feat: Falcon 512 signature

This commit is contained in:
Al-Kindi-0
2023-10-03 20:45:18 +02:00
parent b1dbcee21d
commit 8078021aff
28 changed files with 2263 additions and 114 deletions

View File

@@ -0,0 +1,227 @@
use super::{
ByteReader, ByteWriter, Deserializable, DeserializationError, FalconError, Polynomial,
PublicKeyBytes, Rpo256, SecretKeyBytes, Serializable, Signature, Word,
};
#[cfg(feature = "std")]
use super::{ffi, NonceBytes, StarkField, NONCE_LEN, PK_LEN, SIG_LEN, SK_LEN};
// PUBLIC KEY
// ================================================================================================
/// A public key for verifying signatures.
///
/// The public key is a [Word] (i.e., 4 field elements) that is the hash of the coefficients of
/// the polynomial representing the raw bytes of the expanded public key.
///
/// For Falcon-512, the first byte of the expanded public key is always equal to log2(512) i.e., 9.
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct PublicKey(Word);
impl PublicKey {
/// Returns a new [PublicKey] which is a commitment to the provided expanded public key.
///
/// # Errors
/// Returns an error if the decoding of the public key fails.
pub fn new(pk: PublicKeyBytes) -> Result<Self, FalconError> {
let h = Polynomial::from_pub_key(&pk)?;
let pk_felts = h.to_elements();
let pk_digest = Rpo256::hash_elements(&pk_felts).into();
Ok(Self(pk_digest))
}
/// Verifies the provided signature against provided message and this public key.
pub fn verify(&self, message: Word, signature: &Signature) -> bool {
signature.verify(message, self.0)
}
}
impl From<PublicKey> for Word {
fn from(key: PublicKey) -> Self {
key.0
}
}
// KEY PAIR
// ================================================================================================
/// A key pair (public and secret keys) for signing messages.
///
/// The secret key is a byte array of length [PK_LEN].
/// The public key is a byte array of length [SK_LEN].
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct KeyPair {
public_key: PublicKeyBytes,
secret_key: SecretKeyBytes,
}
#[allow(clippy::new_without_default)]
impl KeyPair {
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Generates a (public_key, secret_key) key pair from OS-provided randomness.
///
/// # Errors
/// Returns an error if key generation fails.
#[cfg(feature = "std")]
pub fn new() -> Result<Self, FalconError> {
let mut public_key = [0u8; PK_LEN];
let mut secret_key = [0u8; SK_LEN];
let res = unsafe {
ffi::PQCLEAN_FALCON512_CLEAN_crypto_sign_keypair_rpo(
public_key.as_mut_ptr(),
secret_key.as_mut_ptr(),
)
};
if res == 0 {
Ok(Self { public_key, secret_key })
} else {
Err(FalconError::KeyGenerationFailed)
}
}
/// Generates a (public_key, secret_key) key pair from the provided seed.
///
/// # Errors
/// Returns an error if key generation fails.
#[cfg(feature = "std")]
pub fn from_seed(seed: &NonceBytes) -> Result<Self, FalconError> {
let mut public_key = [0u8; PK_LEN];
let mut secret_key = [0u8; SK_LEN];
let res = unsafe {
ffi::PQCLEAN_FALCON512_CLEAN_crypto_sign_keypair_from_seed_rpo(
public_key.as_mut_ptr(),
secret_key.as_mut_ptr(),
seed.as_ptr(),
)
};
if res == 0 {
Ok(Self { public_key, secret_key })
} else {
Err(FalconError::KeyGenerationFailed)
}
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the public key corresponding to this key pair.
pub fn public_key(&self) -> PublicKey {
// TODO: memoize public key commitment as computing it requires quite a bit of hashing.
// expect() is fine here because we assume that the key pair was constructed correctly.
PublicKey::new(self.public_key).expect("invalid key pair")
}
/// Returns the expanded public key corresponding to this key pair.
pub fn expanded_public_key(&self) -> PublicKeyBytes {
self.public_key
}
// SIGNATURE GENERATION
// --------------------------------------------------------------------------------------------
/// Signs a message with a secret key and a seed.
///
/// # Errors
/// Returns an error of signature generation fails.
#[cfg(feature = "std")]
pub fn sign(&self, message: Word) -> Result<Signature, FalconError> {
let msg = message.iter().flat_map(|e| e.as_int().to_le_bytes()).collect::<Vec<_>>();
let msg_len = msg.len();
let mut sig = [0_u8; SIG_LEN + NONCE_LEN];
let mut sig_len: usize = 0;
let res = unsafe {
ffi::PQCLEAN_FALCON512_CLEAN_crypto_sign_signature_rpo(
sig.as_mut_ptr(),
&mut sig_len as *mut usize,
msg.as_ptr(),
msg_len,
self.secret_key.as_ptr(),
)
};
if res == 0 {
Ok(Signature { sig, pk: self.public_key })
} else {
Err(FalconError::SigGenerationFailed)
}
}
}
// SERIALIZATION / DESERIALIZATION
// ================================================================================================
impl Serializable for KeyPair {
fn write_into<W: ByteWriter>(&self, target: &mut W) {
target.write_bytes(&self.public_key);
target.write_bytes(&self.secret_key);
}
}
impl Deserializable for KeyPair {
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
let public_key: PublicKeyBytes = source.read_array()?;
let secret_key: SecretKeyBytes = source.read_array()?;
Ok(Self { public_key, secret_key })
}
}
// TESTS
// ================================================================================================
#[cfg(all(test, feature = "std"))]
mod tests {
use super::{super::Felt, KeyPair, NonceBytes, Word};
use rand_utils::{rand_array, rand_vector};
#[test]
fn test_falcon_verification() {
// generate random keys
let keys = KeyPair::new().unwrap();
let pk = keys.public_key();
// sign a random message
let message: Word = rand_vector::<Felt>(4).try_into().expect("Should not fail.");
let signature = keys.sign(message);
// make sure the signature verifies correctly
assert!(pk.verify(message, signature.as_ref().unwrap()));
// a signature should not verify against a wrong message
let message2: Word = rand_vector::<Felt>(4).try_into().expect("Should not fail.");
assert!(!pk.verify(message2, signature.as_ref().unwrap()));
// a signature should not verify against a wrong public key
let keys2 = KeyPair::new().unwrap();
assert!(!keys2.public_key().verify(message, signature.as_ref().unwrap()))
}
#[test]
fn test_falcon_verification_from_seed() {
// generate keys from a random seed
let seed: NonceBytes = rand_array();
let keys = KeyPair::from_seed(&seed).unwrap();
let pk = keys.public_key();
// sign a random message
let message: Word = rand_vector::<Felt>(4).try_into().expect("Should not fail.");
let signature = keys.sign(message);
// make sure the signature verifies correctly
assert!(pk.verify(message, signature.as_ref().unwrap()));
// a signature should not verify against a wrong message
let message2: Word = rand_vector::<Felt>(4).try_into().expect("Should not fail.");
assert!(!pk.verify(message2, signature.as_ref().unwrap()));
// a signature should not verify against a wrong public key
let keys2 = KeyPair::new().unwrap();
assert!(!keys2.public_key().verify(message, signature.as_ref().unwrap()))
}
}