Browse Source

Merge pull request #67 from 0xPolygonMiden/hacka-merkle-mountain-range-memory-implementation

feat: merkle mountain range
al-gkr-basic-workflow
Augusto Hack 2 years ago
committed by GitHub
parent
commit
7ffa0cd97d
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 883 additions and 6 deletions
  1. +44
    -0
      src/merkle/mmr/accumulator.rs
  2. +46
    -0
      src/merkle/mmr/bit.rs
  3. +299
    -0
      src/merkle/mmr/full.rs
  4. +15
    -0
      src/merkle/mmr/mod.rs
  5. +33
    -0
      src/merkle/mmr/proof.rs
  6. +440
    -0
      src/merkle/mmr/tests.rs
  7. +5
    -0
      src/merkle/mod.rs
  8. +1
    -6
      src/merkle/simple_smt/tests.rs

+ 44
- 0
src/merkle/mmr/accumulator.rs

@ -0,0 +1,44 @@
use super::{super::Vec, MmrProof, Rpo256, Word};
#[derive(Debug, Clone, PartialEq)]
pub struct MmrPeaks {
/// The number of leaves is used to differentiate accumulators that have the same number of
/// peaks. This happens because the number of peaks goes up-and-down as the structure is used
/// causing existing trees to be merged and new ones to be created. As an example, every time
/// the MMR has a power-of-two number of leaves there is a single peak.
///
/// Every tree in the MMR forest has a distinct power-of-two size, this means only the right
/// most tree can have an odd number of elements (1). Additionally this means that the bits in
/// `num_leaves` conveniently encode the size of each individual tree.
///
/// Examples:
///
/// Example 1: With 5 leaves, the binary 0b101. The number of set bits is equal the number
/// of peaks, in this case there are 2 peaks. The 0-indexed least-significant position of
/// the bit determines the number of elements of a tree, so the rightmost tree has 2**0
/// elements and the left most has 2**2.
///
/// Example 2: With 12 leaves, the binary is 0b1100, this case also has 2 peaks, the
/// leftmost tree has 2**3=8 elements, and the right most has 2**2=4 elements.
pub num_leaves: usize,
/// All the peaks of every tree in the MMR forest. The peaks are always ordered by number of
/// leaves, starting from the peak with most children, to the one with least.
///
/// Invariant: The length of `peaks` must be equal to the number of true bits in `num_leaves`.
pub peaks: Vec<Word>,
}
impl MmrPeaks {
/// Hashes the peaks sequentially, compacting it to a single digest
pub fn hash_peaks(&self) -> Word {
Rpo256::hash_elements(&self.peaks.as_slice().concat()).into()
}
pub fn verify(&self, value: Word, opening: MmrProof) -> bool {
let root = &self.peaks[opening.peak_index()];
opening
.merkle_path
.verify(opening.relative_pos() as u64, value, root)
}
}

+ 46
- 0
src/merkle/mmr/bit.rs

@ -0,0 +1,46 @@
/// Iterate over the bits of a `usize` and yields the bit positions for the true bits.
pub struct TrueBitPositionIterator {
value: usize,
}
impl TrueBitPositionIterator {
pub fn new(value: usize) -> TrueBitPositionIterator {
TrueBitPositionIterator { value }
}
}
impl Iterator for TrueBitPositionIterator {
type Item = u32;
fn next(&mut self) -> Option<<Self as Iterator>::Item> {
// trailing_zeros is computed with the intrinsic cttz. [Rust 1.67.0] x86 uses the `bsf`
// instruction. AArch64 uses the `rbit clz` instructions.
let zeros = self.value.trailing_zeros();
if zeros == usize::BITS {
None
} else {
let bit_position = zeros;
let mask = 1 << bit_position;
self.value ^= mask;
Some(bit_position)
}
}
}
impl DoubleEndedIterator for TrueBitPositionIterator {
fn next_back(&mut self) -> Option<<Self as Iterator>::Item> {
// trailing_zeros is computed with the intrinsic ctlz. [Rust 1.67.0] x86 uses the `bsr`
// instruction. AArch64 uses the `clz` instruction.
let zeros = self.value.leading_zeros();
if zeros == usize::BITS {
None
} else {
let bit_position = usize::BITS - zeros - 1;
let mask = 1 << bit_position;
self.value ^= mask;
Some(bit_position)
}
}
}

+ 299
- 0
src/merkle/mmr/full.rs

@ -0,0 +1,299 @@
//! A fully materialized Merkle mountain range (MMR).
//!
//! A MMR is a forest structure, i.e. it is an ordered set of disjoint rooted trees. The trees are
//! ordered by size, from the most to least number of leaves. Every tree is a perfect binary tree,
//! meaning a tree has all its leaves at the same depth, and every inner node has a branch-factor
//! of 2 with both children set.
//!
//! Additionally the structure only supports adding leaves to the right-most tree, the one with the
//! least number of leaves. The structure preserves the invariant that each tree has different
//! depths, i.e. as part of adding adding a new element to the forest the trees with same depth are
//! merged, creating a new tree with depth d+1, this process is continued until the property is
//! restabilished.
use super::bit::TrueBitPositionIterator;
use super::{super::Vec, MmrPeaks, MmrProof, Rpo256, Word};
use crate::merkle::MerklePath;
use core::fmt::{Display, Formatter};
#[cfg(feature = "std")]
use std::error::Error;
// MMR
// ===============================================================================================
/// A fully materialized Merkle Mountain Range, with every tree in the forest and all their
/// elements.
///
/// Since this is a full representation of the MMR, elements are never removed and the MMR will
/// grow roughly `O(2n)` in number of leaf elements.
pub struct Mmr {
/// Refer to the `forest` method documentation for details of the semantics of this value.
pub(super) forest: usize,
/// Contains every element of the forest.
///
/// The trees are in postorder sequential representation. This representation allows for all
/// the elements of every tree in the forest to be stored in the same sequential buffer. It
/// also means new elements can be added to the forest, and merging of trees is very cheap with
/// no need to copy elements.
pub(super) nodes: Vec<Word>,
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum MmrError {
InvalidPosition(usize),
}
impl Display for MmrError {
fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), core::fmt::Error> {
match self {
MmrError::InvalidPosition(pos) => write!(fmt, "Mmr does not contain position {pos}"),
}
}
}
#[cfg(feature = "std")]
impl Error for MmrError {}
impl Default for Mmr {
fn default() -> Self {
Self::new()
}
}
impl Mmr {
// CONSTRUCTORS
// ============================================================================================
/// Constructor for an empty `Mmr`.
pub fn new() -> Mmr {
Mmr {
forest: 0,
nodes: Vec::new(),
}
}
// ACCESSORS
// ============================================================================================
/// Returns the MMR forest representation.
///
/// The forest value has the following interpretations:
/// - its value is the number of elements in the forest
/// - bit count corresponds to the number of trees in the forest
/// - each true bit position determines the depth of a tree in the forest
pub const fn forest(&self) -> usize {
self.forest
}
// FUNCTIONALITY
// ============================================================================================
/// Given a leaf position, returns the Merkle path to its corresponding peak. If the position
/// is greater-or-equal than the tree size an error is returned.
///
/// Note: The leaf position is the 0-indexed number corresponding to the order the leaves were
/// added, this corresponds to the MMR size _prior_ to adding the element. So the 1st element
/// has position 0, the second position 1, and so on.
pub fn open(&self, pos: usize) -> Result<MmrProof, MmrError> {
// find the target tree responsible for the MMR position
let tree_bit =
leaf_to_corresponding_tree(pos, self.forest).ok_or(MmrError::InvalidPosition(pos))?;
let forest_target = 1usize << tree_bit;
// isolate the trees before the target
let forest_before = self.forest & high_bitmask(tree_bit + 1);
let index_offset = nodes_in_forest(forest_before);
// find the root
let index = nodes_in_forest(forest_target) - 1;
// update the value position from global to the target tree
let relative_pos = pos - forest_before;
// collect the path and the final index of the target value
let (_, path) =
self.collect_merkle_path_and_value(tree_bit, relative_pos, index_offset, index);
Ok(MmrProof {
forest: self.forest,
position: pos,
merkle_path: MerklePath::new(path),
})
}
/// Returns the leaf value at position `pos`.
///
/// Note: The leaf position is the 0-indexed number corresponding to the order the leaves were
/// added, this corresponds to the MMR size _prior_ to adding the element. So the 1st element
/// has position 0, the second position 1, and so on.
pub fn get(&self, pos: usize) -> Result<Word, MmrError> {
// find the target tree responsible for the MMR position
let tree_bit =
leaf_to_corresponding_tree(pos, self.forest).ok_or(MmrError::InvalidPosition(pos))?;
let forest_target = 1usize << tree_bit;
// isolate the trees before the target
let forest_before = self.forest & high_bitmask(tree_bit + 1);
let index_offset = nodes_in_forest(forest_before);
// find the root
let index = nodes_in_forest(forest_target) - 1;
// update the value position from global to the target tree
let relative_pos = pos - forest_before;
// collect the path and the final index of the target value
let (value, _) =
self.collect_merkle_path_and_value(tree_bit, relative_pos, index_offset, index);
Ok(value)
}
/// Adds a new element to the MMR.
pub fn add(&mut self, el: Word) {
// Note: every node is also a tree of size 1, adding an element to the forest creates a new
// rooted-tree of size 1. This may temporarily break the invariant that every tree in the
// forest has different sizes, the loop below will eagerly merge trees of same size and
// restore the invariant.
self.nodes.push(el);
let mut left_offset = self.nodes.len().saturating_sub(2);
let mut right = el;
let mut left_tree = 1;
while self.forest & left_tree != 0 {
right = *Rpo256::merge(&[self.nodes[left_offset].into(), right.into()]);
self.nodes.push(right);
left_offset = left_offset.saturating_sub(nodes_in_forest(left_tree));
left_tree <<= 1;
}
self.forest += 1;
}
/// Returns an accumulator representing the current state of the MMMR.
pub fn accumulator(&self) -> MmrPeaks {
let peaks: Vec<Word> = TrueBitPositionIterator::new(self.forest)
.rev()
.map(|bit| nodes_in_forest(1 << bit))
.scan(0, |offset, el| {
*offset += el;
Some(*offset)
})
.map(|offset| self.nodes[offset - 1])
.collect();
MmrPeaks {
num_leaves: self.forest,
peaks,
}
}
// UTILITIES
// ============================================================================================
/// Internal function used to collect the Merkle path of a value.
fn collect_merkle_path_and_value(
&self,
tree_bit: u32,
relative_pos: usize,
index_offset: usize,
mut index: usize,
) -> (Word, Vec<Word>) {
// collect the Merkle path
let mut tree_depth = tree_bit as usize;
let mut path = Vec::with_capacity(tree_depth + 1);
while tree_depth > 0 {
let bit = relative_pos & tree_depth;
let right_offset = index - 1;
let left_offset = right_offset - nodes_in_forest(tree_depth);
// Elements to the right have a higher position because they were
// added later. Therefore when the bit is true the node's path is
// to the right, and its sibling to the left.
let sibling = if bit != 0 {
index = right_offset;
self.nodes[index_offset + left_offset]
} else {
index = left_offset;
self.nodes[index_offset + right_offset]
};
tree_depth >>= 1;
path.push(sibling);
}
// the rest of the codebase has the elements going from leaf to root, adjust it here for
// easy of use/consistency sake
path.reverse();
let value = self.nodes[index_offset + index];
(value, path)
}
}
impl<T> From<T> for Mmr
where
T: IntoIterator<Item = Word>,
{
fn from(values: T) -> Self {
let mut mmr = Mmr::new();
for v in values {
mmr.add(v)
}
mmr
}
}
// UTILITIES
// ===============================================================================================
/// Given a 0-indexed leaf position and the current forest, return the tree number responsible for
/// the position.
///
/// Note:
/// The result is a tree position `p`, it has the following interpretations. $p+1$ is the depth of
/// the tree, which corresponds to the size of a Merkle proof for that tree. $2^p$ is equal to the
/// number of leaves in this particular tree. and $2^(p+1)-1$ corresponds to size of the tree.
pub(crate) const fn leaf_to_corresponding_tree(pos: usize, forest: usize) -> Option<u32> {
if pos >= forest {
None
} else {
// - each bit in the forest is a unique tree and the bit position its power-of-two size
// - each tree owns a consecutive range of positions equal to its size from left-to-right
// - this means the first tree owns from `0` up to the `2^k_0` first positions, where `k_0`
// is the highest true bit position, the second tree from `2^k_0 + 1` up to `2^k_1` where
// `k_1` is the second higest bit, so on.
// - this means the highest bits work as a category marker, and the position is owned by
// the first tree which doesn't share a high bit with the position
let before = forest & pos;
let after = forest ^ before;
let tree = after.ilog2();
Some(tree)
}
}
/// Return a bitmask for the bits including and above the given position.
pub(crate) const fn high_bitmask(bit: u32) -> usize {
if bit > usize::BITS - 1 {
0
} else {
usize::MAX << bit
}
}
/// Return the total number of nodes of a given forest
///
/// Panics:
///
/// This will panic if the forest has size greater than `usize::MAX / 2`
pub(crate) const fn nodes_in_forest(forest: usize) -> usize {
// - the size of a perfect binary tree is $2^{k+1}-1$ or $2*2^k-1$
// - the forest represents the sum of $2^k$ so a single multiplication is necessary
// - the number of `-1` is the same as the number of trees, which is the same as the number
// bits set
let tree_count = forest.count_ones() as usize;
forest * 2 - tree_count
}

+ 15
- 0
src/merkle/mmr/mod.rs

@ -0,0 +1,15 @@
mod accumulator;
mod bit;
mod full;
mod proof;
#[cfg(test)]
mod tests;
use super::{Rpo256, Word};
// REEXPORTS
// ================================================================================================
pub use accumulator::MmrPeaks;
pub use full::Mmr;
pub use proof::MmrProof;

+ 33
- 0
src/merkle/mmr/proof.rs

@ -0,0 +1,33 @@
/// The representation of a single Merkle path.
use super::super::MerklePath;
use super::full::{high_bitmask, leaf_to_corresponding_tree};
#[derive(Debug, Clone, PartialEq)]
pub struct MmrProof {
/// The state of the MMR when the MmrProof was created.
pub forest: usize,
/// The position of the leaf value on this MmrProof.
pub position: usize,
/// The Merkle opening, starting from the value's sibling up to and excluding the root of the
/// responsible tree.
pub merkle_path: MerklePath,
}
impl MmrProof {
/// Converts the leaf global position into a local position that can be used to verify the
/// merkle_path.
pub fn relative_pos(&self) -> usize {
let tree_bit = leaf_to_corresponding_tree(self.position, self.forest)
.expect("position must be part of the forest");
let forest_before = self.forest & high_bitmask(tree_bit + 1);
self.position - forest_before
}
pub fn peak_index(&self) -> usize {
let root = leaf_to_corresponding_tree(self.position, self.forest)
.expect("position must be part of the forest");
(self.forest.count_ones() - root - 1) as usize
}
}

+ 440
- 0
src/merkle/mmr/tests.rs

@ -0,0 +1,440 @@
use super::bit::TrueBitPositionIterator;
use super::full::{high_bitmask, leaf_to_corresponding_tree, nodes_in_forest};
use super::{super::Vec, Mmr, Rpo256, Word};
use crate::merkle::{int_to_node, MerklePath};
#[test]
fn test_position_equal_or_higher_than_leafs_is_never_contained() {
let empty_forest = 0;
for pos in 1..1024 {
// pos is index, 0 based
// tree is a length counter, 1 based
// so a valid pos is always smaller, not equal, to tree
assert_eq!(leaf_to_corresponding_tree(pos, pos), None);
assert_eq!(leaf_to_corresponding_tree(pos, pos - 1), None);
// and empty forest has no trees, so no position is valid
assert_eq!(leaf_to_corresponding_tree(pos, empty_forest), None);
}
}
#[test]
fn test_position_zero_is_always_contained_by_the_highest_tree() {
for leaves in 1..1024usize {
let tree = leaves.ilog2();
assert_eq!(leaf_to_corresponding_tree(0, leaves), Some(tree));
}
}
#[test]
fn test_leaf_to_corresponding_tree() {
assert_eq!(leaf_to_corresponding_tree(0, 0b0001), Some(0));
assert_eq!(leaf_to_corresponding_tree(0, 0b0010), Some(1));
assert_eq!(leaf_to_corresponding_tree(0, 0b0011), Some(1));
assert_eq!(leaf_to_corresponding_tree(0, 0b1011), Some(3));
// position one is always owned by the left-most tree
assert_eq!(leaf_to_corresponding_tree(1, 0b0010), Some(1));
assert_eq!(leaf_to_corresponding_tree(1, 0b0011), Some(1));
assert_eq!(leaf_to_corresponding_tree(1, 0b1011), Some(3));
// position two starts as its own root, and then it is merged with the left-most tree
assert_eq!(leaf_to_corresponding_tree(2, 0b0011), Some(0));
assert_eq!(leaf_to_corresponding_tree(2, 0b0100), Some(2));
assert_eq!(leaf_to_corresponding_tree(2, 0b1011), Some(3));
// position tree is merged on the left-most tree
assert_eq!(leaf_to_corresponding_tree(3, 0b0011), None);
assert_eq!(leaf_to_corresponding_tree(3, 0b0100), Some(2));
assert_eq!(leaf_to_corresponding_tree(3, 0b1011), Some(3));
assert_eq!(leaf_to_corresponding_tree(4, 0b0101), Some(0));
assert_eq!(leaf_to_corresponding_tree(4, 0b0110), Some(1));
assert_eq!(leaf_to_corresponding_tree(4, 0b0111), Some(1));
assert_eq!(leaf_to_corresponding_tree(4, 0b1000), Some(3));
assert_eq!(leaf_to_corresponding_tree(12, 0b01101), Some(0));
assert_eq!(leaf_to_corresponding_tree(12, 0b01110), Some(1));
assert_eq!(leaf_to_corresponding_tree(12, 0b01111), Some(1));
assert_eq!(leaf_to_corresponding_tree(12, 0b10000), Some(4));
}
#[test]
fn test_high_bitmask() {
assert_eq!(high_bitmask(0), usize::MAX);
assert_eq!(high_bitmask(1), usize::MAX << 1);
assert_eq!(high_bitmask(usize::BITS - 2), 0b11usize.rotate_right(2));
assert_eq!(high_bitmask(usize::BITS - 1), 0b1usize.rotate_right(1));
assert_eq!(high_bitmask(usize::BITS), 0, "overflow should be handled");
}
#[test]
fn test_nodes_in_forest() {
assert_eq!(nodes_in_forest(0b0000), 0);
assert_eq!(nodes_in_forest(0b0001), 1);
assert_eq!(nodes_in_forest(0b0010), 3);
assert_eq!(nodes_in_forest(0b0011), 4);
assert_eq!(nodes_in_forest(0b0100), 7);
assert_eq!(nodes_in_forest(0b0101), 8);
assert_eq!(nodes_in_forest(0b0110), 10);
assert_eq!(nodes_in_forest(0b0111), 11);
assert_eq!(nodes_in_forest(0b1000), 15);
assert_eq!(nodes_in_forest(0b1001), 16);
assert_eq!(nodes_in_forest(0b1010), 18);
assert_eq!(nodes_in_forest(0b1011), 19);
}
#[test]
fn test_nodes_in_forest_single_bit() {
assert_eq!(nodes_in_forest(2usize.pow(0)), 2usize.pow(1) - 1);
assert_eq!(nodes_in_forest(2usize.pow(1)), 2usize.pow(2) - 1);
assert_eq!(nodes_in_forest(2usize.pow(2)), 2usize.pow(3) - 1);
assert_eq!(nodes_in_forest(2usize.pow(3)), 2usize.pow(4) - 1);
for bit in 0..(usize::BITS - 1) {
let size = 2usize.pow(bit + 1) - 1;
assert_eq!(nodes_in_forest(1usize << bit), size);
}
}
const LEAVES: [Word; 7] = [
int_to_node(0),
int_to_node(1),
int_to_node(2),
int_to_node(3),
int_to_node(4),
int_to_node(5),
int_to_node(6),
];
#[test]
fn test_mmr_simple() {
let mut postorder = Vec::new();
postorder.push(LEAVES[0]);
postorder.push(LEAVES[1]);
postorder.push(*Rpo256::hash_elements(&[LEAVES[0], LEAVES[1]].concat()));
postorder.push(LEAVES[2]);
postorder.push(LEAVES[3]);
postorder.push(*Rpo256::hash_elements(&[LEAVES[2], LEAVES[3]].concat()));
postorder.push(*Rpo256::hash_elements(
&[postorder[2], postorder[5]].concat(),
));
postorder.push(LEAVES[4]);
postorder.push(LEAVES[5]);
postorder.push(*Rpo256::hash_elements(&[LEAVES[4], LEAVES[5]].concat()));
postorder.push(LEAVES[6]);
let mut mmr = Mmr::new();
assert_eq!(mmr.forest(), 0);
assert_eq!(mmr.nodes.len(), 0);
mmr.add(LEAVES[0]);
assert_eq!(mmr.forest(), 1);
assert_eq!(mmr.nodes.len(), 1);
assert_eq!(mmr.nodes.as_slice(), &postorder[0..mmr.nodes.len()]);
let acc = mmr.accumulator();
assert_eq!(acc.num_leaves, 1);
assert_eq!(acc.peaks, &[postorder[0]]);
mmr.add(LEAVES[1]);
assert_eq!(mmr.forest(), 2);
assert_eq!(mmr.nodes.len(), 3);
assert_eq!(mmr.nodes.as_slice(), &postorder[0..mmr.nodes.len()]);
let acc = mmr.accumulator();
assert_eq!(acc.num_leaves, 2);
assert_eq!(acc.peaks, &[postorder[2]]);
mmr.add(LEAVES[2]);
assert_eq!(mmr.forest(), 3);
assert_eq!(mmr.nodes.len(), 4);
assert_eq!(mmr.nodes.as_slice(), &postorder[0..mmr.nodes.len()]);
let acc = mmr.accumulator();
assert_eq!(acc.num_leaves, 3);
assert_eq!(acc.peaks, &[postorder[2], postorder[3]]);
mmr.add(LEAVES[3]);
assert_eq!(mmr.forest(), 4);
assert_eq!(mmr.nodes.len(), 7);
assert_eq!(mmr.nodes.as_slice(), &postorder[0..mmr.nodes.len()]);
let acc = mmr.accumulator();
assert_eq!(acc.num_leaves, 4);
assert_eq!(acc.peaks, &[postorder[6]]);
mmr.add(LEAVES[4]);
assert_eq!(mmr.forest(), 5);
assert_eq!(mmr.nodes.len(), 8);
assert_eq!(mmr.nodes.as_slice(), &postorder[0..mmr.nodes.len()]);
let acc = mmr.accumulator();
assert_eq!(acc.num_leaves, 5);
assert_eq!(acc.peaks, &[postorder[6], postorder[7]]);
mmr.add(LEAVES[5]);
assert_eq!(mmr.forest(), 6);
assert_eq!(mmr.nodes.len(), 10);
assert_eq!(mmr.nodes.as_slice(), &postorder[0..mmr.nodes.len()]);
let acc = mmr.accumulator();
assert_eq!(acc.num_leaves, 6);
assert_eq!(acc.peaks, &[postorder[6], postorder[9]]);
mmr.add(LEAVES[6]);
assert_eq!(mmr.forest(), 7);
assert_eq!(mmr.nodes.len(), 11);
assert_eq!(mmr.nodes.as_slice(), &postorder[0..mmr.nodes.len()]);
let acc = mmr.accumulator();
assert_eq!(acc.num_leaves, 7);
assert_eq!(acc.peaks, &[postorder[6], postorder[9], postorder[10]]);
}
#[test]
fn test_mmr_open() {
let mmr: Mmr = LEAVES.into();
let h01: Word = Rpo256::hash_elements(&LEAVES[0..2].concat()).into();
let h23: Word = Rpo256::hash_elements(&LEAVES[2..4].concat()).into();
// node at pos 7 is the root
assert!(
mmr.open(7).is_err(),
"Element 7 is not in the tree, result should be None"
);
// node at pos 6 is the root
let empty: MerklePath = MerklePath::new(vec![]);
let opening = mmr
.open(6)
.expect("Element 6 is contained in the tree, expected an opening result.");
assert_eq!(opening.merkle_path, empty);
assert_eq!(opening.forest, mmr.forest);
assert_eq!(opening.position, 6);
assert!(
mmr.accumulator().verify(LEAVES[6], opening),
"MmrProof should be valid for the current accumulator."
);
// nodes 4,5 are detph 1
let root_to_path = MerklePath::new(vec![LEAVES[4]]);
let opening = mmr
.open(5)
.expect("Element 5 is contained in the tree, expected an opening result.");
assert_eq!(opening.merkle_path, root_to_path);
assert_eq!(opening.forest, mmr.forest);
assert_eq!(opening.position, 5);
assert!(
mmr.accumulator().verify(LEAVES[5], opening),
"MmrProof should be valid for the current accumulator."
);
let root_to_path = MerklePath::new(vec![LEAVES[5]]);
let opening = mmr
.open(4)
.expect("Element 4 is contained in the tree, expected an opening result.");
assert_eq!(opening.merkle_path, root_to_path);
assert_eq!(opening.forest, mmr.forest);
assert_eq!(opening.position, 4);
assert!(
mmr.accumulator().verify(LEAVES[4], opening),
"MmrProof should be valid for the current accumulator."
);
// nodes 0,1,2,3 are detph 2
let root_to_path = MerklePath::new(vec![LEAVES[2], h01]);
let opening = mmr
.open(3)
.expect("Element 3 is contained in the tree, expected an opening result.");
assert_eq!(opening.merkle_path, root_to_path);
assert_eq!(opening.forest, mmr.forest);
assert_eq!(opening.position, 3);
assert!(
mmr.accumulator().verify(LEAVES[3], opening),
"MmrProof should be valid for the current accumulator."
);
let root_to_path = MerklePath::new(vec![LEAVES[3], h01]);
let opening = mmr
.open(2)
.expect("Element 2 is contained in the tree, expected an opening result.");
assert_eq!(opening.merkle_path, root_to_path);
assert_eq!(opening.forest, mmr.forest);
assert_eq!(opening.position, 2);
assert!(
mmr.accumulator().verify(LEAVES[2], opening),
"MmrProof should be valid for the current accumulator."
);
let root_to_path = MerklePath::new(vec![LEAVES[0], h23]);
let opening = mmr
.open(1)
.expect("Element 1 is contained in the tree, expected an opening result.");
assert_eq!(opening.merkle_path, root_to_path);
assert_eq!(opening.forest, mmr.forest);
assert_eq!(opening.position, 1);
assert!(
mmr.accumulator().verify(LEAVES[1], opening),
"MmrProof should be valid for the current accumulator."
);
let root_to_path = MerklePath::new(vec![LEAVES[1], h23]);
let opening = mmr
.open(0)
.expect("Element 0 is contained in the tree, expected an opening result.");
assert_eq!(opening.merkle_path, root_to_path);
assert_eq!(opening.forest, mmr.forest);
assert_eq!(opening.position, 0);
assert!(
mmr.accumulator().verify(LEAVES[0], opening),
"MmrProof should be valid for the current accumulator."
);
}
#[test]
fn test_mmr_get() {
let mmr: Mmr = LEAVES.into();
assert_eq!(
mmr.get(0).unwrap(),
LEAVES[0],
"value at pos 0 must correspond"
);
assert_eq!(
mmr.get(1).unwrap(),
LEAVES[1],
"value at pos 1 must correspond"
);
assert_eq!(
mmr.get(2).unwrap(),
LEAVES[2],
"value at pos 2 must correspond"
);
assert_eq!(
mmr.get(3).unwrap(),
LEAVES[3],
"value at pos 3 must correspond"
);
assert_eq!(
mmr.get(4).unwrap(),
LEAVES[4],
"value at pos 4 must correspond"
);
assert_eq!(
mmr.get(5).unwrap(),
LEAVES[5],
"value at pos 5 must correspond"
);
assert_eq!(
mmr.get(6).unwrap(),
LEAVES[6],
"value at pos 6 must correspond"
);
assert!(mmr.get(7).is_err());
}
#[test]
fn test_mmr_invariants() {
let mut mmr = Mmr::new();
for v in 1..=1028 {
mmr.add(int_to_node(v));
let accumulator = mmr.accumulator();
assert_eq!(
v as usize,
mmr.forest(),
"MMR leaf count must increase by one on every add"
);
assert_eq!(
v as usize, accumulator.num_leaves,
"MMR and its accumulator must match leaves count"
);
assert_eq!(
accumulator.num_leaves.count_ones() as usize,
accumulator.peaks.len(),
"bits on leaves must match the number of peaks"
);
let expected_nodes: usize = TrueBitPositionIterator::new(mmr.forest())
.map(|bit_pos| nodes_in_forest(1 << bit_pos))
.sum();
assert_eq!(
expected_nodes,
mmr.nodes.len(),
"the sum of every tree size must be equal to the number of nodes in the MMR (forest: {:b})",
mmr.forest(),
);
}
}
#[test]
fn test_bit_position_iterator() {
assert_eq!(TrueBitPositionIterator::new(0).count(), 0);
assert_eq!(TrueBitPositionIterator::new(0).rev().count(), 0);
assert_eq!(
TrueBitPositionIterator::new(1).collect::<Vec<u32>>(),
vec![0]
);
assert_eq!(
TrueBitPositionIterator::new(1).rev().collect::<Vec<u32>>(),
vec![0],
);
assert_eq!(
TrueBitPositionIterator::new(2).collect::<Vec<u32>>(),
vec![1]
);
assert_eq!(
TrueBitPositionIterator::new(2).rev().collect::<Vec<u32>>(),
vec![1],
);
assert_eq!(
TrueBitPositionIterator::new(3).collect::<Vec<u32>>(),
vec![0, 1],
);
assert_eq!(
TrueBitPositionIterator::new(3).rev().collect::<Vec<u32>>(),
vec![1, 0],
);
assert_eq!(
TrueBitPositionIterator::new(0b11010101).collect::<Vec<u32>>(),
vec![0, 2, 4, 6, 7],
);
assert_eq!(
TrueBitPositionIterator::new(0b11010101)
.rev()
.collect::<Vec<u32>>(),
vec![7, 6, 4, 2, 0],
);
}
mod property_tests {
use super::leaf_to_corresponding_tree;
use proptest::prelude::*;
proptest! {
#[test]
fn test_last_position_is_always_contained_in_the_last_tree(leaves in any::<usize>().prop_filter("cant have an empty tree", |v| *v != 0)) {
let last_pos = leaves - 1;
let lowest_bit = leaves.trailing_zeros();
assert_eq!(
leaf_to_corresponding_tree(last_pos, leaves),
Some(lowest_bit),
);
}
}
proptest! {
#[test]
fn test_contained_tree_is_always_power_of_two((leaves, pos) in any::<usize>().prop_flat_map(|v| (Just(v), 0..v))) {
let tree = leaf_to_corresponding_tree(pos, leaves).expect("pos is smaller than leaves, there should always be a corresponding tree");
let mask = 1usize << tree;
assert!(tree < usize::BITS, "the result must be a bit in usize");
assert!(mask & leaves != 0, "the result should be a tree in leaves");
}
}
}

+ 5
- 0
src/merkle/mod.rs

@ -5,6 +5,8 @@ use super::{
};
use core::fmt;
// REEXPORTS
// ================================================================================================
mod index;
pub use index::NodeIndex;
@ -20,6 +22,9 @@ pub use path_set::MerklePathSet;
mod simple_smt;
pub use simple_smt::SimpleSmt;
mod mmr;
pub use mmr::{Mmr, MmrPeaks};
// ERRORS
// ================================================================================================

+ 1
- 6
src/merkle/simple_smt/tests.rs

@ -1,8 +1,7 @@
use super::{
super::{MerkleTree, RpoDigest, SimpleSmt},
super::{int_to_node, MerkleTree, RpoDigest, SimpleSmt},
NodeIndex, Rpo256, Vec, Word,
};
use crate::{Felt, FieldElement};
use core::iter;
use proptest::prelude::*;
use rand_utils::prng_array;
@ -275,7 +274,3 @@ fn compute_internal_nodes() -> (Word, Word, Word) {
(root.into(), node2.into(), node3.into())
}
const fn int_to_node(value: u64) -> Word {
[Felt::new(value), Felt::ZERO, Felt::ZERO, Felt::ZERO]
}

Loading…
Cancel
Save