Rpo256::hash_elements(&h.to_elements()).into();
|
||||
// compute the hash of the public key polynomial
|
||||
let h_felt: Polynomial<Felt> = (&**self.pk_poly()).into();
|
||||
let h_digest: Word = Rpo256::hash_elements(&h_felt.coefficients).into();
|
||||
if h_digest != pubkey_com {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Make sure the signature is valid
|
||||
let s2 = self.sig_poly();
|
||||
let c = self.hash_to_point(message);
|
||||
|
||||
let s1 = c - s2 * h;
|
||||
|
||||
let sq_norm = s1.sq_norm() + s2.sq_norm();
|
||||
sq_norm <= SIG_L2_BOUND
|
||||
let c = hash_to_point_rpo256(message, &self.nonce);
|
||||
h_digest == pubkey_com && verify_helper(&c, &self.s2, self.pk_poly())
|
||||
}
|
||||
}
|
||||
|
||||
// SERIALIZATION / DESERIALIZATION
|
||||
// ================================================================================================
|
||||
|
||||
impl Serializable for Signature {
|
||||
fn write_into<W: ByteWriter>(&self, target: &mut W) {
|
||||
target.write_bytes(&self.pk);
|
||||
target.write_bytes(&self.sig);
|
||||
target.write(&self.header);
|
||||
target.write(&self.nonce);
|
||||
target.write(&self.s2);
|
||||
target.write(&self.h);
|
||||
}
|
||||
}
|
||||
|
||||
impl Deserializable for Signature {
|
||||
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
|
||||
let pk: PublicKeyBytes = source.read_array()?;
|
||||
let sig: SignatureBytes = source.read_array()?;
|
||||
let header = source.read()?;
|
||||
let nonce = source.read()?;
|
||||
let s2 = source.read()?;
|
||||
let h = source.read()?;
|
||||
|
||||
// make sure public key and signature can be decoded correctly
|
||||
let pk_polynomial = Polynomial::from_pub_key(&pk)
|
||||
.map_err(|err| DeserializationError::InvalidValue(err.to_string()))?
|
||||
.into();
|
||||
let sig_polynomial = Polynomial::from_signature(&sig)
|
||||
.map_err(|err| DeserializationError::InvalidValue(err.to_string()))?
|
||||
.into();
|
||||
Ok(Self { header, nonce, s2, h })
|
||||
}
|
||||
}
|
||||
|
||||
Ok(Self { pk, sig, pk_polynomial, sig_polynomial })
|
||||
// SIGNATURE HEADER
|
||||
// ================================================================================================
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||
pub struct SignatureHeader(u8);
|
||||
|
||||
impl Default for SignatureHeader {
|
||||
/// According to section 3.11.3 in the specification [1], the signature header has the format
|
||||
/// `0cc1nnnn` where:
|
||||
///
|
||||
/// 1. `cc` signifies the encoding method. `01` denotes using the compression encoding method
|
||||
/// and `10` denotes encoding using the uncompressed method.
|
||||
/// 2. `nnnn` encodes `LOG_N`.
|
||||
///
|
||||
/// For RPO Falcon 512 we use compression encoding and N = 512. Moreover, to differentiate the
|
||||
/// RPO Falcon variant from the reference variant using SHAKE256, we flip the first bit in the
|
||||
/// header. Thus, for RPO Falcon 512 the header is `10111001`
|
||||
///
|
||||
/// [1]: https://falcon-sign.info/falcon.pdf
|
||||
fn default() -> Self {
|
||||
Self(0b1011_1001)
|
||||
}
|
||||
}
|
||||
|
||||
impl Serializable for &SignatureHeader {
|
||||
fn write_into<W: ByteWriter>(&self, target: &mut W) {
|
||||
target.write_u8(self.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl Deserializable for SignatureHeader {
|
||||
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
|
||||
let header = source.read_u8()?;
|
||||
let (encoding, log_n) = (header >> 4, header & 0b00001111);
|
||||
if encoding != 0b1011 {
|
||||
return Err(DeserializationError::InvalidValue(
|
||||
"Failed to decode signature: not supported encoding algorithm".to_string(),
|
||||
));
|
||||
}
|
||||
|
||||
if log_n != LOG_N {
|
||||
return Err(DeserializationError::InvalidValue(
|
||||
format!("Failed to decode signature: only supported irreducible polynomial degree is 512, 2^{log_n} was provided")
|
||||
));
|
||||
}
|
||||
|
||||
Ok(Self(header))
|
||||
}
|
||||
}
|
||||
|
||||
// SIGNATURE POLYNOMIAL
|
||||
// ================================================================================================
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||
pub struct SignaturePoly(pub Polynomial<FalconFelt>);
|
||||
|
||||
impl Deref for SignaturePoly {
|
||||
type Target = Polynomial<FalconFelt>;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Polynomial<FalconFelt>> for SignaturePoly {
|
||||
fn from(pk_poly: Polynomial<FalconFelt>) -> Self {
|
||||
Self(pk_poly)
|
||||
}
|
||||
}
|
||||
|
||||
impl TryFrom<&[i16; N]> for SignaturePoly {
|
||||
type Error = ();
|
||||
|
||||
fn try_from(coefficients: &[i16; N]) -> Result<Self, Self::Error> {
|
||||
if are_coefficients_valid(coefficients) {
|
||||
Ok(Self(coefficients.to_vec().into()))
|
||||
} else {
|
||||
Err(())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Serializable for &SignaturePoly {
|
||||
fn write_into<W: ByteWriter>(&self, target: &mut W) {
|
||||
let sig_coeff: Vec<i16> = self.0.coefficients.iter().map(|a| a.balanced_value()).collect();
|
||||
let mut sk_bytes = vec![0_u8; SIG_POLY_BYTE_LEN];
|
||||
|
||||
let mut acc = 0;
|
||||
let mut acc_len = 0;
|
||||
let mut v = 0;
|
||||
let mut t;
|
||||
let mut w;
|
||||
|
||||
// For each coefficient of x:
|
||||
// - the sign is encoded on 1 bit
|
||||
// - the 7 lower bits are encoded naively (binary)
|
||||
// - the high bits are encoded in unary encoding
|
||||
//
|
||||
// Algorithm 17 p. 47 of the specification [1].
|
||||
//
|
||||
// [1]: https://falcon-sign.info/falcon.pdf
|
||||
for &c in sig_coeff.iter() {
|
||||
acc <<= 1;
|
||||
t = c;
|
||||
|
||||
if t < 0 {
|
||||
t = -t;
|
||||
acc |= 1;
|
||||
}
|
||||
w = t as u16;
|
||||
|
||||
acc <<= 7;
|
||||
let mask = 127_u32;
|
||||
acc |= (w as u32) & mask;
|
||||
w >>= 7;
|
||||
|
||||
acc_len += 8;
|
||||
|
||||
acc <<= w + 1;
|
||||
acc |= 1;
|
||||
acc_len += w + 1;
|
||||
|
||||
while acc_len >= 8 {
|
||||
acc_len -= 8;
|
||||
|
||||
sk_bytes[v] = (acc >> acc_len) as u8;
|
||||
v += 1;
|
||||
}
|
||||
}
|
||||
|
||||
if acc_len > 0 {
|
||||
sk_bytes[v] = (acc << (8 - acc_len)) as u8;
|
||||
}
|
||||
target.write_bytes(&sk_bytes);
|
||||
}
|
||||
}
|
||||
|
||||
impl Deserializable for SignaturePoly {
|
||||
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
|
||||
let input = source.read_array::<SIG_POLY_BYTE_LEN>()?;
|
||||
|
||||
let mut input_idx = 0;
|
||||
let mut acc = 0u32;
|
||||
let mut acc_len = 0;
|
||||
let mut coefficients = [FalconFelt::zero(); N];
|
||||
|
||||
// Algorithm 18 p. 48 of the specification [1].
|
||||
//
|
||||
// [1]: https://falcon-sign.info/falcon.pdf
|
||||
for c in coefficients.iter_mut() {
|
||||
acc = (acc << 8) | (input[input_idx] as u32);
|
||||
input_idx += 1;
|
||||
let b = acc >> acc_len;
|
||||
let s = b & 128;
|
||||
let mut m = b & 127;
|
||||
|
||||
loop {
|
||||
if acc_len == 0 {
|
||||
acc = (acc << 8) | (input[input_idx] as u32);
|
||||
input_idx += 1;
|
||||
acc_len = 8;
|
||||
}
|
||||
acc_len -= 1;
|
||||
if ((acc >> acc_len) & 1) != 0 {
|
||||
break;
|
||||
}
|
||||
m += 128;
|
||||
if m >= 2048 {
|
||||
return Err(DeserializationError::InvalidValue(
|
||||
"Failed to decode signature: high bits {m} exceed 2048".to_string(),
|
||||
));
|
||||
}
|
||||
}
|
||||
if s != 0 && m == 0 {
|
||||
return Err(DeserializationError::InvalidValue(
|
||||
"Failed to decode signature: -0 is forbidden".to_string(),
|
||||
));
|
||||
}
|
||||
|
||||
let felt = if s != 0 { (MODULUS as u32 - m) as u16 } else { m as u16 };
|
||||
*c = FalconFelt::new(felt as i16);
|
||||
}
|
||||
|
||||
if (acc & ((1 << acc_len) - 1)) != 0 {
|
||||
return Err(DeserializationError::InvalidValue(
|
||||
"Failed to decode signature: Non-zero unused bits in the last byte".to_string(),
|
||||
));
|
||||
}
|
||||
Ok(Polynomial::new(coefficients.to_vec()).into())
|
||||
}
|
||||
}
|
||||
|
||||
// HELPER FUNCTIONS
|
||||
// ================================================================================================
|
||||
|
||||
/// Returns a polynomial in Z_p[x]/(phi) representing the hash of the provided message and
|
||||
/// nonce.
|
||||
fn hash_to_point(message: Word, nonce: &NonceElements) -> Polynomial {
|
||||
let mut state = [ZERO; Rpo256::STATE_WIDTH];
|
||||
/// Takes the hash-to-point polynomial `c` of a message, the signature polynomial over
|
||||
/// the message `s2` and a public key polynomial and returns `true` is the signature is a valid
|
||||
/// signature for the given parameters, otherwise it returns `false`.
|
||||
fn verify_helper(c: &Polynomial<FalconFelt>, s2: &SignaturePoly, h: &PubKeyPoly) -> bool {
|
||||
let h_fft = h.fft();
|
||||
let s2_fft = s2.fft();
|
||||
let c_fft = c.fft();
|
||||
|
||||
// absorb the nonce into the state
|
||||
for (&n, s) in nonce.iter().zip(state[Rpo256::RATE_RANGE].iter_mut()) {
|
||||
*s = n;
|
||||
}
|
||||
Rpo256::apply_permutation(&mut state);
|
||||
// compute the signature polynomial s1 using s1 = c - s2 * h
|
||||
let s1_fft = c_fft - s2_fft.hadamard_mul(&h_fft);
|
||||
let s1 = s1_fft.ifft();
|
||||
|
||||
// absorb message into the state
|
||||
for (&m, s) in message.iter().zip(state[Rpo256::RATE_RANGE].iter_mut()) {
|
||||
*s = m;
|
||||
// compute the norm squared of (s1, s2)
|
||||
let length_squared_s1 = s1.norm_squared();
|
||||
let length_squared_s2 = s2.norm_squared();
|
||||
let length_squared = length_squared_s1 + length_squared_s2;
|
||||
|
||||
length_squared < SIG_L2_BOUND
|
||||
}
|
||||
|
||||
/// Checks whether a set of coefficients is a valid one for a signature polynomial.
|
||||
fn are_coefficients_valid(x: &[i16]) -> bool {
|
||||
if x.len() != N {
|
||||
return false;
|
||||
}
|
||||
|
||||
// squeeze the coefficients of the polynomial
|
||||
let mut i = 0;
|
||||
let mut res = [0_u16; N];
|
||||
for _ in 0..64 {
|
||||
Rpo256::apply_permutation(&mut state);
|
||||
for a in &state[Rpo256::RATE_RANGE] {
|
||||
res[i] = (a.as_int() % MODULUS as u64) as u16;
|
||||
i += 1;
|
||||
for &c in x {
|
||||
if !(-2047..=2047).contains(&c) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// using the raw constructor is OK here because we reduce all coefficients by the modulus above
|
||||
unsafe { Polynomial::new(res) }
|
||||
}
|
||||
|
||||
/// Converts byte representation of the nonce into field element representation.
|
||||
fn decode_nonce(nonce: &NonceBytes) -> NonceElements {
|
||||
let mut buffer = [0_u8; 8];
|
||||
let mut result = [ZERO; 8];
|
||||
for (i, bytes) in nonce.chunks(5).enumerate() {
|
||||
buffer[..5].copy_from_slice(bytes);
|
||||
// we can safely (without overflow) create a new Felt from u64 value here since this value
|
||||
// contains at most 5 bytes
|
||||
result[i] = Felt::new(u64::from_le_bytes(buffer));
|
||||
}
|
||||
|
||||
result
|
||||
true
|
||||
}
|
||||
|
||||
// TESTS
|
||||
// ================================================================================================
|
||||
|
||||
#[cfg(all(test, feature = "std"))]
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use core::ffi::c_void;
|
||||
use rand_utils::rand_vector;
|
||||
|
||||
use super::{
|
||||
super::{ffi::*, KeyPair},
|
||||
*,
|
||||
};
|
||||
|
||||
// Wrappers for unsafe functions
|
||||
impl Rpo128Context {
|
||||
/// Initializes the RPO state.
|
||||
pub fn init() -> Self {
|
||||
let mut ctx = Rpo128Context { content: [0u64; 13] };
|
||||
unsafe {
|
||||
rpo128_init(&mut ctx as *mut Rpo128Context);
|
||||
}
|
||||
ctx
|
||||
}
|
||||
|
||||
/// Absorbs data into the RPO state.
|
||||
pub fn absorb(&mut self, data: &[u8]) {
|
||||
unsafe {
|
||||
rpo128_absorb(
|
||||
self as *mut Rpo128Context,
|
||||
data.as_ptr() as *const c_void,
|
||||
data.len(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
/// Finalizes the RPO state to prepare for squeezing.
|
||||
pub fn finalize(&mut self) {
|
||||
unsafe { rpo128_finalize(self as *mut Rpo128Context) }
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_hash_to_point() {
|
||||
// Create a random message and transform it into a u8 vector
|
||||
let msg_felts: Word = rand_vector::<Felt>(4).try_into().unwrap();
|
||||
let msg_bytes = msg_felts
|
||||
.iter()
|
||||
.flat_map(|e| e.as_int().to_le_bytes())
|
||||
.collect::<alloc::vec::Vec<_>>();
|
||||
|
||||
// Create a nonce i.e. a [u8; 40] array and pack into a [Felt; 8] array.
|
||||
let nonce: [u8; 40] = rand_vector::<u8>(40).try_into().unwrap();
|
||||
|
||||
let mut buffer = [0_u8; 64];
|
||||
for i in 0..8 {
|
||||
buffer[8 * i] = nonce[5 * i];
|
||||
buffer[8 * i + 1] = nonce[5 * i + 1];
|
||||
buffer[8 * i + 2] = nonce[5 * i + 2];
|
||||
buffer[8 * i + 3] = nonce[5 * i + 3];
|
||||
buffer[8 * i + 4] = nonce[5 * i + 4];
|
||||
}
|
||||
|
||||
// Initialize the RPO state
|
||||
let mut rng = Rpo128Context::init();
|
||||
|
||||
// Absorb the nonce and message into the RPO state
|
||||
rng.absorb(&buffer);
|
||||
rng.absorb(&msg_bytes);
|
||||
rng.finalize();
|
||||
|
||||
// Generate the coefficients of the hash-to-point polynomial.
|
||||
let mut res: [u16; N] = [0; N];
|
||||
|
||||
unsafe {
|
||||
PQCLEAN_FALCON512_CLEAN_hash_to_point_rpo(
|
||||
&mut rng as *mut Rpo128Context,
|
||||
res.as_mut_ptr(),
|
||||
9,
|
||||
);
|
||||
}
|
||||
|
||||
// Check that the coefficients are correct
|
||||
let nonce = decode_nonce(&nonce);
|
||||
assert_eq!(res, hash_to_point(msg_felts, &nonce).inner());
|
||||
}
|
||||
use super::{super::SecretKey, *};
|
||||
use rand::SeedableRng;
|
||||
use rand_chacha::ChaCha20Rng;
|
||||
|
||||
#[test]
|
||||
fn test_serialization_round_trip() {
|
||||
let key = KeyPair::new().unwrap();
|
||||
let signature = key.sign(Word::default()).unwrap();
|
||||
let seed = [0_u8; 32];
|
||||
let mut rng = ChaCha20Rng::from_seed(seed);
|
||||
|
||||
let sk = SecretKey::with_rng(&mut rng);
|
||||
let signature = sk.sign_with_rng(Word::default(), &mut rng);
|
||||
let serialized = signature.to_bytes();
|
||||
let deserialized = Signature::read_from_bytes(&serialized).unwrap();
|
||||
assert_eq!(signature.sig_poly(), deserialized.sig_poly());
|
||||
assert_eq!(signature.pub_key_poly(), deserialized.pub_key_poly());
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user