feat: add simple sparse merkle tree

This commit moves the previous implementation of `SparseMerkleTree` from
miden-core to this crate.

It also include a couple of new tests, a bench suite, and a couple of
minor fixes. The original API was preserved to maintain compatibility
with `AdviceTape`.

closes #21
This commit is contained in:
Victor Lopez
2022-12-08 17:13:17 +01:00
parent a41329f9f6
commit 5fd0d692e8
7 changed files with 666 additions and 10 deletions

View File

@@ -0,0 +1,263 @@
use super::{
super::{MerkleTree, RpoDigest, SimpleSmt},
Rpo256, Vec, Word,
};
use crate::{Felt, FieldElement};
use core::iter;
use proptest::prelude::*;
use rand_utils::prng_array;
const KEYS4: [u64; 4] = [0, 1, 2, 3];
const KEYS8: [u64; 8] = [0, 1, 2, 3, 4, 5, 6, 7];
const VALUES4: [Word; 4] = [
int_to_node(1),
int_to_node(2),
int_to_node(3),
int_to_node(4),
];
const VALUES8: [Word; 8] = [
int_to_node(1),
int_to_node(2),
int_to_node(3),
int_to_node(4),
int_to_node(5),
int_to_node(6),
int_to_node(7),
int_to_node(8),
];
const ZERO_VALUES8: [Word; 8] = [int_to_node(0); 8];
#[test]
fn build_empty_tree() {
let smt = SimpleSmt::new(iter::empty(), 3).unwrap();
let mt = MerkleTree::new(ZERO_VALUES8.to_vec()).unwrap();
assert_eq!(mt.root(), smt.root());
}
#[test]
fn empty_digests_are_consistent() {
let depth = 5;
let root = SimpleSmt::new(iter::empty(), depth).unwrap().root();
let computed: [RpoDigest; 2] = (0..depth).fold([Default::default(); 2], |state, _| {
let digest = Rpo256::merge(&state);
[digest; 2]
});
assert_eq!(Word::from(computed[0]), root);
}
#[test]
fn build_sparse_tree() {
let mut smt = SimpleSmt::new(iter::empty(), 3).unwrap();
let mut values = ZERO_VALUES8.to_vec();
// insert single value
let key = 6;
let new_node = int_to_node(7);
values[key as usize] = new_node;
smt.insert_leaf(key, new_node)
.expect("Failed to insert leaf");
let mt2 = MerkleTree::new(values.clone()).unwrap();
assert_eq!(mt2.root(), smt.root());
assert_eq!(mt2.get_path(3, 6).unwrap(), smt.get_path(3, 6).unwrap());
// insert second value at distinct leaf branch
let key = 2;
let new_node = int_to_node(3);
values[key as usize] = new_node;
smt.insert_leaf(key, new_node)
.expect("Failed to insert leaf");
let mt3 = MerkleTree::new(values).unwrap();
assert_eq!(mt3.root(), smt.root());
assert_eq!(mt3.get_path(3, 2).unwrap(), smt.get_path(3, 2).unwrap());
}
#[test]
fn build_full_tree() {
let tree = SimpleSmt::new(KEYS4.into_iter().zip(VALUES4.into_iter()), 2).unwrap();
let (root, node2, node3) = compute_internal_nodes();
assert_eq!(root, tree.root());
assert_eq!(node2, tree.get_node(1, 0).unwrap());
assert_eq!(node3, tree.get_node(1, 1).unwrap());
}
#[test]
fn get_values() {
let tree = SimpleSmt::new(KEYS4.into_iter().zip(VALUES4.into_iter()), 2).unwrap();
// check depth 2
assert_eq!(VALUES4[0], tree.get_node(2, 0).unwrap());
assert_eq!(VALUES4[1], tree.get_node(2, 1).unwrap());
assert_eq!(VALUES4[2], tree.get_node(2, 2).unwrap());
assert_eq!(VALUES4[3], tree.get_node(2, 3).unwrap());
}
#[test]
fn get_path() {
let tree = SimpleSmt::new(KEYS4.into_iter().zip(VALUES4.into_iter()), 2).unwrap();
let (_, node2, node3) = compute_internal_nodes();
// check depth 2
assert_eq!(vec![VALUES4[1], node3], tree.get_path(2, 0).unwrap());
assert_eq!(vec![VALUES4[0], node3], tree.get_path(2, 1).unwrap());
assert_eq!(vec![VALUES4[3], node2], tree.get_path(2, 2).unwrap());
assert_eq!(vec![VALUES4[2], node2], tree.get_path(2, 3).unwrap());
// check depth 1
assert_eq!(vec![node3], tree.get_path(1, 0).unwrap());
assert_eq!(vec![node2], tree.get_path(1, 1).unwrap());
}
#[test]
fn update_leaf() {
let mut tree = SimpleSmt::new(KEYS8.into_iter().zip(VALUES8.into_iter()), 3).unwrap();
// update one value
let key = 3;
let new_node = int_to_node(9);
let mut expected_values = VALUES8.to_vec();
expected_values[key] = new_node;
let expected_tree = SimpleSmt::new(
KEYS8.into_iter().zip(expected_values.clone().into_iter()),
3,
)
.unwrap();
tree.update_leaf(key as u64, new_node).unwrap();
assert_eq!(expected_tree.root, tree.root);
// update another value
let key = 6;
let new_node = int_to_node(10);
expected_values[key] = new_node;
let expected_tree =
SimpleSmt::new(KEYS8.into_iter().zip(expected_values.into_iter()), 3).unwrap();
tree.update_leaf(key as u64, new_node).unwrap();
assert_eq!(expected_tree.root, tree.root);
}
#[test]
fn small_tree_opening_is_consistent() {
// ____k____
// / \
// _i_ _j_
// / \ / \
// e f g h
// / \ / \ / \ / \
// a b 0 0 c 0 0 d
let z = Word::from(RpoDigest::default());
let a = Word::from(Rpo256::merge(&[z.into(); 2]));
let b = Word::from(Rpo256::merge(&[a.into(); 2]));
let c = Word::from(Rpo256::merge(&[b.into(); 2]));
let d = Word::from(Rpo256::merge(&[c.into(); 2]));
let e = Word::from(Rpo256::merge(&[a.into(), b.into()]));
let f = Word::from(Rpo256::merge(&[z.into(), z.into()]));
let g = Word::from(Rpo256::merge(&[c.into(), z.into()]));
let h = Word::from(Rpo256::merge(&[z.into(), d.into()]));
let i = Word::from(Rpo256::merge(&[e.into(), f.into()]));
let j = Word::from(Rpo256::merge(&[g.into(), h.into()]));
let k = Word::from(Rpo256::merge(&[i.into(), j.into()]));
let depth = 3;
let entries = vec![(0, a), (1, b), (4, c), (7, d)];
let tree = SimpleSmt::new(entries, depth).unwrap();
assert_eq!(tree.root(), Word::from(k));
let cases: Vec<(u32, u64, Vec<Word>)> = vec![
(3, 0, vec![b, f, j]),
(3, 1, vec![a, f, j]),
(3, 4, vec![z, h, i]),
(3, 7, vec![z, g, i]),
(2, 0, vec![f, j]),
(2, 1, vec![e, j]),
(2, 2, vec![h, i]),
(2, 3, vec![g, i]),
(1, 0, vec![j]),
(1, 1, vec![i]),
];
for (depth, key, path) in cases {
let opening = tree.get_path(depth, key).unwrap();
assert_eq!(path, opening);
}
}
proptest! {
#[test]
fn arbitrary_openings_single_leaf(
depth in SimpleSmt::MIN_DEPTH..SimpleSmt::MAX_DEPTH,
key in prop::num::u64::ANY,
leaf in prop::num::u64::ANY,
) {
let mut tree = SimpleSmt::new(iter::empty(), depth).unwrap();
let key = key % (1 << depth as u64);
let leaf = int_to_node(leaf);
tree.insert_leaf(key, leaf.into()).unwrap();
tree.get_leaf_path(key).unwrap();
// traverse to root, fetching all paths
for d in 1..depth {
let k = key >> (depth - d);
tree.get_path(d, k).unwrap();
}
}
#[test]
fn arbitrary_openings_multiple_leaves(
depth in SimpleSmt::MIN_DEPTH..SimpleSmt::MAX_DEPTH,
count in 2u8..10u8,
ref seed in any::<[u8; 32]>()
) {
let mut tree = SimpleSmt::new(iter::empty(), depth).unwrap();
let mut seed = *seed;
let leaves = (1 << depth) - 1;
for _ in 0..count {
seed = prng_array(seed);
let mut key = [0u8; 8];
let mut leaf = [0u8; 8];
key.copy_from_slice(&seed[..8]);
leaf.copy_from_slice(&seed[8..16]);
let key = u64::from_le_bytes(key);
let key = key % leaves;
let leaf = u64::from_le_bytes(leaf);
let leaf = int_to_node(leaf);
tree.insert_leaf(key, leaf).unwrap();
tree.get_leaf_path(key).unwrap();
}
}
}
// HELPER FUNCTIONS
// --------------------------------------------------------------------------------------------
fn compute_internal_nodes() -> (Word, Word, Word) {
let node2 = Rpo256::hash_elements(&[VALUES4[0], VALUES4[1]].concat());
let node3 = Rpo256::hash_elements(&[VALUES4[2], VALUES4[3]].concat());
let root = Rpo256::merge(&[node2, node3]);
(root.into(), node2.into(), node3.into())
}
const fn int_to_node(value: u64) -> Word {
[Felt::new(value), Felt::ZERO, Felt::ZERO, Felt::ZERO]
}