feat: merkle mountain rangeal-gkr-basic-workflow
@ -0,0 +1,44 @@ |
|||
use super::{super::Vec, MmrProof, Rpo256, Word};
|
|||
|
|||
#[derive(Debug, Clone, PartialEq)]
|
|||
pub struct MmrPeaks {
|
|||
/// The number of leaves is used to differentiate accumulators that have the same number of
|
|||
/// peaks. This happens because the number of peaks goes up-and-down as the structure is used
|
|||
/// causing existing trees to be merged and new ones to be created. As an example, every time
|
|||
/// the MMR has a power-of-two number of leaves there is a single peak.
|
|||
///
|
|||
/// Every tree in the MMR forest has a distinct power-of-two size, this means only the right
|
|||
/// most tree can have an odd number of elements (1). Additionally this means that the bits in
|
|||
/// `num_leaves` conveniently encode the size of each individual tree.
|
|||
///
|
|||
/// Examples:
|
|||
///
|
|||
/// Example 1: With 5 leaves, the binary 0b101. The number of set bits is equal the number
|
|||
/// of peaks, in this case there are 2 peaks. The 0-indexed least-significant position of
|
|||
/// the bit determines the number of elements of a tree, so the rightmost tree has 2**0
|
|||
/// elements and the left most has 2**2.
|
|||
///
|
|||
/// Example 2: With 12 leaves, the binary is 0b1100, this case also has 2 peaks, the
|
|||
/// leftmost tree has 2**3=8 elements, and the right most has 2**2=4 elements.
|
|||
pub num_leaves: usize,
|
|||
|
|||
/// All the peaks of every tree in the MMR forest. The peaks are always ordered by number of
|
|||
/// leaves, starting from the peak with most children, to the one with least.
|
|||
///
|
|||
/// Invariant: The length of `peaks` must be equal to the number of true bits in `num_leaves`.
|
|||
pub peaks: Vec<Word>,
|
|||
}
|
|||
|
|||
impl MmrPeaks {
|
|||
/// Hashes the peaks sequentially, compacting it to a single digest
|
|||
pub fn hash_peaks(&self) -> Word {
|
|||
Rpo256::hash_elements(&self.peaks.as_slice().concat()).into()
|
|||
}
|
|||
|
|||
pub fn verify(&self, value: Word, opening: MmrProof) -> bool {
|
|||
let root = &self.peaks[opening.peak_index()];
|
|||
opening
|
|||
.merkle_path
|
|||
.verify(opening.relative_pos() as u64, value, root)
|
|||
}
|
|||
}
|
@ -0,0 +1,46 @@ |
|||
/// Iterate over the bits of a `usize` and yields the bit positions for the true bits.
|
|||
pub struct TrueBitPositionIterator {
|
|||
value: usize,
|
|||
}
|
|||
|
|||
impl TrueBitPositionIterator {
|
|||
pub fn new(value: usize) -> TrueBitPositionIterator {
|
|||
TrueBitPositionIterator { value }
|
|||
}
|
|||
}
|
|||
|
|||
impl Iterator for TrueBitPositionIterator {
|
|||
type Item = u32;
|
|||
|
|||
fn next(&mut self) -> Option<<Self as Iterator>::Item> {
|
|||
// trailing_zeros is computed with the intrinsic cttz. [Rust 1.67.0] x86 uses the `bsf`
|
|||
// instruction. AArch64 uses the `rbit clz` instructions.
|
|||
let zeros = self.value.trailing_zeros();
|
|||
|
|||
if zeros == usize::BITS {
|
|||
None
|
|||
} else {
|
|||
let bit_position = zeros;
|
|||
let mask = 1 << bit_position;
|
|||
self.value ^= mask;
|
|||
Some(bit_position)
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
impl DoubleEndedIterator for TrueBitPositionIterator {
|
|||
fn next_back(&mut self) -> Option<<Self as Iterator>::Item> {
|
|||
// trailing_zeros is computed with the intrinsic ctlz. [Rust 1.67.0] x86 uses the `bsr`
|
|||
// instruction. AArch64 uses the `clz` instruction.
|
|||
let zeros = self.value.leading_zeros();
|
|||
|
|||
if zeros == usize::BITS {
|
|||
None
|
|||
} else {
|
|||
let bit_position = usize::BITS - zeros - 1;
|
|||
let mask = 1 << bit_position;
|
|||
self.value ^= mask;
|
|||
Some(bit_position)
|
|||
}
|
|||
}
|
|||
}
|
@ -0,0 +1,299 @@ |
|||
//! A fully materialized Merkle mountain range (MMR).
|
|||
//!
|
|||
//! A MMR is a forest structure, i.e. it is an ordered set of disjoint rooted trees. The trees are
|
|||
//! ordered by size, from the most to least number of leaves. Every tree is a perfect binary tree,
|
|||
//! meaning a tree has all its leaves at the same depth, and every inner node has a branch-factor
|
|||
//! of 2 with both children set.
|
|||
//!
|
|||
//! Additionally the structure only supports adding leaves to the right-most tree, the one with the
|
|||
//! least number of leaves. The structure preserves the invariant that each tree has different
|
|||
//! depths, i.e. as part of adding adding a new element to the forest the trees with same depth are
|
|||
//! merged, creating a new tree with depth d+1, this process is continued until the property is
|
|||
//! restabilished.
|
|||
use super::bit::TrueBitPositionIterator;
|
|||
use super::{super::Vec, MmrPeaks, MmrProof, Rpo256, Word};
|
|||
use crate::merkle::MerklePath;
|
|||
use core::fmt::{Display, Formatter};
|
|||
|
|||
#[cfg(feature = "std")]
|
|||
use std::error::Error;
|
|||
|
|||
// MMR
|
|||
// ===============================================================================================
|
|||
|
|||
/// A fully materialized Merkle Mountain Range, with every tree in the forest and all their
|
|||
/// elements.
|
|||
///
|
|||
/// Since this is a full representation of the MMR, elements are never removed and the MMR will
|
|||
/// grow roughly `O(2n)` in number of leaf elements.
|
|||
pub struct Mmr {
|
|||
/// Refer to the `forest` method documentation for details of the semantics of this value.
|
|||
pub(super) forest: usize,
|
|||
|
|||
/// Contains every element of the forest.
|
|||
///
|
|||
/// The trees are in postorder sequential representation. This representation allows for all
|
|||
/// the elements of every tree in the forest to be stored in the same sequential buffer. It
|
|||
/// also means new elements can be added to the forest, and merging of trees is very cheap with
|
|||
/// no need to copy elements.
|
|||
pub(super) nodes: Vec<Word>,
|
|||
}
|
|||
|
|||
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
|
|||
pub enum MmrError {
|
|||
InvalidPosition(usize),
|
|||
}
|
|||
|
|||
impl Display for MmrError {
|
|||
fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), core::fmt::Error> {
|
|||
match self {
|
|||
MmrError::InvalidPosition(pos) => write!(fmt, "Mmr does not contain position {pos}"),
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(feature = "std")]
|
|||
impl Error for MmrError {}
|
|||
|
|||
impl Default for Mmr {
|
|||
fn default() -> Self {
|
|||
Self::new()
|
|||
}
|
|||
}
|
|||
|
|||
impl Mmr {
|
|||
// CONSTRUCTORS
|
|||
// ============================================================================================
|
|||
|
|||
/// Constructor for an empty `Mmr`.
|
|||
pub fn new() -> Mmr {
|
|||
Mmr {
|
|||
forest: 0,
|
|||
nodes: Vec::new(),
|
|||
}
|
|||
}
|
|||
|
|||
// ACCESSORS
|
|||
// ============================================================================================
|
|||
|
|||
/// Returns the MMR forest representation.
|
|||
///
|
|||
/// The forest value has the following interpretations:
|
|||
/// - its value is the number of elements in the forest
|
|||
/// - bit count corresponds to the number of trees in the forest
|
|||
/// - each true bit position determines the depth of a tree in the forest
|
|||
pub const fn forest(&self) -> usize {
|
|||
self.forest
|
|||
}
|
|||
|
|||
// FUNCTIONALITY
|
|||
// ============================================================================================
|
|||
|
|||
/// Given a leaf position, returns the Merkle path to its corresponding peak. If the position
|
|||
/// is greater-or-equal than the tree size an error is returned.
|
|||
///
|
|||
/// Note: The leaf position is the 0-indexed number corresponding to the order the leaves were
|
|||
/// added, this corresponds to the MMR size _prior_ to adding the element. So the 1st element
|
|||
/// has position 0, the second position 1, and so on.
|
|||
pub fn open(&self, pos: usize) -> Result<MmrProof, MmrError> {
|
|||
// find the target tree responsible for the MMR position
|
|||
let tree_bit =
|
|||
leaf_to_corresponding_tree(pos, self.forest).ok_or(MmrError::InvalidPosition(pos))?;
|
|||
let forest_target = 1usize << tree_bit;
|
|||
|
|||
// isolate the trees before the target
|
|||
let forest_before = self.forest & high_bitmask(tree_bit + 1);
|
|||
let index_offset = nodes_in_forest(forest_before);
|
|||
|
|||
// find the root
|
|||
let index = nodes_in_forest(forest_target) - 1;
|
|||
|
|||
// update the value position from global to the target tree
|
|||
let relative_pos = pos - forest_before;
|
|||
|
|||
// collect the path and the final index of the target value
|
|||
let (_, path) =
|
|||
self.collect_merkle_path_and_value(tree_bit, relative_pos, index_offset, index);
|
|||
|
|||
Ok(MmrProof {
|
|||
forest: self.forest,
|
|||
position: pos,
|
|||
merkle_path: MerklePath::new(path),
|
|||
})
|
|||
}
|
|||
|
|||
/// Returns the leaf value at position `pos`.
|
|||
///
|
|||
/// Note: The leaf position is the 0-indexed number corresponding to the order the leaves were
|
|||
/// added, this corresponds to the MMR size _prior_ to adding the element. So the 1st element
|
|||
/// has position 0, the second position 1, and so on.
|
|||
pub fn get(&self, pos: usize) -> Result<Word, MmrError> {
|
|||
// find the target tree responsible for the MMR position
|
|||
let tree_bit =
|
|||
leaf_to_corresponding_tree(pos, self.forest).ok_or(MmrError::InvalidPosition(pos))?;
|
|||
let forest_target = 1usize << tree_bit;
|
|||
|
|||
// isolate the trees before the target
|
|||
let forest_before = self.forest & high_bitmask(tree_bit + 1);
|
|||
let index_offset = nodes_in_forest(forest_before);
|
|||
|
|||
// find the root
|
|||
let index = nodes_in_forest(forest_target) - 1;
|
|||
|
|||
// update the value position from global to the target tree
|
|||
let relative_pos = pos - forest_before;
|
|||
|
|||
// collect the path and the final index of the target value
|
|||
let (value, _) =
|
|||
self.collect_merkle_path_and_value(tree_bit, relative_pos, index_offset, index);
|
|||
|
|||
Ok(value)
|
|||
}
|
|||
|
|||
/// Adds a new element to the MMR.
|
|||
pub fn add(&mut self, el: Word) {
|
|||
// Note: every node is also a tree of size 1, adding an element to the forest creates a new
|
|||
// rooted-tree of size 1. This may temporarily break the invariant that every tree in the
|
|||
// forest has different sizes, the loop below will eagerly merge trees of same size and
|
|||
// restore the invariant.
|
|||
self.nodes.push(el);
|
|||
|
|||
let mut left_offset = self.nodes.len().saturating_sub(2);
|
|||
let mut right = el;
|
|||
let mut left_tree = 1;
|
|||
while self.forest & left_tree != 0 {
|
|||
right = *Rpo256::merge(&[self.nodes[left_offset].into(), right.into()]);
|
|||
self.nodes.push(right);
|
|||
|
|||
left_offset = left_offset.saturating_sub(nodes_in_forest(left_tree));
|
|||
left_tree <<= 1;
|
|||
}
|
|||
|
|||
self.forest += 1;
|
|||
}
|
|||
|
|||
/// Returns an accumulator representing the current state of the MMMR.
|
|||
pub fn accumulator(&self) -> MmrPeaks {
|
|||
let peaks: Vec<Word> = TrueBitPositionIterator::new(self.forest)
|
|||
.rev()
|
|||
.map(|bit| nodes_in_forest(1 << bit))
|
|||
.scan(0, |offset, el| {
|
|||
*offset += el;
|
|||
Some(*offset)
|
|||
})
|
|||
.map(|offset| self.nodes[offset - 1])
|
|||
.collect();
|
|||
|
|||
MmrPeaks {
|
|||
num_leaves: self.forest,
|
|||
peaks,
|
|||
}
|
|||
}
|
|||
|
|||
// UTILITIES
|
|||
// ============================================================================================
|
|||
|
|||
/// Internal function used to collect the Merkle path of a value.
|
|||
fn collect_merkle_path_and_value(
|
|||
&self,
|
|||
tree_bit: u32,
|
|||
relative_pos: usize,
|
|||
index_offset: usize,
|
|||
mut index: usize,
|
|||
) -> (Word, Vec<Word>) {
|
|||
// collect the Merkle path
|
|||
let mut tree_depth = tree_bit as usize;
|
|||
let mut path = Vec::with_capacity(tree_depth + 1);
|
|||
while tree_depth > 0 {
|
|||
let bit = relative_pos & tree_depth;
|
|||
let right_offset = index - 1;
|
|||
let left_offset = right_offset - nodes_in_forest(tree_depth);
|
|||
|
|||
// Elements to the right have a higher position because they were
|
|||
// added later. Therefore when the bit is true the node's path is
|
|||
// to the right, and its sibling to the left.
|
|||
let sibling = if bit != 0 {
|
|||
index = right_offset;
|
|||
self.nodes[index_offset + left_offset]
|
|||
} else {
|
|||
index = left_offset;
|
|||
self.nodes[index_offset + right_offset]
|
|||
};
|
|||
|
|||
tree_depth >>= 1;
|
|||
path.push(sibling);
|
|||
}
|
|||
|
|||
// the rest of the codebase has the elements going from leaf to root, adjust it here for
|
|||
// easy of use/consistency sake
|
|||
path.reverse();
|
|||
|
|||
let value = self.nodes[index_offset + index];
|
|||
(value, path)
|
|||
}
|
|||
}
|
|||
|
|||
impl<T> From<T> for Mmr
|
|||
where
|
|||
T: IntoIterator<Item = Word>,
|
|||
{
|
|||
fn from(values: T) -> Self {
|
|||
let mut mmr = Mmr::new();
|
|||
for v in values {
|
|||
mmr.add(v)
|
|||
}
|
|||
mmr
|
|||
}
|
|||
}
|
|||
|
|||
// UTILITIES
|
|||
// ===============================================================================================
|
|||
|
|||
/// Given a 0-indexed leaf position and the current forest, return the tree number responsible for
|
|||
/// the position.
|
|||
///
|
|||
/// Note:
|
|||
/// The result is a tree position `p`, it has the following interpretations. $p+1$ is the depth of
|
|||
/// the tree, which corresponds to the size of a Merkle proof for that tree. $2^p$ is equal to the
|
|||
/// number of leaves in this particular tree. and $2^(p+1)-1$ corresponds to size of the tree.
|
|||
pub(crate) const fn leaf_to_corresponding_tree(pos: usize, forest: usize) -> Option<u32> {
|
|||
if pos >= forest {
|
|||
None
|
|||
} else {
|
|||
// - each bit in the forest is a unique tree and the bit position its power-of-two size
|
|||
// - each tree owns a consecutive range of positions equal to its size from left-to-right
|
|||
// - this means the first tree owns from `0` up to the `2^k_0` first positions, where `k_0`
|
|||
// is the highest true bit position, the second tree from `2^k_0 + 1` up to `2^k_1` where
|
|||
// `k_1` is the second higest bit, so on.
|
|||
// - this means the highest bits work as a category marker, and the position is owned by
|
|||
// the first tree which doesn't share a high bit with the position
|
|||
let before = forest & pos;
|
|||
let after = forest ^ before;
|
|||
let tree = after.ilog2();
|
|||
|
|||
Some(tree)
|
|||
}
|
|||
}
|
|||
|
|||
/// Return a bitmask for the bits including and above the given position.
|
|||
pub(crate) const fn high_bitmask(bit: u32) -> usize {
|
|||
if bit > usize::BITS - 1 {
|
|||
0
|
|||
} else {
|
|||
usize::MAX << bit
|
|||
}
|
|||
}
|
|||
|
|||
/// Return the total number of nodes of a given forest
|
|||
///
|
|||
/// Panics:
|
|||
///
|
|||
/// This will panic if the forest has size greater than `usize::MAX / 2`
|
|||
pub(crate) const fn nodes_in_forest(forest: usize) -> usize {
|
|||
// - the size of a perfect binary tree is $2^{k+1}-1$ or $2*2^k-1$
|
|||
// - the forest represents the sum of $2^k$ so a single multiplication is necessary
|
|||
// - the number of `-1` is the same as the number of trees, which is the same as the number
|
|||
// bits set
|
|||
let tree_count = forest.count_ones() as usize;
|
|||
forest * 2 - tree_count
|
|||
}
|
@ -0,0 +1,15 @@ |
|||
mod accumulator;
|
|||
mod bit;
|
|||
mod full;
|
|||
mod proof;
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests;
|
|||
|
|||
use super::{Rpo256, Word};
|
|||
|
|||
// REEXPORTS
|
|||
// ================================================================================================
|
|||
pub use accumulator::MmrPeaks;
|
|||
pub use full::Mmr;
|
|||
pub use proof::MmrProof;
|
@ -0,0 +1,33 @@ |
|||
/// The representation of a single Merkle path.
|
|||
use super::super::MerklePath;
|
|||
use super::full::{high_bitmask, leaf_to_corresponding_tree};
|
|||
|
|||
#[derive(Debug, Clone, PartialEq)]
|
|||
pub struct MmrProof {
|
|||
/// The state of the MMR when the MmrProof was created.
|
|||
pub forest: usize,
|
|||
|
|||
/// The position of the leaf value on this MmrProof.
|
|||
pub position: usize,
|
|||
|
|||
/// The Merkle opening, starting from the value's sibling up to and excluding the root of the
|
|||
/// responsible tree.
|
|||
pub merkle_path: MerklePath,
|
|||
}
|
|||
|
|||
impl MmrProof {
|
|||
/// Converts the leaf global position into a local position that can be used to verify the
|
|||
/// merkle_path.
|
|||
pub fn relative_pos(&self) -> usize {
|
|||
let tree_bit = leaf_to_corresponding_tree(self.position, self.forest)
|
|||
.expect("position must be part of the forest");
|
|||
let forest_before = self.forest & high_bitmask(tree_bit + 1);
|
|||
self.position - forest_before
|
|||
}
|
|||
|
|||
pub fn peak_index(&self) -> usize {
|
|||
let root = leaf_to_corresponding_tree(self.position, self.forest)
|
|||
.expect("position must be part of the forest");
|
|||
(self.forest.count_ones() - root - 1) as usize
|
|||
}
|
|||
}
|
@ -0,0 +1,440 @@ |
|||
use super::bit::TrueBitPositionIterator;
|
|||
use super::full::{high_bitmask, leaf_to_corresponding_tree, nodes_in_forest};
|
|||
use super::{super::Vec, Mmr, Rpo256, Word};
|
|||
use crate::merkle::{int_to_node, MerklePath};
|
|||
|
|||
#[test]
|
|||
fn test_position_equal_or_higher_than_leafs_is_never_contained() {
|
|||
let empty_forest = 0;
|
|||
for pos in 1..1024 {
|
|||
// pos is index, 0 based
|
|||
// tree is a length counter, 1 based
|
|||
// so a valid pos is always smaller, not equal, to tree
|
|||
assert_eq!(leaf_to_corresponding_tree(pos, pos), None);
|
|||
assert_eq!(leaf_to_corresponding_tree(pos, pos - 1), None);
|
|||
// and empty forest has no trees, so no position is valid
|
|||
assert_eq!(leaf_to_corresponding_tree(pos, empty_forest), None);
|
|||
}
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_position_zero_is_always_contained_by_the_highest_tree() {
|
|||
for leaves in 1..1024usize {
|
|||
let tree = leaves.ilog2();
|
|||
assert_eq!(leaf_to_corresponding_tree(0, leaves), Some(tree));
|
|||
}
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_leaf_to_corresponding_tree() {
|
|||
assert_eq!(leaf_to_corresponding_tree(0, 0b0001), Some(0));
|
|||
assert_eq!(leaf_to_corresponding_tree(0, 0b0010), Some(1));
|
|||
assert_eq!(leaf_to_corresponding_tree(0, 0b0011), Some(1));
|
|||
assert_eq!(leaf_to_corresponding_tree(0, 0b1011), Some(3));
|
|||
|
|||
// position one is always owned by the left-most tree
|
|||
assert_eq!(leaf_to_corresponding_tree(1, 0b0010), Some(1));
|
|||
assert_eq!(leaf_to_corresponding_tree(1, 0b0011), Some(1));
|
|||
assert_eq!(leaf_to_corresponding_tree(1, 0b1011), Some(3));
|
|||
|
|||
// position two starts as its own root, and then it is merged with the left-most tree
|
|||
assert_eq!(leaf_to_corresponding_tree(2, 0b0011), Some(0));
|
|||
assert_eq!(leaf_to_corresponding_tree(2, 0b0100), Some(2));
|
|||
assert_eq!(leaf_to_corresponding_tree(2, 0b1011), Some(3));
|
|||
|
|||
// position tree is merged on the left-most tree
|
|||
assert_eq!(leaf_to_corresponding_tree(3, 0b0011), None);
|
|||
assert_eq!(leaf_to_corresponding_tree(3, 0b0100), Some(2));
|
|||
assert_eq!(leaf_to_corresponding_tree(3, 0b1011), Some(3));
|
|||
|
|||
assert_eq!(leaf_to_corresponding_tree(4, 0b0101), Some(0));
|
|||
assert_eq!(leaf_to_corresponding_tree(4, 0b0110), Some(1));
|
|||
assert_eq!(leaf_to_corresponding_tree(4, 0b0111), Some(1));
|
|||
assert_eq!(leaf_to_corresponding_tree(4, 0b1000), Some(3));
|
|||
|
|||
assert_eq!(leaf_to_corresponding_tree(12, 0b01101), Some(0));
|
|||
assert_eq!(leaf_to_corresponding_tree(12, 0b01110), Some(1));
|
|||
assert_eq!(leaf_to_corresponding_tree(12, 0b01111), Some(1));
|
|||
assert_eq!(leaf_to_corresponding_tree(12, 0b10000), Some(4));
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_high_bitmask() {
|
|||
assert_eq!(high_bitmask(0), usize::MAX);
|
|||
assert_eq!(high_bitmask(1), usize::MAX << 1);
|
|||
assert_eq!(high_bitmask(usize::BITS - 2), 0b11usize.rotate_right(2));
|
|||
assert_eq!(high_bitmask(usize::BITS - 1), 0b1usize.rotate_right(1));
|
|||
assert_eq!(high_bitmask(usize::BITS), 0, "overflow should be handled");
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_nodes_in_forest() {
|
|||
assert_eq!(nodes_in_forest(0b0000), 0);
|
|||
assert_eq!(nodes_in_forest(0b0001), 1);
|
|||
assert_eq!(nodes_in_forest(0b0010), 3);
|
|||
assert_eq!(nodes_in_forest(0b0011), 4);
|
|||
assert_eq!(nodes_in_forest(0b0100), 7);
|
|||
assert_eq!(nodes_in_forest(0b0101), 8);
|
|||
assert_eq!(nodes_in_forest(0b0110), 10);
|
|||
assert_eq!(nodes_in_forest(0b0111), 11);
|
|||
assert_eq!(nodes_in_forest(0b1000), 15);
|
|||
assert_eq!(nodes_in_forest(0b1001), 16);
|
|||
assert_eq!(nodes_in_forest(0b1010), 18);
|
|||
assert_eq!(nodes_in_forest(0b1011), 19);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_nodes_in_forest_single_bit() {
|
|||
assert_eq!(nodes_in_forest(2usize.pow(0)), 2usize.pow(1) - 1);
|
|||
assert_eq!(nodes_in_forest(2usize.pow(1)), 2usize.pow(2) - 1);
|
|||
assert_eq!(nodes_in_forest(2usize.pow(2)), 2usize.pow(3) - 1);
|
|||
assert_eq!(nodes_in_forest(2usize.pow(3)), 2usize.pow(4) - 1);
|
|||
|
|||
for bit in 0..(usize::BITS - 1) {
|
|||
let size = 2usize.pow(bit + 1) - 1;
|
|||
assert_eq!(nodes_in_forest(1usize << bit), size);
|
|||
}
|
|||
}
|
|||
|
|||
const LEAVES: [Word; 7] = [
|
|||
int_to_node(0),
|
|||
int_to_node(1),
|
|||
int_to_node(2),
|
|||
int_to_node(3),
|
|||
int_to_node(4),
|
|||
int_to_node(5),
|
|||
int_to_node(6),
|
|||
];
|
|||
|
|||
#[test]
|
|||
fn test_mmr_simple() {
|
|||
let mut postorder = Vec::new();
|
|||
postorder.push(LEAVES[0]);
|
|||
postorder.push(LEAVES[1]);
|
|||
postorder.push(*Rpo256::hash_elements(&[LEAVES[0], LEAVES[1]].concat()));
|
|||
postorder.push(LEAVES[2]);
|
|||
postorder.push(LEAVES[3]);
|
|||
postorder.push(*Rpo256::hash_elements(&[LEAVES[2], LEAVES[3]].concat()));
|
|||
postorder.push(*Rpo256::hash_elements(
|
|||
&[postorder[2], postorder[5]].concat(),
|
|||
));
|
|||
postorder.push(LEAVES[4]);
|
|||
postorder.push(LEAVES[5]);
|
|||
postorder.push(*Rpo256::hash_elements(&[LEAVES[4], LEAVES[5]].concat()));
|
|||
postorder.push(LEAVES[6]);
|
|||
|
|||
let mut mmr = Mmr::new();
|
|||
assert_eq!(mmr.forest(), 0);
|
|||
assert_eq!(mmr.nodes.len(), 0);
|
|||
|
|||
mmr.add(LEAVES[0]);
|
|||
assert_eq!(mmr.forest(), 1);
|
|||
assert_eq!(mmr.nodes.len(), 1);
|
|||
assert_eq!(mmr.nodes.as_slice(), &postorder[0..mmr.nodes.len()]);
|
|||
|
|||
let acc = mmr.accumulator();
|
|||
assert_eq!(acc.num_leaves, 1);
|
|||
assert_eq!(acc.peaks, &[postorder[0]]);
|
|||
|
|||
mmr.add(LEAVES[1]);
|
|||
assert_eq!(mmr.forest(), 2);
|
|||
assert_eq!(mmr.nodes.len(), 3);
|
|||
assert_eq!(mmr.nodes.as_slice(), &postorder[0..mmr.nodes.len()]);
|
|||
|
|||
let acc = mmr.accumulator();
|
|||
assert_eq!(acc.num_leaves, 2);
|
|||
assert_eq!(acc.peaks, &[postorder[2]]);
|
|||
|
|||
mmr.add(LEAVES[2]);
|
|||
assert_eq!(mmr.forest(), 3);
|
|||
assert_eq!(mmr.nodes.len(), 4);
|
|||
assert_eq!(mmr.nodes.as_slice(), &postorder[0..mmr.nodes.len()]);
|
|||
|
|||
let acc = mmr.accumulator();
|
|||
assert_eq!(acc.num_leaves, 3);
|
|||
assert_eq!(acc.peaks, &[postorder[2], postorder[3]]);
|
|||
|
|||
mmr.add(LEAVES[3]);
|
|||
assert_eq!(mmr.forest(), 4);
|
|||
assert_eq!(mmr.nodes.len(), 7);
|
|||
assert_eq!(mmr.nodes.as_slice(), &postorder[0..mmr.nodes.len()]);
|
|||
|
|||
let acc = mmr.accumulator();
|
|||
assert_eq!(acc.num_leaves, 4);
|
|||
assert_eq!(acc.peaks, &[postorder[6]]);
|
|||
|
|||
mmr.add(LEAVES[4]);
|
|||
assert_eq!(mmr.forest(), 5);
|
|||
assert_eq!(mmr.nodes.len(), 8);
|
|||
assert_eq!(mmr.nodes.as_slice(), &postorder[0..mmr.nodes.len()]);
|
|||
|
|||
let acc = mmr.accumulator();
|
|||
assert_eq!(acc.num_leaves, 5);
|
|||
assert_eq!(acc.peaks, &[postorder[6], postorder[7]]);
|
|||
|
|||
mmr.add(LEAVES[5]);
|
|||
assert_eq!(mmr.forest(), 6);
|
|||
assert_eq!(mmr.nodes.len(), 10);
|
|||
assert_eq!(mmr.nodes.as_slice(), &postorder[0..mmr.nodes.len()]);
|
|||
|
|||
let acc = mmr.accumulator();
|
|||
assert_eq!(acc.num_leaves, 6);
|
|||
assert_eq!(acc.peaks, &[postorder[6], postorder[9]]);
|
|||
|
|||
mmr.add(LEAVES[6]);
|
|||
assert_eq!(mmr.forest(), 7);
|
|||
assert_eq!(mmr.nodes.len(), 11);
|
|||
assert_eq!(mmr.nodes.as_slice(), &postorder[0..mmr.nodes.len()]);
|
|||
|
|||
let acc = mmr.accumulator();
|
|||
assert_eq!(acc.num_leaves, 7);
|
|||
assert_eq!(acc.peaks, &[postorder[6], postorder[9], postorder[10]]);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_mmr_open() {
|
|||
let mmr: Mmr = LEAVES.into();
|
|||
let h01: Word = Rpo256::hash_elements(&LEAVES[0..2].concat()).into();
|
|||
let h23: Word = Rpo256::hash_elements(&LEAVES[2..4].concat()).into();
|
|||
|
|||
// node at pos 7 is the root
|
|||
assert!(
|
|||
mmr.open(7).is_err(),
|
|||
"Element 7 is not in the tree, result should be None"
|
|||
);
|
|||
|
|||
// node at pos 6 is the root
|
|||
let empty: MerklePath = MerklePath::new(vec![]);
|
|||
let opening = mmr
|
|||
.open(6)
|
|||
.expect("Element 6 is contained in the tree, expected an opening result.");
|
|||
assert_eq!(opening.merkle_path, empty);
|
|||
assert_eq!(opening.forest, mmr.forest);
|
|||
assert_eq!(opening.position, 6);
|
|||
assert!(
|
|||
mmr.accumulator().verify(LEAVES[6], opening),
|
|||
"MmrProof should be valid for the current accumulator."
|
|||
);
|
|||
|
|||
// nodes 4,5 are detph 1
|
|||
let root_to_path = MerklePath::new(vec![LEAVES[4]]);
|
|||
let opening = mmr
|
|||
.open(5)
|
|||
.expect("Element 5 is contained in the tree, expected an opening result.");
|
|||
assert_eq!(opening.merkle_path, root_to_path);
|
|||
assert_eq!(opening.forest, mmr.forest);
|
|||
assert_eq!(opening.position, 5);
|
|||
assert!(
|
|||
mmr.accumulator().verify(LEAVES[5], opening),
|
|||
"MmrProof should be valid for the current accumulator."
|
|||
);
|
|||
|
|||
let root_to_path = MerklePath::new(vec![LEAVES[5]]);
|
|||
let opening = mmr
|
|||
.open(4)
|
|||
.expect("Element 4 is contained in the tree, expected an opening result.");
|
|||
assert_eq!(opening.merkle_path, root_to_path);
|
|||
assert_eq!(opening.forest, mmr.forest);
|
|||
assert_eq!(opening.position, 4);
|
|||
assert!(
|
|||
mmr.accumulator().verify(LEAVES[4], opening),
|
|||
"MmrProof should be valid for the current accumulator."
|
|||
);
|
|||
|
|||
// nodes 0,1,2,3 are detph 2
|
|||
let root_to_path = MerklePath::new(vec![LEAVES[2], h01]);
|
|||
let opening = mmr
|
|||
.open(3)
|
|||
.expect("Element 3 is contained in the tree, expected an opening result.");
|
|||
assert_eq!(opening.merkle_path, root_to_path);
|
|||
assert_eq!(opening.forest, mmr.forest);
|
|||
assert_eq!(opening.position, 3);
|
|||
assert!(
|
|||
mmr.accumulator().verify(LEAVES[3], opening),
|
|||
"MmrProof should be valid for the current accumulator."
|
|||
);
|
|||
|
|||
let root_to_path = MerklePath::new(vec![LEAVES[3], h01]);
|
|||
let opening = mmr
|
|||
.open(2)
|
|||
.expect("Element 2 is contained in the tree, expected an opening result.");
|
|||
assert_eq!(opening.merkle_path, root_to_path);
|
|||
assert_eq!(opening.forest, mmr.forest);
|
|||
assert_eq!(opening.position, 2);
|
|||
assert!(
|
|||
mmr.accumulator().verify(LEAVES[2], opening),
|
|||
"MmrProof should be valid for the current accumulator."
|
|||
);
|
|||
|
|||
let root_to_path = MerklePath::new(vec![LEAVES[0], h23]);
|
|||
let opening = mmr
|
|||
.open(1)
|
|||
.expect("Element 1 is contained in the tree, expected an opening result.");
|
|||
assert_eq!(opening.merkle_path, root_to_path);
|
|||
assert_eq!(opening.forest, mmr.forest);
|
|||
assert_eq!(opening.position, 1);
|
|||
assert!(
|
|||
mmr.accumulator().verify(LEAVES[1], opening),
|
|||
"MmrProof should be valid for the current accumulator."
|
|||
);
|
|||
|
|||
let root_to_path = MerklePath::new(vec![LEAVES[1], h23]);
|
|||
let opening = mmr
|
|||
.open(0)
|
|||
.expect("Element 0 is contained in the tree, expected an opening result.");
|
|||
assert_eq!(opening.merkle_path, root_to_path);
|
|||
assert_eq!(opening.forest, mmr.forest);
|
|||
assert_eq!(opening.position, 0);
|
|||
assert!(
|
|||
mmr.accumulator().verify(LEAVES[0], opening),
|
|||
"MmrProof should be valid for the current accumulator."
|
|||
);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_mmr_get() {
|
|||
let mmr: Mmr = LEAVES.into();
|
|||
assert_eq!(
|
|||
mmr.get(0).unwrap(),
|
|||
LEAVES[0],
|
|||
"value at pos 0 must correspond"
|
|||
);
|
|||
assert_eq!(
|
|||
mmr.get(1).unwrap(),
|
|||
LEAVES[1],
|
|||
"value at pos 1 must correspond"
|
|||
);
|
|||
assert_eq!(
|
|||
mmr.get(2).unwrap(),
|
|||
LEAVES[2],
|
|||
"value at pos 2 must correspond"
|
|||
);
|
|||
assert_eq!(
|
|||
mmr.get(3).unwrap(),
|
|||
LEAVES[3],
|
|||
"value at pos 3 must correspond"
|
|||
);
|
|||
assert_eq!(
|
|||
mmr.get(4).unwrap(),
|
|||
LEAVES[4],
|
|||
"value at pos 4 must correspond"
|
|||
);
|
|||
assert_eq!(
|
|||
mmr.get(5).unwrap(),
|
|||
LEAVES[5],
|
|||
"value at pos 5 must correspond"
|
|||
);
|
|||
assert_eq!(
|
|||
mmr.get(6).unwrap(),
|
|||
LEAVES[6],
|
|||
"value at pos 6 must correspond"
|
|||
);
|
|||
assert!(mmr.get(7).is_err());
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_mmr_invariants() {
|
|||
let mut mmr = Mmr::new();
|
|||
for v in 1..=1028 {
|
|||
mmr.add(int_to_node(v));
|
|||
let accumulator = mmr.accumulator();
|
|||
assert_eq!(
|
|||
v as usize,
|
|||
mmr.forest(),
|
|||
"MMR leaf count must increase by one on every add"
|
|||
);
|
|||
assert_eq!(
|
|||
v as usize, accumulator.num_leaves,
|
|||
"MMR and its accumulator must match leaves count"
|
|||
);
|
|||
assert_eq!(
|
|||
accumulator.num_leaves.count_ones() as usize,
|
|||
accumulator.peaks.len(),
|
|||
"bits on leaves must match the number of peaks"
|
|||
);
|
|||
|
|||
let expected_nodes: usize = TrueBitPositionIterator::new(mmr.forest())
|
|||
.map(|bit_pos| nodes_in_forest(1 << bit_pos))
|
|||
.sum();
|
|||
|
|||
assert_eq!(
|
|||
expected_nodes,
|
|||
mmr.nodes.len(),
|
|||
"the sum of every tree size must be equal to the number of nodes in the MMR (forest: {:b})",
|
|||
mmr.forest(),
|
|||
);
|
|||
}
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_bit_position_iterator() {
|
|||
assert_eq!(TrueBitPositionIterator::new(0).count(), 0);
|
|||
assert_eq!(TrueBitPositionIterator::new(0).rev().count(), 0);
|
|||
|
|||
assert_eq!(
|
|||
TrueBitPositionIterator::new(1).collect::<Vec<u32>>(),
|
|||
vec![0]
|
|||
);
|
|||
assert_eq!(
|
|||
TrueBitPositionIterator::new(1).rev().collect::<Vec<u32>>(),
|
|||
vec![0],
|
|||
);
|
|||
|
|||
assert_eq!(
|
|||
TrueBitPositionIterator::new(2).collect::<Vec<u32>>(),
|
|||
vec![1]
|
|||
);
|
|||
assert_eq!(
|
|||
TrueBitPositionIterator::new(2).rev().collect::<Vec<u32>>(),
|
|||
vec![1],
|
|||
);
|
|||
|
|||
assert_eq!(
|
|||
TrueBitPositionIterator::new(3).collect::<Vec<u32>>(),
|
|||
vec![0, 1],
|
|||
);
|
|||
assert_eq!(
|
|||
TrueBitPositionIterator::new(3).rev().collect::<Vec<u32>>(),
|
|||
vec![1, 0],
|
|||
);
|
|||
|
|||
assert_eq!(
|
|||
TrueBitPositionIterator::new(0b11010101).collect::<Vec<u32>>(),
|
|||
vec![0, 2, 4, 6, 7],
|
|||
);
|
|||
assert_eq!(
|
|||
TrueBitPositionIterator::new(0b11010101)
|
|||
.rev()
|
|||
.collect::<Vec<u32>>(),
|
|||
vec![7, 6, 4, 2, 0],
|
|||
);
|
|||
}
|
|||
|
|||
mod property_tests {
|
|||
use super::leaf_to_corresponding_tree;
|
|||
use proptest::prelude::*;
|
|||
|
|||
proptest! {
|
|||
#[test]
|
|||
fn test_last_position_is_always_contained_in_the_last_tree(leaves in any::<usize>().prop_filter("cant have an empty tree", |v| *v != 0)) {
|
|||
let last_pos = leaves - 1;
|
|||
let lowest_bit = leaves.trailing_zeros();
|
|||
|
|||
assert_eq!(
|
|||
leaf_to_corresponding_tree(last_pos, leaves),
|
|||
Some(lowest_bit),
|
|||
);
|
|||
}
|
|||
}
|
|||
|
|||
proptest! {
|
|||
#[test]
|
|||
fn test_contained_tree_is_always_power_of_two((leaves, pos) in any::<usize>().prop_flat_map(|v| (Just(v), 0..v))) {
|
|||
let tree = leaf_to_corresponding_tree(pos, leaves).expect("pos is smaller than leaves, there should always be a corresponding tree");
|
|||
let mask = 1usize << tree;
|
|||
|
|||
assert!(tree < usize::BITS, "the result must be a bit in usize");
|
|||
assert!(mask & leaves != 0, "the result should be a tree in leaves");
|
|||
}
|
|||
}
|
|||
}
|